56 research outputs found

    A multidisciplinary approach to the development of low-cost high-performance lightwave networks

    Get PDF
    Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system

    On the Performance of Copying Large Files Across a Contention-Based Network

    Full text link
    Analytical and simulation models of interconnected local area networks, because of the large scale involved, are often constrained to represent only the most ideal of conditions for tractability sake. Consequently, many of the important causes of network delay are not accounted for. In this study, experimental evidence is presented to show how delay time in local area networks is significantly affected by hardware limitations in the connected workstations, software overhead, and network contention. The mechanism is a controlled experiment with two Vax workstations over an Ethernet. We investigate the network delays for large file transfers, taking into account the Vax workstation disk transfer limitations; generalized file transfer software such as NFS, FTP, and rcp; and the effect of contention on this simple network by the introduction of substantial workload from competing workstations. A comparison is made between the experimental data and a network modeling tool, and the limitations of the tool are explained. Insights from these experiments have increased our understanding of how more complex networks are likely to perform under heavy workloads.http://deepblue.lib.umich.edu/bitstream/2027.42/107873/1/citi-tr-89-3.pd

    Spinning Relations: High-Speed Networks for Distributed Join Processing

    Get PDF
    By leveraging modern networking hardware (RDMA-enabled network cards), we can shift priorities in distributed database processing significantly. Complex and sophisticated mechanisms to avoid network traffic can be replaced by a scheme that takes advantag

    Autonomous Configuration of Network Parameters in Operating Systems using Evolutionary Algorithms

    Full text link
    By default, the Linux network stack is not configured for highspeed large file transfer. The reason behind this is to save memory resources. It is possible to tune the Linux network stack by increasing the network buffers size for high-speed networks that connect server systems in order to handle more network packets. However, there are also several other TCP/IP parameters that can be tuned in an Operating System (OS). In this paper, we leverage Genetic Algorithms (GAs) to devise a system which learns from the history of the network traffic and uses this knowledge to optimize the current performance by adjusting the parameters. This can be done for a standard Linux kernel using sysctl or /proc. For a Virtual Machine (VM), virtually any type of OS can be installed and an image can swiftly be compiled and deployed. By being a sandboxed environment, risky configurations can be tested without the danger of harming the system. Different scenarios for network parameter configurations are thoroughly tested, and an increase of up to 65% throughput speed is achieved compared to the default Linux configuration.Comment: ACM RACS 201

    Message passing support in the Avalanche widget

    Get PDF
    Journal ArticleMinimizing communication latency in message passing multiprocessing systems is critical. An emerging problem in these systems is the latency contribution costs caused by the need to percolate the message through the memory hierarchy (at both sending and receiving nodes) and the additional cost of managing consistency within the hierarchy. This paper, considers three important aspects of these costs: cache coherence, message copying, and cache miss rates. The paper then shows via a simulation study how a design called the Widget can be used with existing commercial workstation technology to significantly reduce these costs to support efficient message passing in the Avalanche multiprocessing system

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    A Review Paper on Evolution of Internet

    Get PDF
    Broadband presents cease customer’s excessive-velocity while affording provider the capability to offer price-added services to growth revenues. Because of the growth of the internet, there was super buildout of high-speed, inter-metropolis communications links that connect population centers and internet provider carriers (ISPs) factors of presence (PoPs) surrounding the sector. This construct out of the spine infrastructure or center network has passed off in the main thru optical shipping generation
    • …
    corecore