4,054 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Distributed cooperative control for economic operation of multiple plug‐in electric vehicle parking decks

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138231/1/etep2348.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138231/2/etep2348_am.pd

    Control strategies for power distribution networks with electric vehicles integration.

    Get PDF

    Advanced Mechanism Design for Electric Vehicle Charging Scheduling in the Smart Infrastructure

    Get PDF
    Electric vehicle (EV) continues to grow rapidly due to low emission and high intelligence. This thesis considers a smart infrastructure (SI) as an EV-centered ecosystem, which is an integrated and connected multi-modal network involving interacting intelligent agents, such as EVs, charging facilities, electric power grids, distributed energy resources, etc. The system modeling paradigm is derived from distributed artificial intelligence and modelled as multi-agent systems (MAS), where the agents are self-interested and reacting strategically to maximize their own benefits. The integration, interaction, and coordination of EVs with SI components will raise various features and challenges on the transportation efficiency, power system stability, and user satisfaction, as well as opportunities provided by optimization, economics, and control theories, and other advanced technologies to engage more proactively and efficiently in allocating the limited charging resources and collaborative decision-making in a market environment. A core challenge in such an EV ecosystem is to trade-off the two objectives of the smart infrastructure, of system-wide efficiency and at the same time the social welfare and individual well-being against agents’ selfishness and collective behaviors. In light of this, scheduling EVs' charging activities is of great importance to ensure an efficient operation of the smart infrastructure and provide economical and satisfactory charging experiences to EV users under the support of two-way flow of information and energy of charging facilities. In this thesis, we develop an advanced mechanism design framework to optimize the charging resource allocation and automate the interaction process across the overall system. The key innovation is to design specific market-based mechanisms and interaction rules, integrated with concepts and principles of mechanism design, scheduling theory, optimization theory, and reinforcement learning, for charging scheduling and dynamic pricing problem in various market structures. Specifically, this research incorporates three synergistic areas: (1) Mathematical modelling for EV charging scheduling. We have developed various mixed-integer linear programs for single-charge with single station, single-charge with multiple stations, and multi-charge with multiple stations in urban or highway environments. (2) Market-based mechanism design. Based on the proposed mathematical models, we have developed particular market-based mechanisms from the resource provider’s prospective, including iterative bidding auction, incentive-compatible auction, and simultaneous multi-round auction. These proposed auctions contain bids, winner determination models, and bidding procedure, with which the designer can compute high quality schedules and preserve users’ privacy by progressively eliciting their preference information as necessary. (3) Reinforcement learning-based mechanism design. We also proposed a reinforcement mechanism design framework for dynamic pricing-based demand response, which determines the optimal charging prices over a sequence of time considering EV users’ private utility functions. The learning-based mechanism design has effectively improved the long-term revenue despite highly-uncertain requests and partially-known individual preferences of users. This Ph.D. dissertation presents a market prospective and unlocks economic opportunities for MAS optimization with applications to EV charging related problems; furthermore, applies AI techniques to facilitate the evolution from manual mechanism design to automated and data-driven mechanism design when gathering, distributing, storing, and mining data and state information in SI. The proposed advanced mechanism design framework will provide various collaboration opportunities with the research expertise of reinforcement learning with innovative collective intelligence and interaction rules in game theory and optimization tools, as well as offers research thrust to more complex interfaces in intelligent transportation system, smart grid, and smart city environments

    A cloud-based energy management system for building managers

    Get PDF
    A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK
    • 

    corecore