105,945 research outputs found

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems

    Full text link
    Formal methods are widely recognized as a powerful engineering method for the specification, simulation, development, and verification of distributed interactive systems. However, most formal methods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification is valid or invalid, component behavior is realizable or not, safety properties hold or are violated, systems are available or unavailable. Especially when the problem domain entails uncertainty, impreciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to overcome the limitations resulting from the strict modus operandi of formal methods, the main objective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The present approach is based on Focus theory, a model-based and strictly formal method for componentbased interactive systems. The contribution of this work is twofold: i) we introduce a specification technique based on fuzzy logic which can be used on top of Focus to develop formal specifications in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the specification of fuzzy components and fuzzy interactions. While the former provides a methodology for approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view of specification properties such as realizability.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    The computational complexity of boundedly rational choice behavior

    Get PDF
    This research examines the computational complexity of two boundedly rational choice models that use multiple rationales to explain observed choice behavior. First, we show that the notion of rationalizability by K rationales as introduced by Kalai, Rubinstein, and Spiegler (2002) is NP-complete for K greater or equal to two. Second, we show that the question of sequential rationalizability by K rationales, introduced by Manzini and Mariotti (2007), is NP-complete for K greater or equal to three if choices are single valued, and that it is NP-complete for K greater or equal to one if we allow for multi-valued choice correspondences. Motivated by these results, we present two binary integer feasibility programs that characterize the two boundedly rational choice models and we compute their power. Finally, by using results from descriptive complexity theory, we explain why it has been so difficult to obtain `nice' characterizations for these models.
    corecore