15,841 research outputs found

    Rayleigh-B\'enard convection with a melting boundary

    Get PDF
    We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane layer geometry, this can be seen as classical Rayleigh-B\'enard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier-Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appears as the depth -- and therefore the effective Rayleigh number of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.Comment: 36 pages, 16 figure

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    Numerical modeling of two-dimensional temperature dynamics across ice-wedge polygons

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2017The ice wedges on the North Slope of Alaska have been forming for many millennia, when the ground cracked and the cracks were filled with snowmelt water. The infiltrated water then became frozen and turned into ice. When the annual and summer air temperatures become higher, the depth of the active layer increases. A deeper seasonal thawing may cause melting of ice wedges from their tops. Consequently, the ground starts to settle and a trough begins to form above the ice wedge. The forming trough creates a local temperature anomaly in the surrounding ground, and the permafrost located immediately under the trough starts degrading further. Once the trough is formed, the winter snow cover becomes deeper at the trough area further degrading the permafrost. In this thesis we present a computational approach to study the seasonal temperature dynamics of the ground surrounding an ice wedge and ground subsidence associated with ice wedge degradation. A thermo-mechanical model of the ice wedge based on principles of macroscopic thermodynamics and continuum mechanics was developed and will be presented. The model includes heat conduction and quasi-static mechanical equilibrium equations, a visco-elastic rheology for ground deformation, and an empirical formula which relates unfrozen water content to temperature. The complete system is reduced to a computationally convenient set of coupled equations for temperature, ground displacement and ground porosity in a two-dimensional domain. A finite element method and an implicit scheme in time were utilized to construct a non-linear system of equations, which was solved iteratively. The model employs temperature and moisture content data collected from a field experiment at the Next-Generation Ecosystem Experiments (NGEE) sites in Barrow, Alaska. The model describes seasonal dynamics of temperature and the long-term ground motion near the ice wedges and helps to explain destabilization of the ice wedges north of Alaska's Brooks Range.Introduction -- Chapter 1. Simulation of temperature dynamics around a stable ice wedge -- Chapter 2. Simulation of ice wedge degradation -- Conclusion -- References

    Monolithic simulation of convection-coupled phase-change - verification and reproducibility

    Full text link
    Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.Comment: 20 pages, 8 figure

    The Stefan problem with variable thermophysical properties and phase change temperature

    Full text link
    In this paper we formulate a Stefan problem appropriate when the thermophysical properties are distinct in each phase and the phase-change temperature is size or velocity dependent. Thermophysical properties invariably take different values in different material phases but this is often ignored for mathematical simplicity. Size and velocity dependent phase change temperatures are often found at very short length scales, such as nanoparticle melting or dendrite formation; velocity dependence occurs in the solidification of supercooled melts. To illustrate the method we show how the governing equations may be applied to a standard one-dimensional problem and also the melting of a spherically symmetric nanoparticle. Errors which have propagated through the literature are highlighted. By writing the system in non-dimensional form we are able to study the large Stefan number formulation and an energy-conserving one-phase reduction. The results from the various simplifications and assumptions are compared with those from a finite difference numerical scheme. Finally, we briefly discuss the failure of Fourier's law at very small length and time-scales and provide an alternative formulation which takes into account the finite time of travel of heat carriers (phonons) and the mean free distance between collisions.Comment: 39 pages, 5 figure
    corecore