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Abstract

An algebraic formalism, developed with V. Glaser and R. Stora for the study of the generalized retarded 
functions of quantum field theory, is used to prove a factorization theorem which provides a complete de-
scription of the generalized retarded functions associated with any tree graph. Integrating over the variables 
associated to internal vertices to obtain the perturbative generalized retarded functions for interacting fields 
arising from such graphs is shown to be possible for a large category of space–times.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The general properties of generalized retarded n-point functions in general field theory were 
discovered and studied by several authors in the 1960s [12–15,7,1,2,4]. In particular [4] gives 
support properties which lead to the full primitive domain of analyticity in momentum space. In 
the 1970s a new presentation, inspired by perturbation theory, was described in [9,10]. It is based 
on an algebraic structure which has some interest in itself, and is well-adapted to not necessar-
ily Minkowskian space–times. This paper presents an application of this algebraic formalism – 
for which Raymond Stora always had a liking – to a small problem in perturbation theory. In 
perturbation theory the time-ordered or retarded functions of interacting fields are obtained by 
integrating graphs in the variables attached to some internal vertices (see Sect. 5 for more de-
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tails). In Minkowski space–time this integration is always feasible in the absence of zero masses 
(see e.g. [8]), but not always when they occur. This is even true in the case of tree graphs. It 
was remarked by J. Bros, in the few-vertex case, that it is still possible to obtain the retarded 
function associated to a tree graph. Here we will see (Sects. 4 and 5) that the generalized re-
tarded functions for the interacting fields associated to a tree graph can always be obtained by 
integrating the variables attached to the internal vertices over a bounded region, provided one 
deals with a space–time in which the double-cones are bounded. This is based on a factorization 
theorem (Corollary 3.1) which follows naturally from the algebraic formalism mentioned above, 
and which also yields a complete description of the generalized retarded functions associated to 
any tree graph (Sect. 4).

Let X denote a “space–time”. This is a smooth manifold which can be the d-dimensional 
Minkowski space (Md ), or the d-dimensional de Sitter space (dSd ), or the universal cover of 
the d-dimensional Anti-de Sitter space ( ˜AdSd ), or even a more general space–time. We suppose 
that a closed reflexive relation denoted x ≤ y (or equivalently y ≥ x) is defined in X . This need 
not be an order relation, but it is in the three examples mentioned above. The relation x � y (or 
equivalently y � x) is defined as the negation of y ≤ x. If A and B are subsets of X , we denote

A� B ⇐⇒ B � A ⇐⇒ (∀x ∈ A ∀y ∈ B, x � y) . (1)

Thus (1) means that there is no x ∈ A and no y ∈ B such that x ≥ y. If x ∈ X , the future (resp. 
past) set of x is the (closed) set of all y such that y ≥ x (resp. y ≤ x). If A ⊂X , the future (resp. 
past) set of A is the union of the future (resp. past) sets of all the elements of A. The condition 
(1) means that B does not intersect the past set of A, or, equivalently, that A does not intersect 
the future set of B . If x, y ∈ X the set {z ∈ X : y ≤ z ≤ x} is called the double-cone with 
vertices x and y. If ≤ is an order relation, it is empty unless y ≤ x. In Minkowski space, and 
in de Sitter space dSd viewed as a hyperboloid imbedded in a (d + 1)-dimensional Minkowski 
space, x ≤ y ⇔ y ∈ x + V+, and (A � B) ⇐⇒ (A ∩ (B + V+) = ∅), where, as usual, V+ =
{(x0, �x) : x0 > |�x|} = −V− and V+ = {(x0, �x) : x0 ≥ |�x|} = −V−. In the Minkowski and de 
Sitter spaces, the double-cones are compact.

Let X be a finite set of (distinct) indices with cardinal denoted |X|. By XX we denote X |X|
or more precisely the set of maps X → X . P(X) denotes the set of subsets of X. P∗(X) denotes 
the set of proper subsets of X i.e. P∗(X) = {J ⊂ X : J �= ∅ and J �= X}. A proper sequence 
in P(X) is a sequence {J1, . . . , Jν} of disjoint non-empty subsets of X with union X. A lin-
ear system of generalized time-ordered functions (GTOF) in variables indexed by X is a set of 
distributions on XX , indexed by the proper sequences in P(X), usually denoted

tJ1,...,Jν or tcJ1,...,Jν
(connected, or truncated version) (2)

and having the property of being symmetric in the variables with indices contained in any given 
Jk . In addition we suppose that for any k ∈ X these distributions are C∞ in the variable xk

when smeared with smooth test-functions in the remaining variables (let us call this the property 
of partial regularity, or PR). In the Minkowski case this is a consequence of the translational 
invariance which we will always impose, together with the usual spectral assumptions, on these 
distributions. In the de Sitter or Anti-de Sitter case, PR is a consequence of the group invariance 
if it holds. In more general space–times it follows from the microlocal properties imposed by 
several authors as a substitute for translational invariance (see [5] and references therein).

Last but not least, the set of distributions {tJ1,...,Jν } must have the property of causal factor-
ization. This means that if X = A ∪ B , A ∩ B = ∅, then

tJ ,...,Jν − tJ ∩A,J ∩B...,Jν∩A,Jν∩B vanishes in the open set {x ∈ XX : {x}A � {x}B} . (3)
1 1 1
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Fig. 1. Factorization at an internal vertex.

The last notation means the set of all x ∈ XX such that xj � xk for all j ∈ A and all k ∈ B . 
(If K is a set of indices, {x}K denotes {xj : j ∈ K}.) Of course the term “causal factorization” 
does not mean that the distribution tJ1,...,Jν actually factorizes, but refers to the property of causal 
factorization possessed by time-ordered products of local quantum fields. If time-ordered prod-
ucts T ({φk(xk)}k∈K), abbreviated as T (K), have been defined, and I ∪ J = K , I ∩ J = ∅ then 
T (K) − T (I)T (J ) vanishes in {x : {x}I � {x}J }, and the distributions

tJ1,...,Jν = (�, T (J1) . . . T (Jν)�) (4)

or their truncated versions

tcJ1,...,Jν
= (�, T (J1) . . . T (Jν)�)c (5)

are examples of GTOF. See e.g. [10]. However this paper is concerned with GTOF which exhibit 
another type of (actual) factorization, described in the next subsection.

1.1. Factorization at an index

We consider a linear system of GTOF in variables indexed by a finite set X = A ∪ B ∪ {1}, 
with 1 /∈ A �= ∅, 1 /∈ B �= ∅, A ∩ B = ∅, which factorize as symbolized by Fig. 1.

This means that the linear system of GTOF tc satisfies

tcJ1,...,Jν
({x}X) = t

1,c
J1∩(A∪1),...,Jν∩(A∪1)({x}A∪1) t

2,c
J1∩(B∪1),...,Jν∩(B∪1)({x}B∪1) (6)

where the {t1,c} (resp. {t2,c}) are a linear system of GTOF in variables indexed by A ∪ {1} (resp. 
B ∪ {1}). In the case when the tc are connected (or truncated) vacuum expectation values of 
products of time-ordered products of local fields, this takes the form

(�, T (J1) . . . T (Jν)�)c

= (�, T (J1 ∩ (A ∪ 1)) . . . T (Jν ∩ (A ∪ 1))�)1,c

×(�, T (J1 ∩ (B ∪ 1)) . . . T (Jν ∩ (B ∪ 1))�)2,c (7)

This makes sense because of the PR property: smearing with test-functions in the variables 
indexed by A and B yields a product of two C∞ functions of x1. In addition the product (6)
itself has the property PR. This is obvious if the distinguished variable is x1. If the distinguished 
variable is xj , with j ∈ A, we first smear in the variables indexed by B . The second factor then 
becomes a C∞ function of x1 and smearing the variables indexed by {1} ∪ A \ {j} finally yields 
a C∞ function of xj . In the Minkowskian case, we can take as variables the two independent 
groups {xj − x1 : j ∈ A} and {xj − x1 : j ∈ B}, so that (6), (7) are really tensor products of 
distributions.

The main example of this situation is the system of GTOF associated to a perturbative tree 
graph with vertices labelled by X, in which 1 is an internal vertex, and A ∪ {1} and B ∪ {1} are 
the sets of vertices of two subtrees. A more general example is given by any perturbative graph 
which is splittable at an internal point (see again Fig. 1). In this case, we are really dealing with 
Wick monomials of free or generalized free fields [3,11,5,17,18], each field indexed by j ∈ A
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being of the form : φmj (xj ) : ⊗1, each field indexed by k ∈ B being of the form 1⊗ : ψmk(xk):, 
and the field labelled by 1 being : φa(x1) : ⊗ : ψb(x1):, operating in a tensor product of two Fock 
spaces.

In the Minkowskian case, given a distribution

F({x′
j }j∈A, {x′′

k }k∈B, x1) = f ({x′
j − x1}j∈A, {x′′

k − x1}k∈B) (8)

= F1({x′
j }j∈A, x1)F2({x′′

k }k∈B, x1) (9)

= f1({x′
j − x1}j∈A)f2({x′′

k − x1}k∈B), (10)

we have, for the Fourier transforms:

F̃ ({p′}A, {p′′}B, p1) = δ(p′
A + p′′

B + p1) f̃ ({p′}A, {p′′}B), (11)

f̃ ({p′}A, {p′′}B) = f̃1({p′}A) f̃2({p′′}B), (12)

F̃1({p′}A, p1) = δ(p′
A + p1) f̃1({p′}A), (13)

F̃2({p′′}B, p1) = δ(p′′
B + p1) f̃2({p′′}B), (14)

where we denote

{p′}A = {p′
j }j∈A, {p′′}B = {p′′

k }k∈B, p′
J =

∑
j∈J

p′
j . (15)

2. Generalized retarded operators and functions

This section is a summary of a part of [10] which will be applied in the subsequent sections 
to factorizing systems.

2.1. The algebra of sequences A(X)

In this subsection X denotes a finite set such that |X| ≥ 2. We denote P(X) the set of subsets 
of X. We denote P∗(X) the set of proper subsets of X, i.e.

P∗(X) = {J ⊂ X : J �= ∅, J �= X} (16)

Definition 2.1. A proper sequence in P(X) is a sequence {J1, . . . , Jν}, where ν = 1, 2, . . . , |X|, 
the Jk are non-empty, disjoint subsets of X with union X. A multiplication law is defined for 
proper sequences by

{A1, . . . , An}{B1, . . . , Bm} =
{A1 ∩ B1, . . . , An ∩ B1, . . . , A1 ∩ Bm, . . . , An ∩ Bm} mod ∅ . (17)

Here “mod ∅” means: “omit every occurrence of the empty set”. The algebra A(X) (called the 
algebra of sequences in P(X)) is the vector space of all formal complex linear combinations of 
proper sequences in P(X), equipped with the multiplication generated by (17).

The multiplication is associative and A(X) has all the usual properties of an algebra. It has 
a unit, namely {X}. Any proper sequence c in P(X) is an idempotent, i.e. cc = c. When no 
ambiguity arises, we denote Î = {I, X \ I } for any proper subset I of X. Since Î is a proper 
sequence, Î Î = Î .

The following lemma is easy to prove (see [10] p. 19).
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Lemma 2.1. Let I ∈P∗(X), a, b ∈ A(X), Î = {I, X \ I } ∈A(X). If a is such that (1 − Î ) a = 0, 
then also (1 − Î ) ba = 0.

Definition 2.2. A geometrical cell associated to X is one of the connected components of

{s = {s}X ∈ R|X| : sX = 0, sJ �= 0 ∀J ∈P∗(X)} (18)

Here {s}X denotes the set of variables {sj : j ∈ X}, and, for every subset J of X, sJ
def= ∑

j∈J sj .

A picture of the geometrical cells for X = {1, 2, 3, 4} is given in Fig. A.4 in Appendix A.

Definition 2.3. A paracell associated to X is a non-empty subset S of P∗(X) such that if I ∈ S
and J ∈ S , then I ∩J ∈ S or I ∪J ∈ S . In this case S ′ = {J ⊂ X : X \J ∈ S} is also a paracell, 
and S ∩ S ′ = ∅. The two paracells S and S ′ are said to be opposite.

There are no paracells associated to X unless |X| ≥ 2.
It follows from this definition that if I ∈ S and J ∈ S , then I ∩ J = ∅ ⇒ I ∪ J ∈ S , and 

I ∪ J = X ⇒ I ∩ J ∈ S .

Definition 2.4. A precell associated to X is a paracell S associated to X such that, for every 
J ∈ P∗(X), J ∈ S or X \ J ∈ S . In other words S ∪ S ′ = P∗(X), where S ′ denotes the paracell 
opposite to S . In this case S ′ is also a precell.

The following are trivial consequences of the definition, assembled in a lemma for future 
reference.

Lemma 2.2. Let S be a precell.
(i) if J ∈ S then X \ J /∈ S;
(ii) if J ∈ P∗(X) and J /∈ S then X \ J ∈ S;
(iii) if J ∈ S , K ∈ S , and J ∩ K = ∅, then J ∪ K ∈ S;
(iv) if J ∈ S , K ∈ S , and J ∪ K = X, then J ∩ K ∈ S .
(v) if K ∪ L = J ∈ S and K ∩ L = ∅, then K ∈ S or L ∈ S .
Conversely, if S is a subset of P∗(X) having the properties (i)–(iv), and if S ′ denotes {J ⊂

X : X \ J ∈ S}, then S and S ′ are opposite precells relative to X.

To prove (v) we note that the assertion is obvious if either K or L is empty. Otherwise they 
must both belong to P∗, and cannot both belong to S ′ since that would imply J ∈ S ′, hence at 
least one of them belongs to S . Note that this assertion does not hold for general paracells.

Definition 2.5. A cell associated to X is a precell S such that there exist |X| real numbers 
{sj : j ∈ X} satisfying

∑
j∈X

sj = 0, sJ
def=

∑
j∈J

sj > 0 ∀J ∈ S. (19)

In other words a cell associated to X is a precell S such that there is a geometrical cell CS such 
that, for every J ∈ S , and every s ∈ CS , sJ > 0.
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S and CS are then uniquely determined by each other and S ′ is the cell associated to the 
geometrical cell opposite to CS , i.e. CS ′ = −CS . It is clear that every geometrical cell determines 
a cell in this way.

If Y and X are disjoint non-empty finite sets, and S and S ′ are opposite paracells associated 
to X, we denote

Y ↓ S = {J ∈P∗(Y ∪ X) : J ∩ X = X or J ∩ X ∈ S} (20)

Y ↑ S ′ = {J ∈P∗(Y ∪ X) : J ∩ X = ∅ or J ∩ X ∈ S ′} (21)

It is easily verified that Y ↓ S and Y ↑ S ′ are opposite paracells associated to Y ∪ X. If S and S ′
are opposite precells (resp. cells) associated to X, then Y ↓ S and Y ↑ S ′ are opposite precells 
(resp. cells) associated to X ∪ Y . In case Y has only one element j we abbreviate {j } � S to 
j � S .

If X has only one element (denoted j ), there are no paracells associated to X, but we define

Y ↓ j = {J ∈P∗(Y ∪ X) : j ∈ J }, (22)

Y ↑ j = {J ∈P∗(Y ∪ X) : j /∈ J }. (23)

Y ↓ j and Y ↑ j are opposite cells, corresponding respectively to the geometrical cell

{s = {s}Y∪X ∈ R|Y |+1 : sj +
∑
k∈Y

sk = 0, sk < 0 ∀k ∈ Y } (24)

and its opposite.
If Y = (j1 , j2 , . . . , jp),

Y ↑ S = j1 ↑ j2 ↑ . . . jp ↑ S, Y ↓ S = j1 ↓ j2 ↓ . . . jp ↓ S. (25)

This is independent of the order of the jk’s.
If |X| > 1 and j ∈ X, then {j} ∈ Y ↑ S (resp. {j} ∈ Y ↓ S) if and only if {j } ∈ S . If X = {j}

then {j} ∈ Y ↓ j and {j} /∈ Y ↑ j .
If X has two elements, say X = (1, 2) then the only paracells associated to X are {{1}} = 1 ↑

2 = 2 ↓ 1 and its opposite {{2}} = 1 ↓ 2 = 2 ↑ 1. They are cells corresponding respectively to the 
geometrical cells

{s1, s2 : s1 + s2 = 0, s1 > 0} and {s1, s2 : s1 + s2 = 0, s1 < 0} . (26)

Cells of the form j1 � . . . jk−1 � jk are called Steinmann monomials (there are cells which are 
not of this form). In fact the operations Y ↑ and Y ↓ can be defined as linear maps of the whole 
algebra A(X) into A(Y ∪ X). See [10] for details.

Definition 2.6. Let S be a paracell in X, and S ′ the opposite paracell. A ν-chain associated to 
S ′ is a sequence {J1, . . . , Jν} of ν disjoint, non-empty subsets of X such that J1 ∪ . . . ∪ Jν = X

and that, for every r < ν,

Ir
def= J1 ∪ . . . ∪ Jr ∈ S ′ . (27)

This requires 1 ≤ ν ≤ |X|, and, of course, if ν = 1 the condition (27) is empty.
We denote Mν(S ′) the set of all ν-chains associated to S ′. In particular M1(S ′) = {{X}}.
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Thus, in particular, Mν(S ′) ⊂ A(X). For any paracell S , with opposite paracell S ′, we denote

US =
|X|∑
ν=1

∑
{J1,...,Jν }∈Mν(S ′)

(−1)ν−1 {J1, . . . , Jν} (28)

The following lemmas are proved in [10].

Lemma 2.3. Let S ′ be a paracell in X, and {I1, . . . , IN } be an arbitrary ordering of all the 
elements of S ′. Then, for any permutation π of (1, . . . , N),

(1 − Î1) . . . (1 − ÎN ) = (1 − Îπ(1)) . . . (1 − Îπ(N)). (29)

In other words the lhs of (29) does not depend on the chosen ordering.

Lemma 2.4. Let S be a paracell with opposite paracell S ′. Then

∀I ∈ S ′ ÎUS = 0. (30)

It follows that

∀I ∈ S ′ (1 − Î )US = US . (31)

Lemma 2.5. With the notations of Lemma 2.3,

US = (1 − Î1) . . . (1 − ÎN ) (32)

2.2. Generalized retarded operators and functions

Given a set of time-ordered products for fields indexed by X, (resp. a linear system of GTOF 
indexed by X), we can define a linear map of the algebra A(X) into the operator-valued distri-
butions (resp. the distributions) by defining, for each proper sequence a = {J1, . . . , Jν}

Ta = T (J1) . . . T (Jν), (33)

resp. ta = tcJ1,...,Jν
. (34)

This extends by linearity to the whole A(X) since the proper sequences are (by definition) a basis 
of this vector space. If b is an element of A(X), we will also denote tcb = tb.

In particular we may associate to every paracell S , with opposite paracell S ′

RS = TUS =
|X|∑
ν=1

(−1)ν−1
∑

{J1,...,Jν }∈Mν(S ′)
T (J1) . . . T (Jν) (35)

resp.

rS = tUS =
|X|∑
ν=1

(−1)ν−1
∑

{J1,...,Jν }∈Mν (S ′)
tcJ1,...,Jν

(36)

In the special case when S and S ′ are cells, the RS (resp. rS ) are the generalized retarded 
operators (resp. generalized retarded functions, abbreviated to GRF). In this special case, in the 
last equation, the t c can be all replaced by their non-truncated versions without affecting 
J1,...,Jν
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the result (in other words the GRF are naturally truncated. For this well-known fact see [1,2,4,7,
10,13–15]).

The property of causal factorization (3) can be reexpressed as follows: if I ′ is a proper subset 
of X and a is a proper sequence in P(X), then

T (1 − Î ′)a (resp. t (1 − Î ′)a) vanishes in the open set {x ∈XX : {x}I ′ � {x}X\I ′ } . (37)

This, of course, extends to any a ∈ A(X). For every precell S opposite to S ′, and every I ′ ∈ S ′, 
the identity (1 − Î ′)US = US and eqs. (35), (36), and (37) imply that

RS and rS vanish in
⋃
I∈S

{ {x}X : {x}I � {x}X\I }, (38)

or, equivalently,

support RS and support rS ⊂
⋂
I∈S

{ {x}X : ∃j ∈ I, ∃k ∈ X \ I s.t. xk ≤ xj }. (39)

As the simplest example, if X = (1, 2) the only paracells are, as we have seen, S = {{1}} = 1 ↑
2 = 2 ↓ 1 and S ′ = {{2}} = 1 ↓ 2 = 2 ↑ 1, and

support R1↑2 ⊂ {(x1, x2) : x1 ≥ x2}, support R1↓2 ⊂ {(x1, x2) : x1 ≤ x2} . (40)

Of course the same holds for the rS .

3. Factorization

3.1. Some algebra

In applying Sect. 2 to the case of a linear system of time-ordered functions which factorize 
as in Subsect. 1.1, there is a first non-trivial fact to prove, namely that, given a cell S relative 
to X = A ∪ B ∪ {1}, there are cells (S||1, A) relative to A ∪ {1} (opposite to (S ′||1, A)) and 
(S||1, B) relative to B ∪ {1} (opposite to (S ′||1, B)), such that

rS = r(S||1, A) r(S||1, B), (41)

and similarly with operators, if we make the suitable commutation assumptions.
We suppose, as above, that X = A ∪ B ∪ {1}, with A and B disjoint and non-empty and 

1 /∈ A ∪ B . The tensor product A(A ∪ {1}) ⊗ A(B ∪ {1}) is defined in the standard way, i.e. 
if c, c′ are proper sequences in P(A ∪ {1}), f, f ′ are proper sequences in P(B ∪ {1}), then 
(c ⊗ f )(c′ ⊗ f ′) = (cc′) ⊗ (ff ′), and this extends by linearity. We define a linear map Fac
of A(X) into A(A ∪ {1}) ⊗ A(B ∪ {1}) by defining Fac(c) for an arbitrary proper sequence 
c = {J1, . . . , Jν} in P(X) as follows:

Fac(c) = cA ⊗ cB ,

cA = {J1 ∩ (A ∪ {1}), . . . , Jν ∩ (A ∪ {1})} mod ∅,

cB = {J1 ∩ (B ∪ {1}), . . . , Jν ∩ (B ∪ {1})} mod ∅ . (42)

Again this extends by linearity to all of A(X). From this formula and the definition of the multi-
plication in A(X) it immediately follows that if c and f are two proper sequences in P(X), with 
Fac(c) = cA ⊗ cB , Fac(f ) = fA ⊗ fB , then Fac(cf ) = cAfA ⊗ cBfB , and hence

Fac(cf ) = Fac(c)Fac(f ) (43)

holds for any c, f ∈A(X).
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Lemma 3.1. Let S and S ′ be two opposite precells relative to X. We denote

(S||1, A) ={J ∈P∗(A ∪ {1}) : J ⊂ A, J ∈ S}
∪ {J ∈P∗(A ∪ {1}) : 1 ∈ J, A \ J ∈ S ′} , (44)

(S ′||1, A) ={J ∈ P∗(A ∪ {1}) : J ⊂ A, J ∈ S ′}
∪ {J ∈ P∗(A ∪ {1}) : 1 ∈ J, A \ J ∈ S} , (45)

(S||1, B) ={J ∈ P∗(B ∪ {1}) : J ⊂ B, J ∈ S}
∪ {J ∈ P∗(B ∪ {1}) : 1 ∈ J, B \ J ∈ S ′} , (46)

(S ′||1, B) ={J ∈ P∗(B ∪ {1}) : J ⊂ B, J ∈ S ′}
∪ {J ∈ P∗(B ∪ {1}) : 1 ∈ J, B \ J ∈ S} . (47)

Then
(i) (S||1, A) and (S ′||1, A) are opposite precells relative to A ∪ {1}, and (S||1, B) and 

(S ′||1, B) are opposite precells relative to B ∪ {1};
(ii) If S is a cell then (S||1, A), (S ′||1, A), (S||1, B) and (S ′||1, B) are cells.

Proof. (i) It suffices to prove that under the hypotheses of the lemma (S||1, A) and (S ′||1, A)

are opposite precells relative to A ∪ {1}. Suppose first that J and J ′ are complementary proper 
subsets of A ∪{1}. If J ∈ (S||1, A) it is immediate that J ′ ∈ (S ′||1, A), and that J ′ /∈ (S||1, A). 
If J /∈ (S||1, A) and J ⊂ A then J /∈ S so J ∈ S ′ hence J ∈ (S ′||1, A). If J /∈ (S||1, A) and 
1 ∈ J , then J ′ ⊂ A and J ′ /∈ S ′, hence J ′ ∈ S , hence again J ∈ (S ′||1, A). Thus (S||1, A) pos-
sesses the properties (i) and (ii) of Lemma 2.2. Assume now that J ∈ (S||1, A), K ∈ (S||1, A)

and J ∩ K = ∅. Let J ′ = (A ∪ {1}) \ J and K ′ = (A ∪ {1}) \ K If J ⊂ A and K ⊂ A then J ∈ S , 
K ∈ S and J ∪ K ∈ S and J ∪ K ⊂ A, so that J ∪ K ∈ (S||1, A). If J ⊂ A and 1 ∈ K then 
J ∈ S and J ⊂ K ′ ∈ S ′. Therefore K ′ \ J = K ′ ∩ J ′ ∈ S ′ hence K ′ ∩ J ′ ∈ (S ′||1, A) which, as 
we have seen before, implies J ∪ K ∈ (S||1, A). Thus (S||1, A) possesses the property (iii) of 
Lemma 2.2. So does (S ′||1, A) since its definition is symmetrical to that of (S||1, A), and this 
implies that both of them possess the property (iv). By Lemma 2.2, this finishes the proof of (i).
(ii) Let s be a point of the geometrical cell associated to S . Let s ′

j = sj for every j ∈ A, s′
1 =

s1 + sB . Then s′
A∪{1} = 0, s′

J > 0 for every J ⊂ A such that J ∈ S , or every J ⊂ A ∪{1} such that 
1 ∈ J and A \ J ∈ S ′, i.e. for every J ∈ (S||1, A). Therefore s′

K < 0 for every K ∈ (S ′||1, A). 
Since this accounts for all proper subsets of A ∪{1}, (S||1, A) and (S ′||1, A) are opposite cells, 
and similarly for (S||1, B) and (S ′||1, B). �

We will prove:

Theorem 3.1. Under the above assumptions (including in particular S and S ′ being opposite 
precells)

Fac(US) = U(S||1, A) ⊗ U(S||1, B) . (48)

Proof. Let K ∈ (S ′||1, A), and let K ′ = (A ∪{1}) \K . We claim that ({K, K ′} ⊗ 1) Fac(US) =
0. There are two cases to consider.

Case 1: K ⊂ A and K ∈ S ′. Let I = K ∈ S ′, I ′ = X \ I . Then Fac({I, I ′}) = {K, K ′} ⊗ 1. 
By Lemma 2.4, {I, I ′}US = 0, and applying Fac gives ({K, K ′} ⊗ 1) Fac(US) = 0.
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Case 2: 1 ∈ K and K ′ ∈ S . Let I = X \K ′ ∈ S ′. Again ({K, K ′} ⊗1) Fac(US) = Fac({I, X \
I }US) = 0.

Similarly, for L ∈ (S ′||1, B), L′ = (B ∪ {1}) \ L, we have (1 ⊗ {L, L′}) Fac(US) = 0. As a 
consequence

Fac(US) =
∏

K∈(S ′||1, A)

(1 − {K, K ′}) ⊗
∏

L∈(S ′||1, B)

(1 − {L, L′})Fac(US) . (49)

Here K ′ stands for A ∪ {1} \ K , and L′ stands for B ∪ {1} \ L. Note that the order of factors 
in the two products is irrelevant by Lemma 2.3. Let (−1)ν−1c = (−1)ν−1{J1, . . . , Jν} be one 
of the terms in the expansion (28) of US with ν > 1. Then J1 ∈ S ′. This implies that K =
J1 ∩ (A ∪ {1}) ∈ (S ′||1, A) or L = J1 ∩ (B ∪ {1}) ∈ (S ′||1, B). Indeed suppose first that 1 /∈ J1. 
Then J1 ∩ (A ∪{1}) = J1 ∩A and J1 ∩ (B ∪{1}) = J1 ∩B are disjoint subsets with union J1 ∈ S ′. 
At least one of them must belong to S ′ (Lemma 2.2 (v)). Suppose now that 1 ∈ J1. Then K ′ =
(A ∪{1}) \K = A \K and L′ = (B ∪{1}) \L = B \L are disjoint sets with union X \J1 ∈ S , and 
at least one of them belongs to S . Therefore (1 −{K, K ′}) occurs in 

∏
K∈(S ′||1, A)(1 −{K, K ′})

or (1 − {L, L′}) occurs in 
∏

L∈(S ′||1, B)(1 − {L, L′}). Suppose e.g. that K = J1 ∩ (A ∪ {1}) ∈
(S ′||1, A) and hence (1 − {K, K ′}) occurs in 

∏
K∈(S ′||1, A)(1 − {K, K ′}). We have

cA = {K, J2 ∩ (A ∪ {1}), . . . , Jν ∩ (A ∪ {1})} mod ∅. (50)

All the sets Jk ∩ (A ∪ {1}) with k > 1 are contained in K ′ hence (1 − {K, K ′})cA = 0. Similarly 
if L ∈ (S ′||1, B), (1 − {L, L′})cB = 0. Applying Lemma 2.1 (or Lemma 2.3) we see that the 
contribution of c to the rhs of (49) vanishes. There remains only the contribution of {X}, and this 
proves the theorem. �
Remark 3.1. The above theorem does not extend to the case when S and S ′ are arbitrary opposite 
paracells. For example if 1 ∈ I ∈ P∗(X) and I ′ = X \ I , we can define a paracell S = {I } with 
S ′ = {I ′} as the opposite paracell. Then US = {X} − {I ′, I } and

Fac(US) = {A∪{1}}⊗ {B ∪{1}}− {I ′ ∩A, I ∩ (A∪{1})}⊗ {I ′ ∩B, I ∩ (B ∪{1})}. (51)

Moreover if we suppose I �⊂ A, I ′ �⊂ A, I �⊂ B , I ′ �⊂ B , then (S||1, A), (S ′||1, A), (S||1, B), 
and (S ′||1, B) as defined by (44)–(47) are empty.

A system of GTOF which factorizes as in (6) satisfies

tc = (t1cA)(t2cB) (52)

for every proper sequence c ∈ A(X), with cA and cB given by (42). This can be reexpressed 
symbolically as

tc = t1 ⊗ t2 Fac c (53)

for every c ∈ A(X). As a consequence,

Corollary 3.1. Given a system of GTOF which factorize as in (6), the associated GRF also 
factorize:

rS = r(S||1, A) r(S||1, B), (54)

for every cell S relative to X, with opposite cell S ′, and with the notations (44)–(47).
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For future use we need an explicit description of (S||1, A), (S ′||1, A), (S||1, B), (S ′||1, B)

in the case when S = 1 ↓ T , S ′ = 1 ↑ T ′, where T and T ′ are two opposite cells relative to 
A ∪ B . This means

S = 1 ↓ T = {J ∈P∗(X) : J = A ∪ B or J ∩ (A ∪ B) ∈ T } (55)

S ′ = 1 ↑ T ′ = {J ∈P∗(X) : J = {1} or J ∩ (A ∪ B) ∈ T ′} (56)

According to our definitions,

(1 ↓ T ||1, A) = {J ⊂ A ∪ {1} : J ⊂ A and J ∈ T }∪
{J ⊂ A ∪ {1} : 1 ∈ J and A \ J ∈ T ′}, (57)

(1 ↑ T ′||1, A) = {J ⊂ A ∪ {1} : J ⊂ A and J ∈ T ′}∪
{J ⊂ A ∪ {1} : 1 ∈ J and A \ J ∈ T }, (58)

and the same with B instead of A.

3.2. Analyticity in momentum space in the Minkowskian case

In this subsection1 we assume the d-dimensional Minkowskian case. All the linear sets of 
generalized time-ordered functions we consider are supposed to possess the standard transla-
tional and spectral properties. Supposing that we have linear sets tc, t1,c, t2,c , of GTOF having 
the factorization property (6), we consider all the GRF rS associated to tc. Their Fourier–Laplace 
transforms are all branches of a single function H , holomorphic in a domain DX of

LX = {k = ({k}A, {k}B, k1) ∈ Cd|X| : k1 + kA + kB = 0} (59)

(Recall that for any J ⊂ X, {k}J stands for the set of variables indexed by the elements of J , 
while kJ = ∑

j∈J kj .) We denote L(r)
X = LX ∩ Rd|X|. For each cell S , the Laplace transform of 

rS is the restriction of H to the tube

L(r)
X + iKS = {k = p + iq ∈ LX : ∀I ∈ S, qI ∈ V+}. (60)

The Fourier transform ̃rS of rS (with δ(pX) removed) is thus the boundary value of H from the 
tube (60).

We denote

H({k}A, {k}B, k1) = h({k}A, {k}B). (61)

There also exist two functions H1 and H2, the momentum-space analytic functions associated 
to the GTOF t1,c and t2,c (appearing in (6)), depending on variables labelled by A ∪ {1} and 
B ∪ {1}, respectively, such that

H1({k}A, −kA) = h1({k}A), H2({k}B, −kB) = h2({k}B), (62)

and we have

h({k}A, {k}B) = h1({k}A)h2({k}B). (63)

1 The contents of this subsection will not be used in the remainder of this paper. Readers unfamiliar with the subject 
of momentum-space analyticity, or whose memories of it have faded with time, might omit this subsection (with the 
possible exception of its last sentence).
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This can be rewritten as

H({k}A, {k}B, k1) = H1({k}A, k1 + kB)H2({k}B, k1 + kA). (64)

While this factorization follows from Corollary 3.1, it can also be understood without invoking 
Theorem 3.1 or Corollary 3.1. Indeed the domain DX contains the real open set R = {p ∈ L(r)

X :
p2

I < 0 ∀I ∈ P∗(X)}, and H coincides there with the Fourier transform of tcX (with δ(pX)

removed). The latter factorizes as indicated in (11)–(15), and this implies (64) by analytic con-
tinuation.

If q is in the cone KS , for every I ⊂ A which belongs to S , (resp. to S ′), qI ∈ V+ (resp. 
qI ∈ V−). This suffices to prescribe the “sign” of qJ for every proper subset J of A ∪ {1}, and 
we see that the point q = ({q}A, q1 + qB) ∈ L(r)

A∪{1} is in the cone K(S||1, A), where (S||1, A)

is precisely the cell associated to A ∪ {1} which is given by (44). Therefore the boundary value 
of H1({k}A, k1 + kB) from the tube L(r)

X + iKS is the Fourier transform of r(S||1, A) (without δ
function). Similarly the boundary value of H2({k}B, k1 + kA) from the same tube is the Fourier 
transform of r(S||1, B). Thus, using (64),

r̃S({p}A, {p}B, p1) = lim
q∈KS , q→0

H({p + iq}A, {p + iq}B, p1 + iq1)

= r̃(S||1, A)({p}A, p1 + pB)̃r(S||1, B)({p}B, p1 + pA) . (65)

Using (8)–(15) we recover the identity

rS = r(S||1, A) r(S||1, B) (66)

obtained by algebraic arguments in the preceding subsection.
We can now ask about restricting H (more precisely the restriction of H to the tube L(r)

X +
iKS ) to the manifold {k : k1 = 0}.

Let us assume first that S = (A ∪ B) ↓ 1. In this case we see immediately that if q ∈ KS , 
then qA and qB must both be in V− hence kA + kB can never vanish in the tube L(r)

X + iKS and 
it is therefore not possible to restrict the restriction of H to this tube to {k : k1 = 0} or ̃rS to 
{p : p1 = 0}.

We now take S = 1 ↓ T , S ′ = 1 ↑ T ′, where T and T ′ are two opposite cells relative to 
A ∪B . In this case (1 ↓ T ||1, A) and (1 ↑ T ′||1, A) are given in (57) and (58), and similarly for 
(1 ↓ T ||1, B) and (1 ↑ T ′||1, B).

If k = p + iq ∈ L(r)
A∪B + iKT , then ({k}A, kB) ∈ LA∪1 + iK(1↓T ||1, A) and ({k}B, kA) ∈

LB∪1 + iK(1↓T ||1, B). It is therefore possible to restrict the restriction of H to L(r)
X + iK1↓T to 

the submanifold {k1 = 0}. We note that the actual reason is that A and B are complementary in 
A ∪ B , hence kA and kB must have opposite “signs” in T .

Momentum space analyticity thus provides, in the Minkowskian case, a shorter and clearer 
account of the factorization property, but the algebraic formalism is necessary to deal with more 
general space–times, even relatively simple ones such as de Sitter space–time.

3.3. Factorization and supports

We return to the general (not necessarily Minkowskian) case. Let again X = A ∪ B ∪ {1}, A, 
B and {1} disjoint, A �= ∅, B �= ∅, and suppose given a linear system of GTOF, indexed by X, 
which has the factorization property (6). Let T and T ′ be opposite cells relative to A ∪B and, as 
above, S = 1 ↓ T , S ′ = 1 ↑ T ′. According to Corollary 3.1, under our assumptions (6),
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r1↓T = r(1↓T ||1, A) r(1↓T ||1, B) , (67)

where the cells (1 ↓ T ||1, A) (relative to A ∪ {1}) and (1 ↓ T ||1, B) (relative to B ∪
{1}) are given by (57) and (58). Suppose first that A ∈ T , and hence B ∈ T ′. Then A ∈
(1 ↓ T ||1, A), hence {1} belongs to the opposite cell (1 ↑ T ′||1, A), B ∈ (1 ↑ T ′||1, B) hence 
{1} ∈ (1 ↓ T ||1, B). As a consequence, by (39),

support r(1↓T ||1, A) ⊂
⋃
j∈A

{{x}A∪{1} : x1 ≤ xj } , (68)

support r(1↓T ||1, B) ⊂
⋃
k∈B

{{x}B∪{1} : xk ≤ x1} , (69)

support r1↓T ⊂
⋃
j∈A

⋃
k∈B

{x : xk ≤ x1 ≤ xj } . (70)

If A ∈ T ′, and hence B ∈ T , the roles of A and B are exchanged, and

support r1↓T ⊂
⋃
j∈A

⋃
k∈B

{x : xj ≤ x1 ≤ xk} . (71)

Thus, in all cases, r1↓T vanishes unless x1 remains in a finite union of double-cones (depending 
on the other variables). If the space–time X is such that all double-cones are compact, it is pos-
sible to integrate r1↓T in the variable x1, obtaining a distribution (denoted r̂T ) in the remaining
variables.

Recall that the relation xk ≤ xj need not be an order relation, and the above result would be 
valid even in e.g. the Buchholz–Fredenhagen framework [6] (in this case this relation depends 
on the indices j and k).

3.4. Additional properties when ≤ is an order relation

The properties (38) and (39) have much stronger consequences in the cases when the relation 
xk ≤ xj is an order relation, e.g. the Minkowski and de Sitter spaces and the covering of the 
Anti-de Sitter space.

If ≤ is an order relation, and if X and Y are disjoint sets of indices, and S is a cell relative to 
X, then (see [10]) the support of rY�S is contained in that of rS , and

support rY↓S ⊂ {{y}Y , {x}X : {x}X ∈ support rS ,

∀k ∈ Y ∃j ∈ X s.t. yk ≤ xj } (72)

support rY↑S ⊂ {{y}Y , {x}X : {x}X ∈ support rS ,

∀k ∈ Y ∃j ∈ X s.t. xj ≤ yk} (73)

Furthermore if the variables indexed by Y are kept fixed, the set of the rY↓S (resp. rY↑S ) (as S
runs over all the cells associated to X) has all the linear properties of a set of GRF associated 
to X. In particular the distributions r̂S obtained in the preceding subsection by integrating over 
x1 have all the linear properties of a set of GRF associated to X \ {1}.

From now on we shall restrict our attention to the cases when the relation ≤ is an order 
relation.
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Fig. 2. Integration can be performed first on 3, then 2, then 1.

3.5. Integrating over several variables

The factorization formula (48), applied to the case S = 1 ↓ T , S ′ = 1 ↑ T ′, where T and 
T ′ are opposite cells relative to A ∪ B , (see eqs (55) and (56)) gave the formulae (57) and (58)
for the cells (1 ↓ T ||1, A) and (1 ↑ T ′||1, A). We now wish to specialize this to the case when 
2 ∈ A, A \ {2} = C �= ∅, V and V ′ are opposite cells relative to C ∪ B , and

T = 2 ↓ V = {J ∈P∗(A ∪ B) : J = C ∪ B or J ∩ (C ∪ B) ∈ V}, (74)

T ′ = 2 ↑ V ′ = {J ∈ P∗(A ∪ B) : J = {2} or J ∩ (C ∪ B) ∈ V ′}. (75)

Specializing (58) to this case gives:

(1 ↑ 2 ↑ V ′||1, A) =
{J ∈P∗(A ∪ {1}) : J = {2} or J1 = J \ {2} satisfies :
(J1 ⊂ C and J1 ∈ V ′) or (1 ∈ J1 and C \ J1 ∈ V)}
= 2 ↑ (1 ↑ V ′||1, C) , (76)

and hence

(1 ↓ 2 ↓ V||1, A) = 2 ↓ (1 ↓ V||1, C). (77)

If all double-cones are bounded, this makes it possible to integrate recursively the expression 
rY�T associated to a “tree” of the type symbolized in Fig. 2 over all variables labelled by Y , 
provided each j ∈ Y is a “splitting vertex” for the “tree”. We do not go into details on this 
subject, but will focus on the special case provided by actual tree graphs.

4. Actual trees

The first part of this section does not require the assumption that ≤ is an order relation. In 
this section we consider the linear system of GTOF associated with a tree: this is a connected 
and simply connected graph Q whose vertices are labelled by a finite set of indices X (|X| ≥ 2), 
which we take as {1, 2, . . . , |X|}. Each line � of the tree has two distinct ends (also called 
extremities) in X, denoted b(�) and e(�) with b(�) < e(�). An extremity of Q is a vertex which 
is the extremity of a single line. A vertex is called internal if it is not an extremity of the tree, i.e. 
it is an end to at least two distinct lines. A tree with more than one vertex always has at least two 
extremities. If a line � of the tree Q is deleted, the resulting graph is the union of two disjoint tree 
graphs. If their sets of vertices are denoted Y and Z we denote Q|Y and Q|Z the corresponding 
trees.
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For each line � of Q, let F� be a two-point distribution having the PR property. Then the 
product

G =
∏
�

F�(xb(�), xe(�)) (78)

is well-defined and also has the PR property. This can be seen by induction on the number of 
vertices |X| of Q by the same argument as in subsect. 1.1.

The time-ordered function associated to the tree is

tX(x1, . . . , x|X|) =
∏
�

t�(xb(�), xe(�)) (79)

where the product extends over all the lines of the tree Q, and t�(u, v) is the time-ordered two-
point function of some free or generalized free field φ�. Let w�+(u, v) = (�, φ�(u)φ�(v)�) =
w�−(v, u). We assume that all the t� and w�± have the PR property. If a = {J1, . . . , Jν} is a 
proper sequence in P(X),

ta(x1, . . . , x|X|) = tJ1,...,Jν (x1, . . . , x|X|) =
∏
�

F�(xb(�), xe(�)) ,

F�(xb(�), xe(�)) = t�(xb(�), xe(�)) if b(�) and e(�) belong to the same Jk,

F�(xb(�), xe(�)) = w�+(xb(�), xe(�)) if b(�) ∈ Jr , e(�) ∈ Jk with r < k,

F�(xb(�), xe(�)) = w�−(xb(�), xe(�)) if b(�) ∈ Jr , e(�) ∈ Jk with r > k . (80)

Again the product (80) is well-defined because each of the two-point functions involved has the 
PR property and because we are dealing with a tree graph. According to preceding definitions

re(�)↑b(�)(xb(�), xe(�)) = t�(xb(�), xe(�)) − w�+(xb(�), xe(�)),

re(�)↓b(�)(xb(�), xe(�)) = t�(xb(�), xe(�)) − w�−(xb(�), xe(�)) . (81)

The condition that the ta’s have the causal factorization property is that:

support re(�)↑b(�) ⊂ {(x, y) ∈ X 2 : x ≤ y}, support re(�)↓b(�) ⊂ {(x, y) ∈ X 2 : x ≥ y} .

(82)

Lemma 4.1. Let Q be a tree with vertices indexed by X as above, and S be a cell associated 
to X, opposite to S ′. For each line � of Q with ends b(�) and e(�) > b(�), let B(�) and E(�)

be the sets of vertices of the two subtrees of Q obtained by severing the line � and such that 
b(�) ∈ B(�), e(�) ∈ E(�). The GRF rS associated to Q (i.e. obtained from the GTOF defined in 
(80)) is a product over the lines of Q

rS =
∏
�

rb(�)�e(�). (83)

(i) If e(�) is an extremity of the tree Q (i.e. if E(�) = {e(�)}) the factor contributed by the line �
is re(�)↑b(�) if {e(�)} ∈ S while it is re(�)↓b(�) if {e(�)} ∈ S ′.
(ii) More generally, the factor contributed by the line � is rb(�)↑e(�) if B(�) ∈ S , and rb(�)↓e(�) if 
B(�) ∈ S ′.

Proof. Repeated application of the factorization theorem (Corollary 3.1) shows that the GRF 
associated to Q also factorize as products of two-point GRF. We suppose |X| > 2. Let S be a cell 
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Fig. 3. The tree Q.

associated to X. We may suppose without loss of generality that some line �0 of the tree Q has 1 
and 2 as ends (i.e. b(�0) = 1, e(�0) = 2), and that 1 is not an extremity of Q. Severing �0 produces 
two disjoint subtrees of Q, whose sets of vertices are denoted B ∪ {1} and A, respectively, with 
A ∪ B ∪ {1} = X, A, B , and {1} disjoint, B �= ∅, 2 ∈ A. By Corollary 3.1, the GRF rS for Q
factorizes into

rS = r(S||1, A) r(S||1, B), (84)

where r(S||1, A) is the GRF associated to the tree Q|A ∪ {1} and the cell (S||1, A), and r(S||1, B)

is the GRF associated to the tree Q|B ∪ {1} and the cell (S||1, B). If A ∈ S then A ∈ (S||1, A)

hence {1} ∈ (S ′||1, A), while if A ∈ S ′, then {1} ∈ (S||1, A) (see Fig. 3).
Assume first that 2 is an extremity of Q, that is, A = {2}. Then if {2} ∈ S , we find (S||1, A) =

2 ↑ 1, while if {2} ∈ S ′, we find (S||1, A) = 1 ↑ 2 = 2 ↓ 1. This proves part(i) of the lemma.
We now return to the general case (2 not necessarily an extremity of Q) and note that 1 is now 

an extremity of Q|A ∪ {1}. By the above, the contribution of the line �0 to r(S||1, A), hence to the 
rS associated to Q, is r1↑2 if A ∈ S ′, and r1↓2 if A ∈ S . This proves part(ii). �

Another way to express the content of Lemma 4.1 is to represent the GRF rS associated to the 
graph Q and the cell S by orienting the lines of Q: the line � will be oriented (e.g. by drawing an 
arrow) from b(�) to e(�) if E(�) ∈ S , and in the opposite direction if B(�) ∈ S . After this, if a line 
joins the vertices j and k and its arrow points towards k, this line contributes rk↑j and the support 
of rS is contained in {x : xj ≤ xk}, i.e. the arrow points to the future. Still supposing that 1 is an 
internal vertex, we now assume S = 1 ↓ T where T is a cell relative to X \ {1}. Let �0, . . . , �p

be the lines having 1 as an extremity. Since 1 is internal, p ≥ 1. We assume that (in accordance 
with the notations of this subsection) b(�j ) = 1 for 0 ≤ j ≤ p, and the sets E(�j ) are defined 
as in Lemma 4.1. These sets are disjoint and non-empty and 

⋃p

0 E(�j ) = X \ {1}. For any j , �j

is oriented away from 1 if E(�j ) ∈ S , and towards 1 if E(�j ) ∈ S ′. By the definition of 1 ↓ T , 
E(�j ) ∈ S ⇔ E(�j ) ∈ T and E(�j ) ∈ S ′ ⇔ E(�j ) ∈ T ′. At least one E(�j ) belongs to T , and at 
least another one, E(�k), belongs to T ′. Hence at least one of the lines �j is directed away from 1, 
giving a contribution r1↓e(�j ), and another one �k is directed towards 1, giving a contribution 
r1↑e(�k). Thus the support of rS is contained in {{x}X : xe(�k) ≤ x1 ≤ xe(�j )}. As mentioned 
before, this conclusion does not hold for general S , and it is false for S = (X \ {1}) � 1.

We again assume, from now on, that ≤ is an order relation. Let us suppose that X = Y ∪ Z, 
Y ∩ Z = ∅, Y �= ∅ (say 1 ∈ Y ), Z �= ∅, all vertices labelled by Y being internal (some of the 
Z-vertices may also be internal, but Z contains all the extremities of Q). Let S = Y ↓ V , where 
V is a cell associated to Z. We assign a direction (arrow) to each line as described above. For 
each j ∈ Y we have S = j ↓ (Y \ {j}) ↓ V). Hence we may apply to the index j the same 
argument that was applied above to the case j = 1. Therefore there is at least one line having j
as extremity and directed towards j and another line directed away from j . If the other vertex k of 
this line is in Y , we can continue this line by another one directed away from k and so on until we 
reach a Z-vertex. We may proceed in the same manner downwards from j , and (because ≤ is an 
order relation) there are two indices a ∈ Z and b ∈ Z such that the support of rS is contained in 
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{{x}X : xa ≤ xj ≤ xb}. Thus the variable indexed by any Y -vertex is confined to a double-cone 
with Z-vertices as its vertices. If the double-cones are all compact in X (as it is the case in the 
Minkowski and de Sitter space–times) one can integrate over all variables indexed by Y , and the 
result has all the properties of a GRF associated to Z and the cell V .

5. Perturbation theory: conclusion

In perturbation theory, solving the UV problem for a certain theory provides time-ordered 
products for Wick monomials in a finite number of free (or generalized free) fields. A connected 
Feynman graph2 G with vertices indexed by X = {1, . . . , n} represents one of the contributions 
to the (truncated) vacuum expectation value of a time-ordered product of |X| Wick monomials 
of free (or generalized free) fields, e.g.

(�, T (ψ1(x1) . . .ψn(xn))�)c . (85)

However we may assign a different free field φ� to each line � of G (with [φ�, φ�′ ] = 0 if � �= �′) 
and redefine

ψj (xj ) =
∏

� : j is an end of �

φ�(xj ) . (86)

(We decorate with derivatives and additional indices as needed.) With this definition, G rep-
resents the only contribution to (85). The construction of time-ordered products also provides a 
time-ordered product for any subset of the fields ψj , so that G is associated to a full linear system 
of GTOF:

tcJ1,...,Jν
= (�, T (J1) . . . T (Jν)�)c , (87)

J1 ∪ . . . Jν = X, Jj ∩ Jk = ∅ if j �= k , (88)

T (Jr) = T (
∏
j∈Jr

ψj (xj )) . (89)

From this one can obtain the contribution of the graph to all possible generalized retarded func-
tions for these Wick monomials. A simple example of this situation has been seen in the case 
when G is a tree graph in Sect. 4. (Of course we are adhering here to the most simplistic view 
of perturbation theory, and the reader might enjoy, by contrast, the point of view of [16] and 
references therein.)

The contribution of such a graph to the GTOF for the interacting fields is obtained by distin-
guishing two groups of variables indexed by Y and Z (where Y ∪ Z = X, Y ∩ Z = ∅). The Y
variables correspond to the interactions and the associated Wick monomials are assumed to have 
degree > 1 (all the Y vertices are internal). One should then perform the integration denoted 
symbolically

t̂ cJ1,...,Jν
=

∫
X Y

dY tcY↓{J1,...,Jν } (90)

2 We only consider graphs in which each line has two distinct ends.
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Fig. A.4. The Steinmann Planet. The unit sphere in {(s1, . . . , s4) ∈ R4 : ∑4
j=1 sj = 0} intersects the planes {sJ = 0}

along great circles. The geometrical cells are the polyhedral open cones which are the connected components of the 
complement of the union of these planes.

Here J1 ∪ . . . ∪ Jν = Z, and hatted quantities refer to interacting fields. In particular, if T is a 
cell relative to Z,

r̂T =
∫
X Y

dY rY↓T (91)

The weak adiabatic limit problem consists in making sense of the Y integration. In the 
Minkowskian case it is easy (see e.g. [8]) when there are no zero masses.

What we have seen in Sect 4 is that, for tree graphs, if double-cones are bounded, it is always 
possible to obtain the contribution of the graph to the GRF of the interacting fields. Obtain-
ing from this the GTOF (in particular the Wightman functions) requires a splitting of multiple 
commutators: for example for a 2-point function in the Minkowski case, given the commutator 
function ĉ(x2 − x1), find ŵ+(x2 − x1) and ŵ−(x2 − x1), respectively holomorphic in the future 
and past tubes, such that ŵ+ − ŵ− = ĉ. In this case it is easy to find solutions, but this is not 
known for general n-point functions.
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Appendix A. Some simple examples

Let X = {1, 2, 3, 4}. All cells relative to X are Steinmann monomials [14,15]. They are 
given by

aj = k ↑ m ↑ n ↑ j rj = k ↓ m ↓ n ↓ j

ajk = k ↓ m ↑ n ↑ j rjk = k ↑ m ↓ n ↓ j
(A.1)

where (j, k, m, n) is any permutation of (1, 2, 3, 4). (More precisely aj , ajk , rj , rjk denote 
the corresponding GRF, while j � k � m � n denote cells. This will produce no confusion here.) 
Fig. A.4 illustrates the 4-point geometrical cells.
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Table A.1
Factorization table for the first example.

Cell Support of cell Factorization

4 ↓ 1 ↓ 2 ↓ 3 (r3) xj ≤ x3 for all j = 4, 1, 2

4 ↓ 1 ↑ 2 ↑ 3 (a34) x4 ≤ xj for j = 1 or 2 or 3, x1 ≥ x3, x2 ≥ x3

1 ↑ 4 ↓ 2 ↓ 3 (r31) x1 ≥ xj for j = 4 or 2 or 3, x4 ≤ x3, x2 ≤ x3

1 ↑ 2 ↑ 3 ↑ 4 (a4) xj ≥ x4 for all j = 1, 2, 3

1 ↓ 2 ↑ 3 ↑ 4 (a41) x1 ≤ xj for j = 4 or 2 or 3, x2 ≥ x4, x3 ≥ x4

Table A.1 shows how this applies to the 4-point GRF associated with the very simple tree 
graph

Graph 1 : (A.2)

By virtue of the symmetric role played by the indices 1, 2, and 3, and the rules of the arrow 
calculus, all the cells not mentioned in the table can be obtained from those mentioned by a 
permutation of the indices 1, 2, 3, or by reversing all arrows, or both.

We now consider Z = Y ∪ X, X = {1, 2, 3, 4}, Y = {0} or Y = {0, 5} and the cells 0 ↓ S
and 0 ↓ 5 ↓ S respectively associated with the tree graphs:

Graph 2 : Graph 3 : (A.3)

Here S is a cell associated with X. Table A.2 shows the factorizations and the resulting supports 
for a sample of the cells S .

In particular the four-point generalized retarded functions for a scalar field with an interaction 
density L(x) =: φ4(x): are given, in the first order of perturbation theory, by

(�, R̂S(φ(x1), . . . , φ(x4))�) =
∫
X

(�, R0↓S(L(x0), φ(x1), . . . , φ(x4))�)dx0 , (A.4)



170 H. Epstein / Nuclear Physics B 912 (2016) 151–171
Table A.2
Factorization table for Graphs 2 and 3.

S 0 ↓ S for Graph 2 0 ↓ 5 ↓ S for Graph 3

4 ↓ 1 ↓ 2 ↓ 3 (r3)

1 ↑ 2 ↑ 3 ↑ 4 (a4)

1 ↓ 2 ↑ 3 ↑ 4 (a41)

1 ↑ 4 ↓ 2 ↓ 3 (r31)
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