22,343 research outputs found

    Trees

    Get PDF
    An algebraic formalism, developped with V. Glaser and R. Stora for the study of the generalized retarded functions of quantum field theory, is used to prove a factorization theorem which provides a complete description of the generalized retarded functions associated with any tree graph. Integrating over the variables associated to internal vertices to obtain the perturbative generalized retarded functions for interacting fields arising from such graphs is shown to be possible for a large category of space-times.Comment: minor corrections, references added, no change in result

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    Rota-Baxter algebras, singular hypersurfaces, and renormalization on Kausz compactifications

    Get PDF
    We consider Rota-Baxter algebras of meromorphic forms with poles along a (singular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole subtraction. We apply this formalism to the unrenormalized momentum space Feynman amplitudes, viewed as (divergent) integrals in the complement of the determinant hypersurface. We lift the integral to the Kausz compactification of the general linear group, whose boundary divisor is normal crossings. We show that the Kausz compactification is a Tate motive and that the boundary divisor and the divisor that contains the boundary of the chain of integration are mixed Tate configurations. The regularization of the integrals that we obtain differs from the usual renormalization of physical Feynman amplitudes, and in particular it may give mixed Tate periods in some cases that have non-mixed Tate contributions when computed with other renormalization methods.Comment: 35 pages, LaTe

    Feynman integrals and motives

    Get PDF
    This article gives an overview of recent results on the relation between quantum field theory and motives, with an emphasis on two different approaches: a "bottom-up" approach based on the algebraic geometry of varieties associated to Feynman graphs, and a "top-down" approach based on the comparison of the properties of associated categorical structures. This survey is mostly based on joint work of the author with Paolo Aluffi, along the lines of the first approach, and on previous work of the author with Alain Connes on the second approach.Comment: 32 pages LaTeX, 3 figures, to appear in the Proceedings of the 5th European Congress of Mathematic
    • ā€¦
    corecore