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The computational complexity of boundedly rational
choice behavior

Thomas Demuynck∗
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Abstract

This research examines the computational complexity of two boundedly ratio-
nal choice models that use multiple rationales to explain observed choice behavior.
First, we show that the notion of rationalizability by K rationales as introduced by
Kalai, Rubinstein, and Spiegler (2002) is NP-complete for K greater or equal to
two. Second, we show that the question of sequential rationalizability by K ratio-
nales, introduced by Manzini and Mariotti (2007), is NP-complete for K greater or
equal to three if choices are single valued, and that it is NP-complete for K greater
or equal to one if we allow for multi-valued choice correspondences. Motivated by
these results, we present two binary integer feasibility programs that characterize the
two boundedly rational choice models and we compute their power. Finally, by using
results from descriptive complexity theory, we explain why it has been so difficult to
obtain ‘nice’ characterizations for these models.

JEL Classification: C60, D03, C63

Keywords: boundedly rational choice, rationalization by multiple rationales, se-
quential rationalization, NP-completeness, integer programming, descriptive com-
plexity.

1 Introduction

Neoclassical rational choice theory departs from the assumption that a decision maker
chooses among the available alternatives the ones that are highest ranked according to
his/her preference relation. This preference relation is assumed to be complete, transitive,
stable over time and stable across different choice environments. The neoclassical model is
not only convenient from a theoretical perspective but it also implies strong and easily ver-
ifiable testable implications; e.g. Richter (1966)’s congruence condition. Unfortunately, its
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gium. email: thomas.demuynck@kuleuven-kortrijk.be. I gratefully acknowledge the Fund for Scientific
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testable implications are frequently rejected by empirical research. A first kind of rejection
relates to the violation of transitivity. Cyclical choice behavior has been observed in, for
example, Tversky (1969); Loomes, Starmer, and Sugden (1991); Loomes and Taylor (1992)
and Roelofsma and Read (2000). A second kind of refutation pertains to the violation of
contraction consistency (or independence of irrelevant alternatives) which requires that the
chosen element from a set is also chosen from every subset that contains it (e.g. Seidl and
Traub (1996) and Kroll and Vogt (2008)). A violation of contraction consistency leads to,
so called, menu-dependent or context dependent choice behavior.1

As an answer to these empirical findings several alternative boundedly rational choice
models have been developed. Boundedly rational choice models explain choice behavior by
providing a more realistic and a more explicit description of how a decision maker actually
makes choices. An interesting collection of these boundedly rational choice models ratio-
nalize choice behavior by making use of multiple rationales (preferences). In this research,
we focus on two popular models from this collection: the model of choice by multiple ratio-
nales, introduced by Kalai, Rubinstein, and Spiegler (2002), and the model of sequential
choice by multiple rationales from Manzini and Mariotti (2007). We derive the compu-
tational complexity of these two models and we provide a binary integer programming
approach that enables us to verify whether a choice function can be rationalized by these
models. Finally, we discuss the theoretical implications of our results. The remaining part
of this introduction motivates the two models and summarizes our main contributions.

Boundedly rational choice using multiple rationales: The first boundedly rational
choice model in this research is the model of choice by multiple rationalizations, introduced
by Kalai, Rubinstein, and Spiegler (2002). The idea behind this model is that choices are
menu dependent. More formally, the model of choice by multiple rationales is determined
by a collection of rationales (preference relations). This collection is said to rationalize the
choice behavior of the decision maker if each observed choice is maximal for at least one
rationale in the collection. Kalai, Rubinstein, and Spiegler (2002) motivate their model
using the example of Luce and Raiffa (1957)’s dinner. In this example, a customer chooses
a meal from a menu in a restaurant. His choice is chicken when the menu provides the
choice between steak tartare or chicken. On the other hand, the customer chooses steak
tartare when the menu provides the choice between steak tartare, chicken or frog’s legs.
The choice is explained by the fact that the presence of frog’s legs (something that is
difficult to prepare) is an indication of the high quality of the chef. In addition, expertise
is necessary to make a good steak tartare. As such, the presence of frog’s legs on the menu
conveys information about the quality of the other available alternatives, a clear example
of context dependent choice. Kalai, Rubinstein, and Spiegler (2002) provide several results
concerning the minimal number of rationales needed in order to rationalize a given choice
function. Recently, Apesteguia and Ballester (2010) showed that computing this minimal
number of rationales is a difficult problem (NP-complete). We will come back to this

1Interestingly, under the full domain assumption, contraction consistency implies acyclic choice behavior
(see, for example, Suzumura (1983)).
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result in section 3.
The second boundedly rational model is the model of sequential choice by multiple

rationales from Manzini and Mariotti (2007). In this model, choices are made by solving
a sequence of intermediate smaller choices. In particular, the decision maker is endowed
with a fixed number of rationales (preferences) which are sequentially applied to narrow
down the remaining set of alternatives. Manzini and Mariotti (2007) give the example of
an arbitrator who has to pick one out of three available alternatives a, b or c. Assume
that c is Pareto superior to a while a seems fairer than b and b seems fairer than c. If
the arbitrator first chooses accordingly to the Pareto criterion and then according to the
fairness criterion he will choose c from the choice set {a, c}, a from the choice set {a, b} and
b from the choice set {b, c}, invoking cyclical (intransitive) behavior. Manzini and Mariotti
(2007) characterize the choice functions that are sequentially rationalizable by two and
three rationales.

Contribution: Recently, there has been a growing interest in the application of computa-
tional complexity theory to economic interesting problems (see, among many others, Gilboa
and Zemel (1989); Chu and Halpern (2001); Cechlarova and Hajdukova (2002); Fang, Zhu,
Cai, and Deng (2002); Woeginger (2003); Baron, Durieu, Haller, and Solal (2004); Baron,
Durieu, Haller, Savani, and Solal (2008); Brandt and Fisher (2008); Conitzer and Sandholm
(2008); Kalyanaraman and Umans (2008); Procaccia and Rosenschein (2008); Cherchye,
Demuynck, and De Rock (2009); Galambos (2009); Hudry (2009); Brandt, Fisher, Harren-
stein, and Mair (2010); Talla Nobibon, Cherchye, De Rock, Sabbe, and Spieksma (2010)
and Apesteguia and Ballester (2010)). However, as noted by Apesteguia and Ballester
(2010), there is relatively little work that applies the insights of computational complexity
theory to (rational) choice theory. In this research we partially fill this gap. We provide
the computational complexity of the two aforementioned boundedly rational choice mod-
els. We show that the question of rationalizability by multiple rationales is NP-complete
as soon as the set of rationales has size greater or equal to two. Further we show that,
for single valued choices, the question of sequential rationalization by multiple rationales
is NP-complete as soon as the number of rationales is greater or equal to three. Fi-
nally, we show that for multi-valued choice correspondences sequential rationalizability is
NP-complete as soon as there is a single rationale.

Our computational complexity results have both empirical and theoretical consequences.
From an empirical point of view, the fact that the verification of a certain choice model
is NP-complete shows that empirical refutation or acceptance of these models might be
extremely difficult. At present, the fastest algorithm to solve any NP-complete problem
has exponential worst time complexity. In order to deal with this issue we suggest to use
a binary integer programming procedure (BIP) to verify the boundedly rational choice
models. This approach has several advantages. First of all, it is a widely accepted, widely
available and well known approach to handle NP-complete problems. A second argument
pro our BIP approach is that it provides a very flexible framework to modify certain as-
pects of our problem. In section 3 we will show how we can modify the framework to
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include additional assumptions on the rationales, like, for example, transitivity, acyclicity,
connectedness, etc. We illustrate the usefulness of our approach by computing the power
(i.e. the probability of rejecting random choice behavior) of the two boundedly rational
choice models. We also discuss recovery and goodness-of-fit measurement.

Our NP-completeness results have also theoretical consequences. For these we draw on
the theory of descriptive complexity. Descriptive complexity theory studies the relation-
ship between the computational complexity of a certain decision problem and the logical
language that is necessary to characterize the set of solutions for this decision problem.
Using the results from this literature, we explain why it has been so difficult to obtain
‘nice’ characterizations for the two boundedly rational choice models.2 Finally, we show
that these findings are not limited to the models discussed in this research. In particular,
we link it to the the problem of maximal element rationalizability, introduced by Bossert,
Sprumont, and Suzumura (2005).
The next section introduces notation and presents our computational complexity results.
Section three presents the binary programming characterization. Section four discusses
the descriptive complexity implications of our results and section five presents a short
conclusion.

2 Notation and Definitions

Choice by multiple rationales: Consider a finite set of alternatives X with cardinality
n. A choice function c is a correspondence from a collection Σ ⊆ 2X−{∅} to 2X−{∅} such
that for all A ∈ Σ, c(A) ⊆ A and c(A) 6= ∅. We denote by m the number of choice sets in Σ.
In this paper we do not impose that the universal domain assumption holds, i.e. we do not
require that Σ contains all nonempty subsets of X. Although this assumption is frequently
used in choice theoretic research, it is not convenient for the evaluation of computational
complexity issues as it implies that the size of the choice domain m is exponential in
the number of alternatives n. For example, with 15 alternatives the universal domain
assumption requires that c is defined on a domain of 32.753 choice sets, clearly beyond any
practical relevance.

We say that the domain Σ is binary if it includes all 2 element subsets of X: for all
x, y ∈ X, {x, y} ∈ Σ. The choice function c is single valued if for all A ∈ Σ, c(A) contains
a single alternatives.

For a set A ⊆ X and an binary relation P ⊂ X ×X, we denote byM(A,P ) the set of
P -maximal elements of A. This is the collection of elements in A that are not dominated
by any other element in A according to the relation P .

M(A,P ) = {x ∈ S| 6 ∃y ∈ A, (y, x) ∈ P}.

If the relation P is connected, i.e. for all x, y in X with x 6= y, either (x, y) ∈ P or
(y, x) ∈ P , the set of P -maximal elements coincides with the set of P -greatest elements

2In Section 5, it will become clear what we mean by a ‘nice’ characterization.
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G(A,P ):
G(A,P ) = {x ∈ A|∀y ∈ A, (x, y) ∈ P}.

To introduce the concept of rationalization by multiple rationales we start from a list of
connected, transitive and asymmetric relations (Pk)k≤K .3 We say that a choice function c
is rationalizable by the the list (Pk)k≤K if for every choice set A in the domain Σ there is at
least one rationale Pk for which the choice c(A) is equal to the set of P -greatest elements
in A. Formally:

Definition 1 (K-Rationalizable by Multiple Rationales). A list of K asymmetric, transi-
tive and connected relations (Pk)k≤K, K-rationalizes the choice function c on the domain
Σ if for all A ∈ Σ there exist at least one k ≤ K for which:

c(A) = G(A,Pk).

Our second model of choice behavior is sequential rationalizability. This model de-
parts from a list of asymmetric relations P1, . . . , Pk and applies each of these relations
sequentially, eliminating in each round the alternatives that are dominated.

Definition 2 (K-Sequential Rationalizability). A list of K asymmetric relation (Pk)k≤K,
K-sequentially rationalizes the choice function c on the domain Σ if and only if for all
A ∈ Σ, defining recursively:

M0(A) = A,

Mk(A) =M(Mk−1(A), Pk), k = 1, . . . , K,

we have
c(A) = MK(A).

The intuition is the following. First one considers a sequence of binary relations
P1, . . . , PK . Then for all choice sets A, in the first round of the decision process one com-
putes the undominated elements of A according to the relation P1, M1(A) = M(A,P1).
Next one looks for the undominated elements of M1(A) according to the relation P2.
M2(A) = M(M1(A), P2). In the third step, one retrieves the undominated elements of
M2(A) according to the relation P3, M3(A) = M(M2(A), P3). This procedure is applied
sequentially until the last set MK(A) is computed. Consider a choice function c on a
domain Σ and a K-sequential rationalization (Pk)k≤K of this choice function. If for all
A ⊆ X, the set MK(A) is single valued, i.e. contains a single element, we say that (Pk)k≤K
is a single-valued K-sequential rationalization of c. Otherwise, we say that (Pk)k≤K is a
multi-valued K-sequential rationalization. Observe that multi-valued rationalizations do
does not exclude cases for which MK(A) might be empty for some A ⊆ X − Σ, which
can occur if one of the rationales has a cycle. Further if the domain is binary then any
sequential rationalization of c is single-valued if and only if c is single valued.

3A relation P is asymmetric if for all x and y in X it is not the case that both (x, y) ∈ P and (y, x) ∈ P .
The relation is transitive if for all x, y and z in X, (x, y) ∈ P and (y, z) ∈ P implies (x, z) ∈ P .
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Computational complexity: The theory of computational complexity tries to answer
how much time and how much memory space is needed to solve a particular problem. To
be compact, we will only give an intuitive introduction into this theory, alas at the cost
of accuracy. For a detailed introduction into the theory of computational complexity and
NP-completeness in particular, we refer to the seminal work of Garey and Johnson (1979).

The primitives in the theory of computational complexity are the decision problems.
Each decision problem is composed of a collection of instances, the inputs for the problem,
and a ‘yes’/‘no’ question that asks whether a particular instance satisfies a certain property.
In other words, a decision problem corresponds to each of its instances either a ‘yes’ or a ‘no’
as an output depending on whether the instance satisfies the question. In this research the
instances of our decision problems will always consist of the set of alternatives, a domain
and a choice function:

INSTANCE: An instance is given by the triplet (X,Σ, c) composed of a finite set of
alternatives X of size n, a collection of nonempty subsets of X, denoted by Σ, of size m
and a correspondence c from Σ to X such that for all A ∈ Σ, c(A) ⊆ A and c(A) 6= ∅.

The input size of the instance (X,Σ, c) is given by the size of the set of alternatives n
together with the size of the domain m.4 The following three questions define our decision
problems.

K-Rationalizable by Multiple Rationales (K-RMR)

QUESTION: Given an instance (X,Σ, c), does there exist a list of K transitive, asym-
metric and connected relations (Pi)i≤K such that this list K-rationalizes the choice function
c?

K-Sequentially Rationalizable (K-SR)

QUESTION: Given an instance (X,Σ, c), does there exist a list of K asymmetric relations
(Pi)i≤K such that this list is a (multi-valued) K-sequential rationalization of c?

K-Sequential Rationalizable by a single-valued rationalization (K-SRS)

QUESTION: Given an instance (X,Σ, c), does there exist a list of K asymmetric relations
(Pi)i≤K such that this list is a single valued K-sequential rationalization of c?

Observe that for the problems K-RMR, K-SR and K-SRS, the number of rationales
K is given as a parameter of the problem. In other words, there are an infinite number of
decision problems, one for each value of K ∈ N− {0}.

We denote by P the class of decision problems that can be solved in a polynomial
number of steps on a deterministic Turing machine.5 A second important class of decision
problems are the decision problems that are solvable in nondeterministic polynomial time,

4If we want to reduce the size to a single number, we can take max{n,m}
5More precisely, there exist a polynomial function, f , of the input size, here max{m,n}, such that a

solution can be found in less than f(max{m,n}) steps.
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denoted by NP . A decision problem belongs to the class NP if, given a “yes” instance
to the question there exist at least one polynomial-time certificate such that in polynomial
time, a deterministic Turing machine accepts the certificate as proof for a ‘yes’ answer
and given a ‘no’ instance of the problem, no certificate is ever accepted. For example,
K-RMR is in the class NP if, for any list of K asymmetric, transitive and connected
relations (Pk)k≤K that K-rationalizes the instance (X,Σ, c), there exists a polynomial time
algorithm that provides a proof that (Pk)k≤K is indeed a K-rationalization of c. A decision
problem which is at least as hard (as difficult) as any other problem in NP is called NP-
hard. A decision problem is said to be NP-complete if it is both NP-hard and in NP .
In other words, an NP-complete problem is at least as difficult as any other problem from
the class NP .

A fundamental open question in computational complexity (and in all of mathematics)
is whether the class of decision problems in P is equal to the class of decision problems in

NP (P ?
= NP). By definition, we have that P⊆ NP . It is not know, at present, whether

all problems in NP can be solved in polynomial time. The general accepted belief is that
P6= NP .

An NP-complete problem is among the most difficult problems in the class NP . This
class contains most of the natural computable problems from the real world. Hence NP-
complete problems are considered to be computationally intractable (especially for large
sized problems). In fact, all known solutions to NP-complete problems have exponential
worst time complexity.

In order to show that a certain decision problem is NP-complete one must demonstrate
two things. First one has to demonstrate that the decision problem is in NP . Second one
has to show that it is harder than any other problem in NP . The way to solve this second
problem is to show that a known NP-complete problem is polynomial time reducible into
the given problem. In particular, a problem Q1 is polynomial time reducible into a problem
Q2 if (i) there exist a function g which maps every instance, I1 of Q1 into an instance, g(I1)
of Q2 in such a way that the instance I1 is a ‘yes’ for Q1 if and only if g(I1) is a ‘yes’ for
Q2, and (ii) g(I1) can be constructed in polynomial time.

3 Computational complexity results

Rationalization by multiple rationales: For K = 1, the decision problem K-RMR
reduces to the question whether the choice function is rationalizable by a single transitive,
asymmetric and connected preference relation. It is well-known that this problem can
be solved in polynomial time (see for example Apesteguia and Ballester (2010)). The
interesting question is whether this remains true if we consider decision problems with
K ≥ 2. Recently, Apesteguia and Ballester (2010) showed that there exists at least one
K such that K-RMR is NP-complete. In particular they showed NP-completeness of the
following decision problem:

QUESTION RMR: Given an instance (X,Σ, c) and a number K, can we find a list
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of T ≤ K transitive, asymmetric and complete relations, (Pi)i≤T such that this list T -
rationalizes the choice function c?.

Of course, NP-completeness of the decision problem RMR does not rule out that
for particular values of K, K-RMR might be in P (this is the case, for example, when
K = 1). Unfortunately, our first results shows that as soon as K is greater or equal to two,
NP-completeness prevails. For K = 2 the proof uses a reduction from the NP-complete
problem ‘Monotone-not-all-equal 3SAT’.6 The proof for K > 2 is by induction.

Proposition 1. The decision problem K-RMR is NP-complete for all K ≥ 2.

Proof. It is easy to see that K −RMR is in NP for all values of K. For the second part
of the proof, we need to show that a known NP-complete problem is polynomial time
reducible to K-RMR. We first consider the case of K = 2.

The known NP-complete problem that we use is ‘Monotone not all equal 3SAT’ (M-
NAE-3SAT). It is given by the following instances and question.

Not all equal 3SAT (NAE-3SAT)

INSTANCE: A set of binary variables x1, . . . , xt and a collection of clauses C1, . . . , Cr.
Each clause is composed of three variables. The input size is given by the numbers t and
r.

QUESTION: Does there exist an assignment to the variables x1, . . . , xt (either 1 or
0) such that each clause contains at least one variable with the value 1 and at least one
variable with the value 0.

Consider an instance of M-NAE-3SAT with a set of variables {x1, . . . , xt} and a set
of clauses {C1, . . . , Cr}. First we create the corresponding instance of 2-RMR, i.e. set of
alternatives, the choice sets and the choice function. The following defines the alternatives:

• For each variable xi (i = 1, . . . , t) we construct two alternatives ai and āi.

• For each clause C` (` = 1, . . . , r), we construct three alternatives z1,`, z2,` and z3,`.

Consider the function f from the set of variables zk,` (k = 1, 2, 3 and ` = 1, . . . , r) to the
set {1, . . . , t}, such that f(zk,`) = i if and only if the k-th variable in clause C` is equal to
xi. Further for k = 1, 2, 3 denote by k⊕ 1 the number (k+ 1) mod 3. The choice sets and
the choice function is constructed in the following way:

• For each i = 1, . . . , t we construct the choice set Ai = {ai, āi} with c(Ai) = {ai}.

• For all k = 1, 2, 3 and ` = 1, . . . , r we construct the choice set Bk,` = {ai, āi, zk,`}
where i = f(zk,`). We set c(Bk,`) = {āi}.

6Monotone-not-all-equal-3SAT can be reduced from the NP-complete problem Not-all-equal-3SAT
(Garey and Johnson, 1979) by replacing all literals of the form (1 − xi) by a variable yi and adding
an additional clause of the form {yi, xi, xi}.

8



• Finally, for each k = 1, 2, 3, ` = 1, . . . , r we construct the choice setDk,` = {zk,`, zk⊕1,`, āi}
with i = f(zk,`). We set c(Dk,`) = {zk,`}.

Evidently, this construction can be performed in a polynomial number of steps.
Let us first show that when this problem satisfies 2-RMR then there must be a truth

assignment that satisfies M-NAE-3SAT. Let P1 and P2 be the two rationales that lead to
a solution for 2-RMR. To each choice set in Σ, we can correspond a rationale (P1 or P2)
that rationalizes the choice made from this set. It is easy to establish, by asymmetry of P1

and P2, that for each i = 1, . . . , t and all zk,` with i = f(zk,`), there are only two mutually
exclusive configurations possible. These are listed in the following table:

choice set choice configuration 1 configuration 2
Ai = {ai, āi} {ai} P1 P2

Bk,` = {ai, āi, zk,`} {āi} P2 P1

Dk,` = {zk,`, zk⊕1,`, āi} {zk,`} P1 P2

Now, if configuration 1 prevails for i ∈ {1, . . . , t}, we set xi = 1 and if configuration
2 prevails, we set xi = 0. All we need to show now is that this solution provides a ‘yes’
instance of M-NAE-3SAT. Assume, on the contrary, that there is a clause C` for which all
variables are equal to 1. In that case, we have that (z1,`, z2,`) ∈ P1, (z2,`, z3,`) ∈ P1 and
(z3,`, z1,`) ∈ P1, contradicting acyclicity of P1. On the other hand if all variables in C`

are equal to zeros we must have that: (z1,`, z2,`) ∈ P2, (z2,`, z3,`) ∈ P2 and (z3,`, z1,`) ∈ P2,
contradicting acyclicity of P2. Conclude that M-NAE-3SAT must be satisfied.

Let us now show that any ‘yes’ instance of M-NAE-3SAT corresponds to a ‘yes’ instance
of 2-RMR. Towards this end, notice that it is sufficient to to show the existence of two
acyclic and asymmetric relations P1 and P2 such that for each choice set, F ∈ Σ with
b ∈ c(F ) either (b, d) ∈ P1 for all d ∈ F or (b, d) ∈ P2 for all d ∈ F . These relations
P1 and P2 can always be extended to connected, transitive and asymmetric relations in
a polynomial number of steps (using for example a finite analogue of Szpilrajn’s lemma
(Szpilrajn, 1930)). We assign P1 and P2 to the choice sets in the following way, depending
on the specific value of xi (i = 1, . . . , t):

choice set choice xi = 1 xi = 0
Ai = {ai, āi} ai P1 P2

Bk,` = {ai, āi, zk,`} āi P2 P1

Dk,` = {zk,l, zk⊕1,`, āi} zk,` P1 P2

In other words, if xi = 1 we add the elements (ai, āi), (zk,`, zk⊕1,`) and (zk,`, āi) to P1 and
the elements (āi, ai) and (āi, zk,`) to P2 (given that f(zk,`) = i). On the other hand, if
xi = 0 we add the elements (ai, āi), (zk,`, zk⊕1,`) and (zk,`, āi) to P2 and the elements (āi, ai)
and (āi, zk,`) to P1 (given that f(zk,`) = i).

We still need to show that the relations P1 and P2 are acyclic. Assume, on the contrary,
that there exist alternatives b1, . . . , bq such that for each s = 1, . . . , q − 1, (bs, bs+1) ∈ P1

and (bq, b1) ∈ P1. (The case of a cycle in the relation P2 is similar and is left to the reader.)
We consider different cases depending on the the different possible values for b1.
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• Case 1. b1 = ai for some i = 1, . . . , t. Then there must exists alternatives bq and b2
such that (bq, ai) ∈ P1 and (ai, b2) ∈ P1. This is impossible as it implies that both
xi = 1 and xi = 0.

• Case 2. b1 = āi for some i = 1, . . . , t. Then there must exist alternatives bq and b2
such that (āi, b2) ∈ P1 and (bq, āi) ∈ P1. Again this would imply that both xi = 1
and xi = 0.

• Case 3. b1 = zk,` for some k = 1, 2, 3 and ` = 1, . . . , r. Now, b2 cannot be equal to āi
because then we are back at case 2 (replacing b1 by b2, b2 by b3 and bq by b1.). As
such, the cycle under consideration must be the cycle (z1,`, z2,`) ∈ P1, (z2,`, z3,`) ∈ P1

and (z3,`, z1,`) ∈ P1. However, this implies that all variables in clause Cl are equal to
one, a contradiction.

Conclude that 2-RMR is satisfied.

Until now, we have demonstrated that 2-RMR is NP-complete. To show that K-RMR
is NP-complete for all K > 2 we use an induction argument. We know that it is NP-
complete for K = 2. Assume that it is NP-complete for K = M and consider the case
K = M+1. The following constructs the instance (X ′,Σ′, c′) of (M+1)-RMR (the instance
is denoted by primes) based on the instance (X,Σ, c) of the decision problem M -RMR.

• For each x ∈ X, we create an alternative x ∈ X ′. Further, we create two additional
alternatives a′, b′ ∈ X ′.

• For each A ∈ Σ, create the choice set A′ = A ∪ {a′} and impose that c′(A′) = c(A).

• Create one additional choice set Z = X ′ and impose that c′(Z) = {a′}.

Of course, the instance (X ′,Σ′, c′) can be constructed in a polynomial number of steps.
Now, assume that (Pi)i≤M is a ‘yes’ instance of M -RMR. Construct the relations P ′i =
Pi ∪ {(x, a′), (x, b′)|x ∈ X ′ − {a′}} ∪ {(b′, a′)} and let P ′M+1 be an arbitrary (transitive,
asymmetric and connected) relation where the alternative a′ is top ranked among all al-
ternatives. It is clear to see that (P ′i )i≤M+1 provides a ‘yes’ instance to the (M + 1)-RMR
problem where P ′M+1 rationalizes the choice set Z and P ′i rationalizes the choice set A′ if
and only if Pi rationalizes the choice set A.

On the other hand, assume that (P ′i )i≤M+1 is a ‘yes’ instance to the (M + 1)-RMR
problem. Let P ′M+1 be the relation that rationalizes the choice function Z. It must be that
a′ is top ranked in this relation (this follows from the fact that Z = X ′ and c′(Z) = {a′}).
For any other choice set, A′, it must be that P ′M+1 does not rationalize this set (this is
because a′ is in A′ but not chosen). Now, Let Pi (i = 1, . . . ,M) be the relation which is
equal to P ′i less the comparisons involving the alternative a′. Evidently Pi rationalizes the
choice set A if and only if P ′i rationalizes the choice set A′. As such (Pi)i≤M rationalizes
the choice function c.
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Sequential rationalizability: Now, we look at the computational complexity of the
decision problems K-SR and K-SRS. We first consider the decision problem with K = 1.
It is easy to see that in this case, K-SRS requires the rationalization P1 to be transitive,
asymmetric and connected. As such 1-SRS agrees with 1-RMR, which we know to be in
P . On the other hand, the decision problem 1-SR is NP-complete. We prove this in
proposition 7 in section 5.

Let us now look at the decision problem 2-SRS. Manzini and Mariotti (2007) provide
a characterization of 2-SRS for the case where the domain Σ is binary.

Theorem 1 (Manzini and Mariotti (2007)). An instance (X,Σ, c) with Σ a binary domain
is a ‘yes’ instance for 2-SRS if and only if it satisfies WWE: c is single valued and if x =
c(Si) in a class and x = c({x, y}) then y 6= c(R) for all R ∈ Σ with {x, y} ⊂ R ⊆

⋃
i≤t Si.

It is easy to see that the verification of WWE can proceed in a polynomial number
of steps. Let us now consider the case where we abandon the requirement of the binary
domain. The following theorem is a slight adaptation of theorem 1 for this more general
case.

Proposition 2. An instance (X,Σ, c) is a ‘yes’ instance for 2-SRS if and only if it satisfies
NB-WWE: c is single-valued and for all x and y in X and R, T ∈ Σ, if x ∈ c(Si) in a class
and y ∈ c(Vi) in a class, R ⊆

⋃
i Si and T ⊆

⋃
i Vi, then not x ∈ c(T ) and y ∈ c(R).

Proof. Necessity is obvious. For sufficiency, notice that it is sufficient to demonstrate that
for every instance (X,Σ, c) that is a ‘yes’ instance of 2-SRS, there exist a single valued
choice function c′ on the binary domain Σ′ = Σ

⋃
{{x, y}|x, y ∈ X} such that:

• (X,Σ′, c′) is a ‘yes’ instance of 2-SRS, i.e. (X,Σ′, c′) satisfies WWE, and

• c′ agrees with c on the domain Σ, i.e. for all A ∈ Σ, c(A) = c′(A).

Now, let us construct such choice function c′. Consider a pair of alternatives x, y ∈ X for
which {x, y} /∈ Σ. If x ∈ c(Si) for a class and there exist a choice set R ∈ Σ such that
y ∈ c(R) and R ⊆

⋃
i Si, we impose that {y} = c′({x, y}). Similarly if y ∈ c(Vi) for a

class and there exist a choice set T ∈ Σ such that x ∈ c(T ) and T ⊆
⋃

i Vi, we set {x} =
c′({x, y}). If none of above two conditions are satisfied, we pick at random an element out
of {x, y}, say z and we set c({x, y}) = {z}. Condition NB-WWE guarantees that for no
pair of alternatives x and y, we have that both {x} = c({x, y}) and {y} = c({x, y}). It is
easily verified that the instance (X,Σ′, c′) satisfies WWE.

The condition NB-WWE can be verified in a polynomial number of steps, hence 2-SRS
is in P .

Proposition 3. The decision problem 2-SRS is in P.

Two issues remain, (i) how easy is it to verify K-SRS for K > 2 en (ii) how easy is it
to verify K-SR for K > 1. We have the following results.
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Proposition 4.

• The decision problem K-SRS is NP-complete for all K ≥ 3. This result remains if
we require the domain to be binary and the rationales to be acyclic (or transitive).

• The decision problem K-SR is NP-complete for all K ≥ 2. This result remains if
we require the domain to be binary and the rationales to be acyclic.

Proof. It is easily verified that K-SR and K-SRS are in NP . For the second part of
the proof, we begin with the problem K-SRS. The proof uses a reduction from the NP-
complete problem 3SAT. The instance and question of 3SAT are the following:

3SAT

INSTANCE: A list of binary variables {x1, . . . , xt} and a set of clauses {C1, . . . , Cr}
where each clause ` = 1, . . . , r exists of three literals l1,`, l2,` and l3,`. Each literal either
equals a certain variable or its negation. The size of the instance is given by the numbers
t and r.

QUESTION: Does there exist an assignment to the variables {x1, . . . , xt} (either 1 or
0) such that for every clause C` (` = 1, . . . , r) at least one literal has the value 1?

Now we are ready to show that 3SAT is polynomial time reducible to K-SRS for
K > 3. Consider an instance of 3SAT with a set of variables {x1, . . . , xt} and a set of
clauses {C1, . . . , Cr}. First we create the set of alternatives.

• For each variable xi, i = 1, . . . , t, we create two alternatives ai and āi.

• We create 3 other additional alternatives v1, v2 and q.

Consider the function f from the set of elements (k, `) (k = 1, 2, 3 and ` = 1, . . . , r)
to the set of alternatives, X, such that f(k, `) = ai if the kth literal in the `th clause, C`,
equals xi and f(k, `) = āi if the kth literal in the `th clause equals (1 − xi). The choice
sets, Σ and the choice function, c, are given in the following table. Notice that the domain
is binary.
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choice set choice range
{v1, v2} {v1} (1)
{v1, q} {q} (2)
{v1, ai} {v1} ∀i = 1, . . . , t (3)
{v1, āi} {v1} ∀i = 1, . . . , t (4)
{v2, q} {q} (5)
{v2, ai} {v2} ∀i = 1, . . . , t (6)
{v2, āi} {v2} ∀i = 1, . . . , t (7)
{q, ai} {ai} ∀i = 1, . . . , t (8)
{q, āi} {āi} ∀i = 1, . . . , t (9)
{ai, āi} {ai} ∀i = 1, . . . , t (10)
{ai, aj} {ai} ∀i < j; i, j = 1, . . . , t (11)
{ai, āj} {ai} ∀i, j = 1, . . . , t (12)
{āi, āj} {āi} ∀i < j; i, j = 1, . . . , t (13)
{v1, v2, ai, q} {q} ∀i = 1, . . . , t (14)
{v1, v2, āi, q} {q} ∀i = 1, . . . , t (15)
{v1, ai, āi, q} {v1} ∀i = 1, . . . , t (16)
{v2, ai, āi, q} {v2} ∀i = 1, . . . , t (17)
{v2, f(1, `), f(2, `), f(3, `), q} {v2} ∀` = 1, . . . , r (18)

Obviously, this instance of K-SRS can be constructed in polynomial time.
Now, we are ready for the proof. Assume that 3SAT is satisfiable. We show that we

can find a sequential rationalization (P1, P2, P3).
For all i = 1, . . . , t with xi = 1, set (v1, ai) ∈ P1 and (v2, āi) ∈ P1. If xi = 0, we set

(v1, āi) ∈ P1 and (v2, ai) ∈ P1. These are the only elements in P1.
For all i = 1, . . . , t, set (ai, q) ∈ P2 and (āi, q) ∈ P2. These are the only elements in P2.

The elements of P3 are listed in the table below:

elements of P3 range
(v1, v2)

(q, v1), (q, v2)
(ai, āi) ∀i = 1, . . . , t

(v2, ai), (v2, āi) ∀i = 1, . . . , t
(v1, ai), (v2, āi) ∀i = 1, . . . , t
(ai, aj), (āi, āj) ∀i < j; i, j = 1, . . . , t

(ai, āj) ∀i, j = 1, . . . , t

Notice that the relations P1, P2 and P3 are acyclic and that the rationalization is single-
valued. We could also make them transitive by taking their transitive closure. One can
easily verify that these three relations rationalize the instance.

To see the reverse, assume that the instance is a ‘yes’ instance of K-SRS with a ra-
tionalization (Pk)k≤K . We need to introduce some new notation. Consider 4 alternatives
a, b, c and d. We write ab D cd if:

min{min
i
{(a, b) ∈ Pi};K + 1} ≤ min{min

i
{(c, d) ∈ Pi};K + 1}.
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In other words, we have that ab D cd if the first rationale in the list that contains (a, b) is
earlier than the first rationale that contains (c, d). Similarly, we write ab . cd if:

min{min
i
{(a, b) ∈ Pi};K + 1} < min{min

i
{(c, d) ∈ Pi};K + 1}.

Consider the following lemma:

Lemma 1. If the instance (X,Σ, c) is a ‘yes’ instance of K-SRS then for all i = 1, . . . , t,
either

(v2āi . āiq) (C.1)

or (exclusively),

(v2ai . aiq) (C.2)

Proof. First of all, from (8) and (9) it follows that there must be a Pi and Pk in the list
such that (ai, q) ∈ Pi and (āi, q) ∈ Pj. From (14) and (15), it follows that:

(v1ai . aiq) or (v2ai . aiq)

and

(v1āi . āiq) or (v2āi . āiq)

A negation of one of these conditions would imply that {q} 6= c({v1, v2, ai, q}) or {q} 6=
c({v1, v2, āi, q}).

From (2) and (5) it follows that there must be a Pi and Pj such that (q, v1) ∈ Pi and
(q, v2) ∈ Pj. Combined with (16) and (17), it follows that:

not [(v1ai . aiq) and (v1āi . āiq)]

and

not [(v2ai . aiq) and (v2āi . āiq)]

The proof is completed by taking those combinations that do not lead to a contradiction.

Now, consider a rationalization (Pi)i≤K of the decision problem K-SRS and set xi = 1 if
the first case (C.1) of the lemma is satisfied, i.e. (v2āi.āiq) or equivalently: not (v2ai.aiq).
On the other hand, we set xi = 0 if (C.2) is satisfied, i.e. (v2ai . aiq) or equivalently: not
(v2āi . āiq). Consider a clause C` with three literals l1,`, l2,` and l3,`, we need to show that
for each clause C`, at least one of its literals hold. Consider the choice:

c({v2, f(1, `), f(2, `), f(3, `), q}) = {v2}.
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Then it cannot be the case that:

(v2f(1, `) . f(1, `)q) and (v2f(2, `) . f(2, `)q) and (v2f(3, `) . f(3, `)q) (1)

As such, there must be at least one literals that has a value of one.

We still need to proof the NP-completeness for K-SR with K ≥ 2. The reasoning is very
similar. Both the set of alternatives X and the domain Σ are the same as in the case of
K-SRS, but there is a slight modification of the choices made from the choice sets:

Choice set choice range
{v1, v2} {v1, v2} (1)
{v1, q} {v1, q} (2)
{v1, ai} {v1} ∀i = 1, . . . , t (3)
{v1, āi} {v1} ∀i = 1, . . . , t (4)
{v2, q} {v2, q} (5)
{v2, ai} {v2} ∀i = 1, . . . , t (6)
{v2, āi} {v2} ∀i = 1, . . . , t (7)
{q, ai} {ai} ∀i = 1, . . . , t (8)
{q, āi} {āi} ∀i = 1, . . . , t (9)
{ai, āi} {ai, āi} ∀i = 1, . . . , t (10)
{ai, aj} {ai, aj} ∀i, j = 1, . . . , t (11)
{ai, āj} {ai, āj} ∀i, j = 1, . . . , t (12)
{āi, āj} {āi, āj} ∀i, j = 1, . . . , t (13)
{v1, v2, ai, q} {v1, v2, q} ∀i = 1, . . . , t (14)
{v1, v2, āi, q} {v1, v2, q} ∀i = 1, . . . , t (15)
{v1, ai, āi, q} {v1} ∀i = 1, . . . , t (16)
{v2, ai, āi, q} {v2} ∀i = 1, . . . , t (17)
{v2, f(1, `), f(2, `), f(3, `), q} {v2} ∀` = 1, . . . , r (18)

The fact that some of these choices are multi-valued allows us to omit the third rationale
P3 in the rationalization. We leave the proof of this to the reader.

The results of this section are summarized in the following table:

Question K = 1 K = 2 K ≥ 3
K-RMR P NP-complete NP-complete

K-SRS P P NP-complete

K-SR NP-complete NP-complete NP-complete

4 The binary integer programming characterization

In this section we characterize the decision problems K-RMR, K-SRS and K-SR by means
of binary integer programming problems (BIP). BIP problems are a flexible and widely used
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tool to solve NP-complete programs. In principle, any BIP can be solved given enough
time. However, from elementary integer programming theory, we know that solving integer
programs may become computationally demanding for large problems. Nevertheless, they
seem to be performing reasonably well for small to moderate sized problems. Of course,
we do not claim that BIP provide the only way to verify the decision problems K-RMR
and K-SR. For example, Apesteguia and Ballester (2005) provide an alternative algorithm
that verifies the problem K-RMR.

Rationalization by multiple rationales: To begin, we need to translate the instance
of the decision problem in a more convenient form. In particular consider two matrixes A
and C of dimension n×m. The i− `th element of matrix A (resp. C) is denoted by A(i, `)
(resp. C(i, `)). We set A(i, `) equal to one if the ith alternative xi is in the `th choice set
A`, i.e. xi ∈ A` otherwise we set A(i, `) equal to zero. Similarly, we write C(i, `) = 1 if xi
is chosen from A`, i.e. xi ∈ c(Aj), we set C(i, `) equal to zero otherwise.

We introduce n2 ·K binary variables P(i, j, k), (i, j ∈ {1, . . . , n} and k ∈ {1, . . . , K}).
The idea is that P(i, j, k) equals one if the element (i, j) ∈ Pk and P(i, j, k) equals zero
if (i, j) /∈ Pk. Finally we introduce the m · K binary variables I(`, k) (` ∈ {1, . . . ,m},
k ∈ {1, . . . , K}). The aim is to impose that I(`, k) equals one if and only if Pk rationales
the choices made from A`.

We are now ready to give the BIP that characterizes K-RMR.

Program: CS-K-RMR: for all i, j, v = 1, . . . , n, ` = 1, . . . ,m and k = 1, . . . , K:

P(i, j, k) + P(j, v, k) ≤ 1 + P(i, v, k) (rmr-1)

P(i, j, k) + P(j, i, k) = 1 (i 6= j) (rmr-2)

K∑
k=1

I(`, k) = 1 (rmr-3)

C(i, `) · I(`, k) +A(j, `) · I(`, k) ≤ 1 + P(i, j, k) (i 6= j) (rmr-4)

Condition (rmr-1) requires the relations Pk to be transitive: if (xi, xj) ∈ Pk (i.e. P(i, j, k) =
1) and (xj, xv) ∈ Pk (i.e. P(j, v, k) = 1), then (xi, xv) ∈ Pk (i.e. P(i, v, k) = 1). Condition
(rmr-2) imposes the conditions of connectedness and asymmetry on Pk: either (xi, xj) ∈ Pk

(i.e. P(i, j, k) = 1) or (xj, xi) ∈ Pk (i.e. P(j, i, k) = 1) but not both. Condition (rmr-3)
requires that every choice set C` should be rationalized by at least one relation Pk. Finally,
requirement (rmr-4) states that if xi was chosen from A` (i.e. C(i, `) = 1), xj is in A` (i.e.
A(j, `) = 1) and Pk rationalizes A` (I(`, k) = 1), then (xi, xj) ∈ Pk (i.e. P(i, j, k) = 1).

Proposition 5. An instance (X,Σ, c) is a ‘yes’ instance for the decision problem K-RMR
if and only if the corresponding program CS-K-RMR has a solution.

Sequential Rationalizability: The BIP corresponding to the sequential rationalizabil-
ity problem is a bit more involved. As before, we consider the two matrixes A and C of
dimension n×m constructed similar to above.
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Again, we introduce n2 · K binary variables P(i, j, k), i, j ∈ {1, . . . , n} and k ∈
{1, . . . , K}. In addition, we introduce n · (K + 1) · m variables N (i, k, `), k = 0, . . . , K,
i = 1, . . . , n and ` = 1, . . . ,m . We will require that N (i, k, `) = 1 if and only if
xi ∈ Mk(A`). Finally, we introduce n2 · K · m variables, δ(i, j, k, `) which equals one if
either xj /∈Mk−1(A`) or (xj, xi) /∈ Pk.

Program: CS-K-SR: for all i, j, v = 1, . . . , n; ` = 1, . . . ,m and k = 1, . . . , K:

P(i, j, k) + P(j, i, k) ≤ 1 (sr-1)

N (i, 0, `) = A(i, `) (sr-2)

N (i,K, `) = C(i, `) (sr-3)

N (i, k, `) ≤ N (i, k − 1, `) (sr-4)

P(j, i, k) +N (j, k − 1, `) +N (i, k, `) ≤ 2 (sr-5)

N (j, k − 1, `) + δ(i, j, k, `) ≥ 1 (sr-6)

P(j, i, k) + δ(i, j, k, `) ≥ 1 (sr-7)∑
j

δ(i, j, k, `) +N (i, k − 1, `)−N (i, k, `) ≤ n (sr-8)

Program: CS-K-SRS: for all i, j, v = 1, . . . , n; ` = 1, . . . ,m and k = 1, . . . , K, condi-
tions (sr-1)-(sr-8) are satisfied and in addition:

K∑
k=1

P(i, j, k) + P(j, i, k) ≥ 1 (i 6= j) (srs-9)

Condition (sr-1) imposes asymmetry on the relation Pk: not both (xi, xj) ∈ Pk (i.e.
P(i, j, k) = 1) and (xj, xi) ∈ Pk (i.e. P(j, i, k) = 1). Rules (sr-2) and (sr-3) define the
sets M0(A`) = A` (i.e. N (i, 0, `) = 1 if and only if A(i, `) = 1) and MK(A`) = c(A`) (i.e.
N (i,K, `) = 1 if and only if C(i, `) = 1). Rule (sr-4) implies that when xi /∈ Mk−1(A`)
(i.e. N (i, k − 1, `) = 0) then xi /∈ Mk(A`) (i.e. N (i, k, `) = 0). Rule (sr-5) implies that
when (xj, xi) ∈ Pk (i.e. P(j, i, k) = 1) and xj ∈ Mk−1(A`) (i.e. N (j, k − 1, `) = 1), then
xi /∈ Mk(A`) (i.e. N (i, k, `) = 0). Condition (sr-6) implies that when xj /∈ Mk−1(A`) (i.e.
N (j, k − 1, `) = 0) then δ(i, j, k, `) = 1. Condition (sr-7) implies that when (xj, xi) /∈ Pk

(i.e. P(j, i, k) = 0), then also δ(i, j, k, `) = 1. Finally, condition (sr-8) expresses the
condition that if for all j ∈ X either xj /∈ Mk−1(A`) or (xj, xi) /∈ Pk (i.e. δ(i, j, k, `) = 1)
and if xi ∈Mk−1(A`) (i.e. N (i, k − 1, `) = 1), then xi ∈Mk(A`) (i.e. N (i, k, `) = 1).

For CS-K-SRS, we have the additional condition (srs-9) which states that for all alter-
natives xi, xj ∈ X there must be at least one rationale Pk such that either (xi, xj) ∈ Pk

(i.e. P(i, j, k) = 1) or (xj, xi) ∈ Pk (i.e. P(j, i, k) = 1).

Proposition 6. An instance (X,Σ, c) is a ‘yes’ instance for the decision problem K-SR
if and only if the corresponding program CS-K-SR has a solution. It is a ‘yes’ instance
for the decision problem K-SRS if and only if the corresponding program CS-K-SRS has
a solution.
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Simulation Results: In order to illustrate our BIP approach. We compute the power of
the decision problems. Here, we follow Bronars (1987) and define power as the probability
of rejecting random choice behavior. For the simulation, we need to fix the size of the
instance. In particular, we choose n = 6 and m = 6, i.e. we took instances with six
alternatives and six choice sets. We also need some algorithm to construct the choice
sets. We do this by drawing for each alternative xi, (i = 1, . . . , n) and each choice set A`,
(` = 1, . . . ,m) a random number in [0, 1]. Next we put xi ∈ A` if this random number
is greater than some predetermined level α (making sure of course that no choice set is
empty). Of course, the lower the value of α, the larger the average choice set in the instance.
Next, we draw at random an element from each set A` which we identify with c(A`). The
following table gives the fraction of simulated instances (X,Σ, c) that are rejected by the
models (1.000 simulations).

Model α K = 1 K = 2 K = 3 K = 4 K = 5
RMR 0.2 0.998 0.774 0.157 0.002 0.000

0.4 0.986 0.320 0.006 0.000 0.000
0.6 0.830 0.030 0.000 0.000 0.000
0.8 0.434 0.002 0.000 0.000 0.000

SR 0.2 0.998 0.906 0.802 0.783 0.780
0.4 0.96 0.559 0.332 0.302 0.292
0.6 0.748 0.244 0.147 0.139 0.138
0.8 0.362 0.114 0.101 0.099 0.099

SRS 0.2 0.998 0.914 0.802 0.783 0.780
0.4 0.986 0.593 0.334 0.302 0.292
0.6 0.83 0.267 0.147 0.139 0.138
0.8 0.434 0.117 0.101 0.099 0.099

Kalai, Rubinstein, and Spiegler (2002) showed that any instance (X,Σ, c) where X has
n elements is a ‘yes’ instance for (n− 1)-RMR. This fact is reproduced in the last column
of the upper part of the table, where we see that the power for 5-RMR is indeed equal to
zero. We make a few observations. First of all, the tests are clearly nested where K-RMR,
K-SR and K-SRS imply, respectively, K ′-RMR, K ′-SR and K ′-SRS for all K ≤ K ′ and
K-SRS implies K-SR. Second, larger choice sets (lower value of alpha) produce higher
power. Finally, we see that, except for the case K = 1, the decision problems K-SR and
K-SRS have higher power than the decision problem K-RMR.

Remarks: We briefly discuss three further interesting extensions of the proposed BIP
approach: (i) impose or relax certain properties on the rationales, (ii) recovery the under-
lying rationales and (iii) goodness of fit measures when the instance is not rationalizable.

i The BIP approach is a very flexible took to impose or relax certain conditions on
the rationales. If, for example, we want to impose transitivity on the relations Pk
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in the rationalization of K-SR or K-SRS, it suffices to introduce the additional con-
straint (rmr-1) into program CS-K-SR(S). If we only want to impose the less strin-
gent condition of acyclicity Pk, we can do this by constructing n2 · K additional
variables Q(i, j, k) and imposing the following conditions for all i, j = 1, . . . , n and
k = 1, . . . , K:

P(i, j, k) ≤ Q(i, j, k) (sr-9)

Q(i, j, k) +Q(j, v, k) ≤ 1 +Q(i, v, k) (sr-10)

Q(i, j, k) +Q(j, i, k) ≤ 1 (i 6= j) (sr-11)

The idea behind the construction is to construct a transitive and asymmetric relation
Qk for which Pk ⊆ Qk. Condition (sr-9) implies that Pk ⊆ Qk (i.e. if P(i, j, k) = 1
then Q(i, j, k) = 1) while condition (sr-10) implies transitivity of Qk and condition
(sr-11) implies asymmetry of Qk. These extra conditions imply extra structure on
the rationales of the decision problem K-SR(S). Of course, we could also apply these
methods to relax certain properties of the rationales for the decision problem K-
RMR.

• The BIP approach not only verifies whether a certain instance can be rationalized by
the different boundedly rational choice models, but it also reconstructs a collection
of rationales that lead to this rationalization using the variables P (i, j, k). As such,
this approach can in fact be used to reconstruct the underlying features of the model.

• Finally the BIP approach can also be used to compute goodness of fit measures if
a certain instance is not rationalizable by the boundedly rational choice model. For
example, one could compute the minimal number of asymmetry violations needed in
order to rationalize a particular instance.

5 Descriptive complexity

In this section, we use ourNP-completeness results to explain some characterization results
in the literature. For compactness, we limit ourselves to a fairly intuitive discussion. For a
rigorous overview of the theory of descriptive complexity, we refer to the book of Immerman
(1999). We also refer to the research of Galambos (2009) who uses descriptive complexity
theory together with an NP-completeness result to discuss certain domain restrictions on
the choice functions that are rationalizable by a noncooperative Nash equilibrium.

In order to motivate our discussion, recall the characterization of 2-SRS given by
Manzini and Mariotti (2007):

Theorem (Manzini and Mariotti (2007)). An instance (X,Σ, c) with a binary domain Σ
is a ‘yes’ instance for the decision problem 2-SRS if and only if it satisfies WWE: c is
single valued and if x = c(Si) for a class and x = c({x, y}) then y 6= c(R) for all R ∈ Σ
with {x, y} ⊂ R ⊆

⋃
i≤T Si.
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From a computational complexity point of view, this is a ‘nice’ characterization. In
particular, it is quite easy to envisage the way in which we should verify the property
WWE: for any two elements x and y from X, look if x ∈ c({x, y}). If this is the case,
collect the choice sets Si for which x ∈ c(Si) and the choice sets Vj for which y ∈ c(Vj)
and verify that for all j it is not the case that Vj ⊆

⋃
i Si. This algorithm would decide in

polynomial time whether a particular instance satisfies WWE.
In the theory of mathematical logic, properties (sentences) are not categorized by their

computational complexity but by the logical language that is used to express them. One of
the most elementary languages is called first order logic. Sentences in first order logic are
composed of variables (in our case these are the alternatives in X and choice sets in Σ),
constant symbols, relational symbols (the rationales “Pi” and equality sign “=”), boolean
connectives (and, “∧”, or, “∨” and not, “¬”) and quantifiers (for all, “∀” and there exists,
“∃”) which are restricted over the set of variables. It is easy to see that the property WWE
can be expressed in first order logic.

Descriptive complexity theory investigates the relationship between the computational
complexity of a certain problem and the logical language necessary to characterize this
problem. Consider a decision problem and let I be the instances of this problem. The set
I can then be partitioned into the set of instances that are a ‘yes’ instance of the decision
problem IY and the instances that correspond to a ‘no’ instance IN . Then, one can try to
find a property T that characterizes the instances in IY . Descriptive complexity asks how
hard it is to express this property in a certain logic. As an example, consider the decision
problem 2-SRS on the set of binary domains. This decision problem is in the class P . A
instance (X,Σ, c) is in the class IY of 2-SRS if and only if it satisfies the property WWE,
and this property is expressible in first order logic.

One of the most important results in descriptive complexity theory gives the equivalence
between the decision problems in P and the instances that can be characterized using
properties expressible in first order logic augmented with the least fixed point operator.
The least fixed point operator adds to first order logic the power to define new relations by
induction. The most relevant example of the least fixed point operator, for choice theory,
is the transitive closure operator.7 The transitive closure of a relation cannot be expressed
using only first order logic but it can nevertheless be computed in polynomial time (using
for example Warshall (1962)’s algorithm).

Theorem 2 (Immerman-Vardi theorem (Immerman, 1982; Vardi, 1982)). Over ordered
structures, the set of ‘yes’ instances to a decision problem can be characterized by a property
expressible in first order logic together with the least fixed point operator if and only if the
decision problem is in the class P.

The requirement of ordered structures does not need to concern us here. It merely
requires that there is some kind of ordering over the variables in the language. Of course

7The transitive closure operator T (.) can be defined inductively by constructing the relations Pt (t =
1, . . . , T, T+1, . . . , ) where P1 = P and (x, y) ∈ Pt if (x, y) ∈ Pt−1 or if there exist a z such that (x, z) ∈ Pt−1

and (z, y) ∈ Pt−1. The transitive closure T (P ) of the relation P is then the smallest relation PT such that
PT = PT+1.
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every computational language needs an ordering over its inputs in order to be able to read
these inputs and perform computations on them but first order logic alone is not strong
enough to define this ordering on its own variables. As such, we need this additional
requirement

Now, let us have a look at the property of 3-SRS. For a (multi-valued) choice function
c on a domain Σ, denote by c(Σ) the domain:

c(Σ) = {A ⊆ X|∃B ∈ Σ, A = c(B)}.

Manzini and Mariotti (2007) give the following characterization of 3-SRS:

Theorem 3. An instance (X,Σ, c) is a ‘yes’ instance of the decision problem 3-SRS if and
only if c is single valued and there exists a choice function c∗ on the domain Σ such that:

1. c(c∗(A)) = c(A) for all A ∈ Σ,

2. {X, c∗(Σ), c} is a ‘yes’ instance of 2-SRS,

3. if x ∈ c∗(A) for some A ∈ Σ, then x ∈ c∗({x, y}) for all y ∈ A.

In contrast to 2-SRS (i.e. property WWE), this characterization is not so ‘nice’. In
particular, it is not at all obvious how one begins at verifying whether a given choice
function satisfies it.8 The problem lies in the fact that we must show the existence of a
certain choice function c∗ and that in general the size of the collection of choice functions
is very big (exponential). Going back to a logical perspective, the problem is that for this
decision problem, the characterization of the ‘yes’ instances is not expressed in first order
logic (with the least fixed point property). In fact, the logic used to express this theorem
is given by the language of existential second order logic. Existential second order logic
is defined by extending first order logic with the power to condition on the existence of
higher order elements like relations or functions. This is exactly what theorem 3 does. It
conditions on the existence of the choice function c∗ (There exists a choice function c∗ on
Σ such that. . . ). This leads us to another important theorem in descriptive complexity
theory.

Theorem 4 (Fagin (1974)’s theorem). The set of ‘yes’ instances to a decision problem can
be characterized by properties expressible in existential second order logic if and only if the
decision problem is in the class NP.

Combining Fagin’s theorem with the Immerman-Vardi theorem, we derive following
result.

Corollary 1. Unless P= NP it is not possible to characterize the set of ‘yes’ instances
of an NP-complete decision problem using only first order logic and the least fixed point
operator. In particular, this means that . . .

8Interestingly, Manzini and Mariotti (2007) provide such an algorithm, albeit with exponential time
complexity.
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• . . . unless P= NP it is not possible to characterize the set of ‘yes’ instances of the
decision problem K-RMR (with K ≥ 2) using only first order logic and the least fixed
point operator.

• . . . unless P= NP it is not possible to characterize the set of ‘yes’ instances of the
decision problem K-SRS (with K ≥ 3) using only first order logic and the least fixed
point operator.

The above corollary explains why theorem 3 is stated in second order existential logic.
If it were possible to give an equivalent characterization expressible in first order logic
(together with the least fixed point property) we would have shown that P= NP .

Corollary 1 might also explains other findings in the literature. Recently, Bossert, Spru-
mont, and Suzumura (2005) characterized the instances (X,Σ, c) that are maximal element
rationalizable by a binary relation and the instances that are maximal element rational-
izable by a relation that satisfies one or several of the following properties: completeness,
reflexivity, acyclicity, quasi-transitivity, consistency and transitivity.

For an instance (X,Σ, c), define:

Ac = {(A, y)|A ∈ Σ and y ∈ A− c(A)}.

and
Fc = {f : Ac → X|f(A, y) ∈ A for all (A, y) ∈ AC}.

The set A collects the pairs (A, y) such that A is a choice set and y is not chosen from A and
the functions in Fc assign to every pair (A, y) in A an element in A. The interpretation
is that f(A, y) is an alternative in A that can be used to prevent y from being chosen.
Observe that the cardinality of Fc is exponential in the size of the instance.

Bossert, Sprumont, and Suzumura (2005) discuss and defend in great length the fact
that most of their characterizations involve existential clauses. Consider the first of these
characterizations:

Theorem 5 (M-RAT, Bossert, Sprumont, and Suzumura (2005)). Consider an instance
(X,Σ, c). There exist an (asymmetric) binary relation P such that for all A ∈ Σ:

c(A) =M(A,P ),

if and only if there exist an f ∈ Fc such that:

• For all (A, y) ∈ Ac, for all T ∈ Σ and for all x ∈ T :

f(A, y) = x→ y /∈ c(T ).

• For all (A, y), (T, x) ∈ Ac,

f(A, y) = x→ f(T, x) 6= y.
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Given above discussion, the problem does not really seems to be the existential clause,
but the fact that the characterization of M-RAT is stated in existential second order logic
(there exist a function f ∈ Fc such that. . . ). Confronted with the observation that the
authors have not found an easier characterization and in the light of corollary 1 one is
easily led to the conjecture that the decision problem M-RAT (which is equal to the
decision problem 1-SR) is NP-complete. Indeed,

Proposition 7. The following decision problem is NP-complete:

M-RAT (1-SR)

QUESTION: Given an instance (X,Σ, c), does there exist an (asymmetric) relation P
such that for all A ∈ Σ, c(A) =M(A,P )?

Proof. Membership in NP is easily verified. For the second part, we consider a reduction
from 3SAT. Consider an instance of 3SAT given by the variables {x1, . . . , xt} and set of
clauses {C1, . . . , Cr}. We now construct the instance of M-RAT:

• for each variable xi we construct two alternatives ai and āi.

• we construct three additional alternatives d and c and q.

Consider the function f(k, `) (k = 1, 2, 3, ` = 1, . . . ,m) such that f(k, `) = ai if the kth
literal in the `th clause is given by xi and let f(k, `) = āi if the kth literal in the `th clause
is given by (1− xi). The following table gives the choice sets and choices:

choice set choice range
{q, ai} {q, ai} i = 1, . . . , t (1)
{q, āi} {q, āi} i = 1, . . . , t (2)
{q, c} {q, c} (3)
{d, ai} {d} i = 1, . . . , t (4)
{d, āi} {d} i = 1, . . . , t (5)
{d, c} {d, c} (6)
{q, ai, āi, c} {q} i = 1, . . . , t (7)
{d, f(1, `), f(2, `), f(3, `), c} {d} ` = 1, . . . , r (8)

Consider a ‘yes’ instance of 3SAT. If xi = 1 we set (āi, ai) ∈ P , (ai, c) ∈ P and
(c, āi) ∈ P if xi = 0, we set (ai, āi) ∈ P , (āi, c) ∈ P and (c, ai) ∈ P .

Further set for all i = 1, . . . , t, (d, ai), (d, āi) ∈ P . It is easy to see that this relation
provides a ‘yes’ instance for M-RAT.

On the other hand, let P be a solution to M-RAT. Now for all i, either (āi, ai), (ai, c), (c, āi) ∈
P or (exclusive) (ai, āi), (āi, c), (c, ai) ∈ P (by (1)-(3), (7) and asymmetry of P ). If the first
is the case, we set xi = 1. If the second is the case, we set xi = 0. It is easy to see that
this provides a ‘yes’ instance of 3SAT (by (8)).

Verifying whether the other rationalizability problems characterized by Bossert, Spru-
mont, and Suzumura (2005) are also NP-complete is left for future research.

23



Remark: We conclude this section with one last remark. In this section we judged the
‘niceness’ of certain characterizations by the logical language in which they are expressed.
Of course, we do not claim that this is the only criteria to evaluate the attractiveness
of a certain characterization. Characterizations can also be of importance because they
provide more insights into the underlying structure of the problem, because they approach
the same problem from a different angle, because they emphasize similarities with other
well known problems, etc. Even from a more computational point of view, a different
characterizations may lead to considerable savings in computing time.

6 Concluding Discussion

We have characterized the computational complexity of two boundedly rational choice
models: the rationalization by multiple rationales and the sequential rationalization by
multiple rationales. We found that in most cases, these models are difficult to verify (NP-
complete). Although these results could be seen as a drawback for future research, this
does not have to be the case. We give a few guidelines.

First, although, the NPcompleteness results indicate that it might be computationally
infeasible to verify, for large instances, whether they satisfy the two boundedly rational
choice models this only shows that empirical applications should concentrate on collect-
ing small to moderate sized instances. In particular, empirical research should focus on
collecting a large sample of small instances rather than a small sample of large instances.

Second, even for large instances it is still possible to use heuristics that give a quick
(but possibly inconclusive) answer to whether or not the data set satisfies the boundedly
rational choice models.

Finally, our results impose very modest domain restrictions. As such, it might be
the case that certain choice domains (for example, a domain that is closed under unions,
intersections or complements) do allow for efficient, polynomial time, verification.
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