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Summary

Demand side resources, like electric vehicles (EVs), can become integral parts
of a smart grids because instead of just consuming power they are capable of
providing valuable services to power systems. EVs can be used to balance the
intermittent renewable energy resources such as wind and solar. EVs can absorb
energy during periods of high electricity production and feed the electricity back
into the grid when the demand is high or in situations of insufficient electricity
generation. However, extra loads created by the increasing number of EVs may
have adverse impacts on the distribution network such as congestion. These
factors will bring new challenges to the distribution system operator. Typically,
the challenges are solved by expanding the grid to fit the size and the pattern of
the demand. As an alternative, the capacity problem can also be solved smartly
using advanced control strategies supported by an increased use of information
and communication technology. This is the idea of the smart grid. The smart
grid is a next-generation electrical power system that is typified by the increased
use of communications and information technology in the generation, delivery
and consumption of electrical energy. A smart grid can also be defined as
an electricity network that can intelligently integrate the actions of all users
connected to it - generators, consumers and those that do both - in order to
efficiently deliver sustainable, economic and secure electricity supplies.

This thesis focuses on designing control strategies for congestion control in dis-
tribution network with multiple actors, such as the distribution system operator
(DSO), fleet operators (FO), and electric vehicle owners (or prosumers), con-
sidering their self-interests and operational constraints. Note that the control
problem investigated here deals with “higher level” control, e.g., optimization
strategy algorithms related scheduling instead of “lower level” direct process
control. The thesis starts with reviewing innovative control strategies for large
scale management of EVs in the power systems including centralized direct
control, market based control, and price control. The thesis investigates new
approaches for distribution networks congestion management. It suggests and
develops a market based control for distribution grid congestion management.
The general equilibrium market mechanism is utilized in the operation of the
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market.

To build a complete solution for integration of EVs into the distribution net-
work, a price coordinated hierarchical scheduling system is proposed which can
well characterize the involved actors in the smart grid. With this system, we
demonstrate that it is possible to schedule the charging scheme of EVs according
to the users’ energy driving requirements and the forecasted day-ahead electric-
ity market price. Several electric vehicle fleet operators are specified to manage
the electric vehicle fleets. The method of market based control can then be used
by the DSO to interact with the electric vehicle fleet operators to eliminate the
grid congestion problem. Note that the electric vehicle fleet operator can man-
age the EVs based on the three aforementioned control strategies. To test and
evaluate the proposed control strategies, multi-agent concepts is used to model
the price coordinated hierarchical scheduling system. To implement and demon-
strate the multi-agent systems, a novel simulation platform has been developed
based on the integration of JACK (a Java based agent-oriented development
environment) and Matlab/Simulink software.



Resumé

Elektrisk drevne køretøjer kan udover at forbruge energi ogs̊a bidrage aktivt
til elforsyningen ved balancering af grønne intermitterende energikilder s̊asom
vindmøller og solceller. Elektriske køretøjer kan s̊aledes absorbere energi i pe-
rioder med overproduktion og levere energien tilbage til el nettet i situationer
med forøget efterspørgsel eller utilstrækkelig produktion. Et øget antal elek-
triske køretøjer vil imidlertid ogs̊a have negativ indflydelse p̊a elforsyningen,
idet de i nogle situationer kan for̊arsage overbelastning af forsyningslinjer eller
andet udstyr i nettet. Eldistributionsselskaberne vil derfor f̊a nye udfordringer
n̊ar antal af elektriske køretøjer forøges. Udvidelser af nettet med flere forsyn-
ingslinjer til h̊andtering af den øgede belastning er en af de mulige løsninger.
Overbelastning af nettet kan imidlertid ogs̊a imødeg̊as ved en øget anvendelse
af informations og kommunikationsteknologi (IKT) til intelligent styring. Dette
er ideen bag udviklingen af “smart-grid”, som er fremtidens elforsynings sys-
tem karakteriseret ved en øget anvendelse af IKT i hele forsyningskæden fra
produktion, leverance og forbrug af elektrisk energi.

Afhandlingen emne er udvikling af styringsstrategier for h̊andtering af overbe-
lastning i eldistributions net med mange aktører s̊asom netoperatører, fl̊adeoper-
atører samt ejere af elektriske køretøjer. Styrings-strategierne udformes s̊aledes
at de tager hensyn til aktørernes interesser samt nettets driftsbegrænsninger.
Afhandlingen fokuserer p̊a overordnede strategier til optimering af driftsplaner
(schedules) for nettet og de forbundne køretøjer. Styring af de enkelte køretøjer
er s̊aledes ikke behandlet.

Afhandlingen indledes med en oversigt over innovative strategier for overord-
net h̊andtering af elektriske køretøjer i elforsyningen omfattende centraliseret
direkte styring samt markeds- og prisbaseret styring. Derefter udvikles en
strategi for markeds-baseret styring af distributionsnettet som h̊andterer over-
belastninger (congestion) baseret p̊a “general equilibrium market” mekanismer.
Derudover foresl̊as en prisbaseret hierarkisk styring til integration af elektriske
kørertøjer i distributionsnettets drift, som muliggør inddragelse af aktørernes in-
teresser. Det demonstreres at n̊ar disse to styringsprincipper kombineres er det
muligt at schedulere opladningen af elektriske køretøjer under hensyntagen til
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brugernes behov for energi til transport samt dagsprisen for elektricitet p̊a day-
ahead markedet. Det udviklede styringsprincip understøtter mere end en fleet
operatør og markedsbaseringen gør det muligt for netoperatøren at interagere
med dem ved h̊andteringen af overbelastningssituationer i eldistributionsnettet.
Fl̊adeoperatører kan tillige anvende centraliseret direkte styring, markedsbaseret
eller prisbaseret styring af de enkelte elektriske køretøjer. De udviklede strate-
gier demonstreres og evalueres ved en implementering baseret p̊a en integration
af multiagent software teknologi (JACK) samt Matlab/Simulink software.



Preface

This thesis was prepared at Center for Electric Power and Energy, Department
of Electrical Engineering, Technical University of Denmark in partial fulfillment
of the requirements for acquiring the Ph.D. degree in engineering.

This thesis deals with developing control strategies for large scale integration of
EVs into the power distribution network. It mainly addresses applications of
market based control strategy for cost efficient and flexible control of distributed
electric vehicles within the distribution networks. The research questions are
derived from the state of the art in the electric power systems and the new
challenges and requirements faced by the power industry. The project has been
mainly supported by and connected to two Danish research and innovation
projects, the Edision project 1 and the iPower project 2. In the beginning of
the PhD study, I was mainly working on the subject of electric vehicle smart
charging, learning from the discussions and results generated from the Edison
project (the project was finished around the middle of 2011). Then, gradually,
my working time and attention were moving to the subject which is investigated
in the iPower project (mainly work package 3, 4), i.e., distribution grid conges-
tion related research. An outcome of this work package is the FLECH (flexibility
clearing house) platform. In addition, the PhD student would like to thanks the
support from the Ph.D. Programs Foundation of Ministry of Education of China
under the grant (20100072110038).

In general, the research topics of the PhD project are inspired by the discussion
from the Edison and iPower project, but the method developments such as
market based control for distribution grid congestion management are almost
independent from the iPower project. Furthermore, we took the decision to
model and evaluate the market based control approach developed for solving
distribution grid congestion in a multi-agent system. Currently, our multi-agent
systems based platform has been proposed and preliminarily used to support the
FLECH mock up platform simulation which is more flexible and can simulate
various services required by the distribution system operator.

1http://www.edison-net.dk/
2http://www.ipower-net.dk/
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This thesis consists of a summary report and a collection of nine research papers
written during the period 2011–2013.
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Glossary

Battery pack

A battery pack is the final assembly used to store and discharge electric energy
in a EV.

Battery State of charge (SOC)

The available capacity in a battery expressed as a percentage of rated nominal
capacity.

Centralized direct control

The up-level controller directly schedule and specify the low-level units to exe-
cute the commands. It can be applied to both the control relations between the
DSO and the fleet operators in term of grid capacity allocations and between the
fleet operators and the individual electric vehicles in term of charging operation.

Demand side resources (DSR)

DSR refers to the geographically distributed modular power generation, con-
sumption and energy storage systems which are located on the demand side
and have the capability of altering their consumption pattern.

Distributed energy resources (DER)

A power producing or consuming unit connected to a distribution system with
communication and explicit control capabilities that could be employed to sup-
port the electricity grid.

Distribution system operator (DSO)

A system operator responsible for distribution systems.
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Electric vehicle (EV)

EV is defined as passenger vehicle exclusively with an electric drive.

Electric vehicle fleet operator (EV FO)

EV FO is used to manage electric vehicle and represent them to interact with
the market. EV FO could be independent or integrated in an existing business
function of the energy supplier. Simply, in this thesis, FO means EV FO.

Flexibility clearing house (FLECH)

A platform developed in the Danish iPower project (http://www.ipower-net.dk/)
for facilitating ancillary services at the distribution system level.

Market based control

Market based control is a paradigm for controlling complex systems with con-
flicting resources. It typically includes the features found in a market such as
decentralized decision making and interacting agents. Market based control
usually requires two way communication, e.g., exchange the price and power
schedule information. It can be applied to both the control relations between
the DSO and the fleet operators in term of grid capacity allocations and be-
tween the fleet operators and the individual electric vehicles in term of charging
operation.

Price control

Price control applies broadcasting of price signal with a regular update frequency
to the demand side resource. Price control is in the form of one way commu-
nication. It can be applied to both the control relations between the DSO and
the fleet operators in term of grid capacity allocations and between the fleet
operators and the individual electric vehicles in term of charging operation.

Transmission system operator (TSO)

A System Operator responsible for the transmission system.

Vehicle to grid (V2G)

V2G describes a system in which plug-in electric vehicles connect to the power
grid to deliver the electricity into the grid.



Chapter 1

Introduction

1.1 Background

An important means used by the power industry to reduce greenhouse gas emis-
sion and fossil fuel dependency is the introduction of renewable energy resources,
such as wind and solar generation. Denmark was a pioneer in wind power which
provides a large amount of electricity to consumers. By the end of 2012, the to-
tal installed wind capacity in the Danish power systems was 4162 MW counting
30.1% of the domestic electricity usage [1]. Wind energy in Denmark is expected
to grow due to the political strategy of achieving 50% wind power in the 2020
Danish power system [2]. The most installed wind power in Denmark is con-
nected at the distribution system level, which brings challenges to Energinet.dk
(transmission system operator (TSO) of Denmark). Energinet.dk has limited or
no access to the information about the status at the medium grid voltage level.
In order to address the challenges, several actions [3] have been implemented or
planned, such as:

• Coordination of the power flows among different systems by electrical in-
terconnections, mostly high voltage direct current to the TSOs in the
Sweden, Norway, Germany, and soon the Netherland.

• Balancing the power systems by the deregulated power market with the
collaborations of power balance responsible parties. The balance respon-
sible parties make the power and energy bids into the market, consisting
of conventional power and wind power.

• Implementing tools to provide real time estimation of the amount of power
injections from wind energy.
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• Managing the flexible demand, like electric vehicles (EVs), heat pumps in
the residential area, large industrial factory and commercial buildings etc.

In order to manage the flexible demand, such as electric vehicles’ flexibilities,
a research project in Denmark with international collaboration named Edison
project 1 was funded to develop optimal system solutions for electric vehicles
system integration, including EV battery technology, networks issues, market
solutions, information and communication technology standard development.
To utilize the full benefit of the interaction between the electric vehicles and
the power grid with a large amount of power from fluctuating sources, softwares
that enables electric vehicles to charge when there is a surplus of energy in
the system or to resupply energy to the grid when there is a lack of power in
the system are developed. The major control concept in the Edison project
is the introduction of a fleet operator (FO) to aggregate the consumption of
a number of electric vehicles and handle their interaction with the electricity
market as one unit with a centralized/direct control [4–6] to capture the full
benefits. Insights from the project indicated that distribution grid congestion
may happen with the utilization of smart charging scheme [7–9]. In order to
solve the grid congestion caused by the newly increasing demand, well defined
control strategies are required for the power distribution systems and this is the
main research topic of this PhD project.

1.2 Objectives and research problems

1.2.1 Overall objectives

This thesis deals with development of control strategies for large scale integra-
tion of electric vehicles into the power distribution network. Fig. 1.1 illustrates
the relevant actors, operations, and the available control strategies in the con-
sidered systems. We hypothesize that it is possible to schedule the charging
scheme of electric vehicles according to the users’ energy driving requirements
and the forecasted day ahead electricity market price. Several fleet operators
are specified to manage the EV fleets, then distribution system operator (DSO)
can interact with the fleet operators to eliminate the grid congestions. Note
that the dispatch currently used is defined only based on the spot market and
the regulation market. The state of the distribution grid is not considered. We
aim to develop a control strategy for distribution grid congestion management
before the resource dispatch. Our objectives are to coordinate the self interests

1http://www.edison-net.dk/
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and operation constraints of three types of actors in the market: the EV owner,
the fleet operators and the distribution system operator facilitated by the de-
veloped control strategies, e.g., considering the individual EV owner’s driving
requirement, the charging cost of electric vehicle, the fleet operator’s business
objectives and the thermal limits of cables and transformers of distribution grid.

Electricity Spot 

Market

Regulation 

market

Status 

information

Control/

coordination 

relation

Physical 

connection

Fleet 

operation

Distribution 

system 

operation

EV 

operation

Coordination strategies:

Centralized control

Market based control

Price control

Control strategies:

Centralized control

Market based control

Price control

Figure 1.1: Power system with electric vehicles integration coordinated by fleet
operators

1.2.2 Problems analysis

In the deregulated electric power industry, the system described in Fig. 1.1 can
be regarded as a typical decentralized, hierarchically organized system. The
substantial characteristic of such system is their decomposability into a series
of individual functional levels [10]. The functional levels of the system usually
include: Level 4, plant management, Level 3, production scheduling, Level 2,
plant supervisory control, and Level 1, direct process control. At each level,
some automation functions are implemented to operate on the next ”lower”
level. The execution of function is, however, initiated and controlled by the
next ”higher level”. With this four-stage system, the structural and functional
properties of a hierarchical system can be explained. The control problem in-
vestigated in this thesis is mainly referred to Level 3 production scheduling.
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This level is responsible for a series of functions, belonging more to the area
of operations research and resource allocation than to the systems or control
engineering. Production scheduling/dispatching for the system according to the
status of consumer’s requirements, network constraints, and energy demands is
the main concern of this level. At this level, the current existing control meth-
ods which are proposed to integrate large scale of distributed energy resources
into the power systems including centralized control, market based and price
control 2. Fig. 1.2 overviews the control methods. Note that the local control
method is considered, although it is effective and simple to be implemented. In
addition to this, the local control can be put inside the price control category,
for example, the units can set up a command that the device will be turned on
if the price is lower than a threshold value.

Centralized 

control

Market based

 control

Price 

control

Communication 

form and cost

Computational 

requirements
Features

 Control signals (i.e., 

set points)

 High level controller 

makes the decision

 High level controller 
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 Low level units respond 

with power schedule

 Multiple iterations

 Privacy improved

 High level controller 

generates and sends the 
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 Low level units need not to 

explicitly respond.
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 Low for Control 

object

 High for controller

 Relative high for 

Control object

 Low for controller

 Low for Control 

object

 Relative high for 

controller

 One/Two way

 High

 Two way

 Relative high

 One way

 Low

Figure 1.2: Control strategies overview

Given the three control strategies, the overall problems of developing control
strategies for large scale integration of electric vehicles into the power distribu-
tion network have been decomposed into three subproblems:

1. In order to manage a large scale of electric vehicles, from a commercial

2In addition to the centralized control adopted in the Edison project, market based control
and price control are also proposed by other research, more details will be explained in next
Chapter regarding state of the art.
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actor (fleet operator) or system operator’s 3 perspective, what are the im-
plications, advantages and disadvantages when choosing a control strat-
egy? Furthermore, how to design the control algorithms and what are the
necessary information and communications that are required to support
the chosen control strategy?

2. To address the congestion issue of distribution network, with a condition
that we can benefit more by using the advocated three control strategies
except the traditional way of upgrading the grid, what are the implica-
tions, advantages and disadvantages for the system operator, the com-
mercial players, and the EV owners when choosing a control strategy? In
addition, how to devise the control algorithms and what are the necessary
information and communications that are required to support the chosen
control strategy?

3. Development of tools to simulate the control strategies developed for dis-
tribution grids congestion management with electric vehicle integration
considering variously involved actors and different domains.

These three subproblems has been turned into three research topics of this
project which will be elaborated in below. The three research topics are:

1. Optimization and control for integrating electric vehicles.

The thesis starts to review and compare the control strategies for inte-
grating the increasing number of electric vehicles into the power systems.
Then, it investigates control algorithms which support the various control
strategies such as linear programming, dynamic programming and mixed
integer linear programming based techniques.

2. Market based control for distribution gird congestion management.

In this research topic, the market based control is used to prevent the
grid congestion. The focus has been divided into two perspectives: one
is to find the suitable price clearing algorithms for the actors inside the
market taking into account the effectiveness, the computation cost, and
the generality; another one is to find the suitable optimization techniques
which support the actors’ participation in the market. Note that the
market based control out of the three control methods is chosen, mainly
due to the following reasons: 1) It fits with the deregulated electricity
market environment. 2) The congestion management in the transmission
systems is managed according the market based control method. 3) The

3Note that the commercial actor might not exists if the business opportunity is not attrac-
tive. Under the circumstances, the DSO needs to control or coordinate the charging behaviors
of EVs to avoid the grid congestion.
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introduction of the FOs make it possible to manage the congestion in a
market based approach. 4) The certainty of the problem solving is higher
than the price control and the computation requirements for the system
operator is lower than the centralized control.

3. Multi-agent system for distribution grid congestion management

The research focuses on develop modeling framework and tools for distri-
bution grid congestion management study. Precisely, multi-agents system
is used for modeling and evaluation of the developed control strategies
for distribution grid congestion management. The aim is to prove that
multi-agent system is a suitable technology to fulfill the requirements.

1.3 Research contributions

The main contributions of the research consist of:

• We present a comprehensive review of the optimization and control meth-
ods that are used in integrating electric vehicles into the power systems.
It outlines the advantages and disadvantages of various control strategies,
presents the details of the modeling method and algorithms in each control
strategy. Details are presented in separate papers A.1, A.2, A.3, and A.4
and Chapter 3 gives a summary of the main results.

• A price coordinated hierarchical scheduling/control system has been devel-
oped and demonstrated successfully for the integration of the distributed
energy resources into the power distribution networks. In the system, we
apply a market based control strategy to solve the distribution grid con-
gestion. The price clearing algorithm used in this market falls into the
general equilibrium market scheme. We use the electric vehicles as case to
illustrate the systematic integration of distributed energy resources into
the distribution network. With the case, we also demonstrate that var-
ious control methods used by the fleet operator such as direct control,
price control can be flexibly integrated into this hierarchical control sys-
tems. Details are presented in separate papers A.5, A.6, A.7, and A.8 and
Chapter 4 gives a summary of the main results.

• A multi-agent technology has been motivated and used to simulate/demonstrate
the proposed market scheme. We present a flexible and powerful simula-
tion platform which is based on the integration of an agent based sim-
ulation tool JACK, computational tool Matlab, and grid simulation in



1.4 Publications 7

Simulink. The developed platform can support the simulation of intelli-
gent control scheme for the smart grids. Details are presented in separate
paper A.9, A.10 and Chapter 5 gives a summary of the main results.

1.4 Publications

We present these contributions by providing both a summary report as the main
content of this thesis and a number of papers that we have written throughout
the project period attached in the appendix. Totally 10 papers are included
in appendices A.1 through A.10. The papers are referenced throughout this
report as needed, but may also be read independently of this report. Papers A.1
to A.10 contain the main results of the project, and are included as appendices.
Papers from 11 onwards contain other contributions from the author that are
not directly related to the PhD thesis.

A.1: J. Hu, S. You, C. Si, M. Lind, and J. Østergaard, Optimization and con-
trol methods for smart charging of electric vehicles facilitated by fleet operator:
review and classification. International journal of distributed energy resources
and smart grids, 2014.

A.2: J. Hu, S. You, M. Lind, J. Østergaard, and Q.Wu, Optimal charging sched-
ule of an electric vehicle fleet, in proceedings of 46th International Universities’
power engineering conference (UPEC), 2011, Germany.

A.3: T. Lan, J. Hu, Q. Kang, C. Si, L. Wang, Q. Wu, Optimal control of an
electric vehicle’s charging schedule under electricity markets, Neural computing
and applications, 2012.

A.4: S. You, J. Hu et al., Numerical comparison of optimal charging schemes
for electric vehicles, in proceedings of IEEE PES general meeting, San Diego,
U.S., 2012.

A.5: P. B. Andersen, J. Hu, K. Heussen, Coordination strategies for distribu-
tion grid congestion management in a multi-actor, multi-objective setting, in
proceedings of IEEE Innovative Smart Grid Technologies (ISGT) Berlin, 2012.

A.6: J. Hu, S. You, M. Lind, and J. Østergaard, Coordinated charging of electric
vehicles for congestion prevention in the distribution grid, To appear in IEEE
transactions on smart grids, 2014.

A.7: J. Hu, M. Lind, Saleem, A, S. You, and J. Østergaard, Multilevel coor-
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dination in smart grids for congestion management of distribution grid, in pro-
ceedings of International conference on intelligent system applications to power
systems (ISAP), 2013, Japan.

A.8: K. Heussen, D. E. Bondy, J. Hu, et al., A clearinghouse concept for
distribution-level flexibility services, in proceedings of IEEE Innovative Smart
Grid Technologies (ISGT) Copenhagen, 2013.

A.9: J. Hu, A. Saleem, S. You, L. Nordström, M. lind, J. Østergaard, A multi-
agent system for distribution grid congestion management with electric vehicles,
Engineering Application of Artificial Intelligence, in submission, 2013.

A.10: J. Hu, H. Morais, M. lind, J. Østergaard, HV/MV power transformer
capacity negotiation by fleet operators using multi-agents, submitted to 12th
International Conference on Practical Applications of Agents and Multi-Agent
Systems, 2014.

11: J. Hu, M. Lind, S. You, X. Zhang, Multilevel flow modeling of domestic
heating systems, proceedings of 2012 Symposium on Socially and Technically
Symbiotic Systems (STSS), Japan.

12: W. Guo, D. Yang, J. Hu, C. Huang, L. Wang and Q. Wu, Optimal manage-
ment of a home smart grid scheduling, Journal of Computational Information
Systems, v 8, n 5, p 1921-1928, March 1, 2012.

13: S You, J. Hu, et al., Analytical framework for market-oriented DSR flexi-
bility integration and management, Energy and Power Engineering, ISSN Print:
1949-243X, 2012.

14: C. Si, T. Lan, J. Hu, L. Wang, Q. Wu, On the penalty parameter of the
penalty function method, to appear in the journal Control and Decision, 2014.
(In Chinese)

15: S. You, H. W. Bindner, J. Hu, An Overview of trends in distribution network
planning: A Movement Towards Smart Planning, accepted for publication in
IEEE PES, Transmission and distribution conference, 2014.

Table 1.1 summarizes contribution of the research paper to the three research
topics of the PhD project.

In more details, for the first research topic, paper A.1 reviews the three control
strategies for smart charging of electric vehicles. It outlines the information
flows and presents the widely proposed control algorithms in the three differ-
ent control strategies. The next three papers focus on methods development,
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Research topics Publication
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10

1. Optimization and con-
trol for integrating electric
vehicles

x x x x

2. Market based control for
distribution gird congestion
management.

x x x x

3. Multiagent system for
distribution grid congestion
management

x x

Table 1.1: Relation between research topics and publications

i.e., using linear approximation and nonlinear approximation to characterize the
battery charging issue and a formulation of the charging problem in a linear pro-
gramming based charging cost minimization problem (paper A.2) and dynamic
programming based charging cost minimization problem (paper A.3). Further-
more, vehicle to grid study is performed in paper A.4 to perform the economic
analysis considering its profits of providing regulation services and its battery
degradation costs, mixed integer linear programming based formulation is used
in this paper.

For the second research topic, paper A.5 addresses the interactions between
the stake-holders involved in the distribution system (the distribution system
operator, the commercial actors, and the EV owners) when handling the dis-
tribution grid congestion problem, and identifies several approaches by which
their diverse and potentially conflicting objectives can be coordinated. Paper
A.6 recommends and tests the market based control scheme identified in paper
A.5 with detailed mathematical explanation, proof and illustrations with case
studies for congestion prevention. Paper A.7 extends the study in paper A.6
and proposes the price coordinated hierarchical control system to control the
distribution grid congestion considering electric vehicle integration. Paper A.8
introduces the flexibility clearinghouse (FLECH) concept and presents a case
study of using electric vehicles to provide services to the distribution system
operator.

For the third research topic, paper A.9 extends the concepts in paper A.6 and
the extension mainly utilize the multi-agents system (MAS) technology to as-
sess the proposed market scheme with the purpose of illustrating and tracking
the coordination behaviors. Moreover, the extension considers demonstrating
EVs’ flexibility (through the presence of response weighting factor to the shadow
price) in the developed MAS system. Paper A.10 uses the multi-agents based
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platform (developed in paper A.9) to simulate a collaborative but also compet-
itive environment where multiple fleet operators negotiate on the transformer
capacity of the distribution grid. In the study, each fleet operator do its EVs
charging/discharging scheduling taking into account the network constraints.

1.5 Outline of the thesis

This thesis comprises 6 chapters. Chapter 1 introduces the overall problem
and the research objectives of the project. Chapter 2 provides a review on the
state of the art of the three sub-problems. In chapter 3, the electric vehicles
integration research is presented in a compact way. In chapter 4, the developed
market based control strategy is presented. Chapter 5 discusses the topic of
multi-agent based modeling and simulation. Finally, in chapter 6, conclusions
and future work are presented.



Chapter 2

State of the art

In this chapter, existing literature and practices relevant to the three research
problems of this PhD project are reviewed. First, in sec. 2.1, we review the po-
tential business opportunities associated to electric vehicle fleet and the control
strategies which are proposed to manage the electric vehicles. Second, in sec.
2.2, control strategies for solving the distribution grid congestion problem have
been reviewed, especially, the review focuses on the methods which are pro-
posed for the control relations between the distribution system operation and
electric vehicle fleet operations. Finally, in sec. 2.3, the multiagent based sys-
tem and their application in smart distribution grid operation and simulations
are discussed. Note that as each paper attached in the appendices contains the
literature studies and references relevant to the specific topic, the reference list
in this chapter is not exhaustive, and the reader is referred to those given in
the papers as well. Nevertheless, the aim is to include and present some studies
with figures which facilitate further understanding.

2.1 Management of electric vehicle fleet and their
business opportunities

Much research has been focused on electric vehicles integration into power sys-
tem since the last decades. In this section, we review the publications based
on its control objectives which are summarized from the existing studies, i.e.,
start with the discussion on how electric vehicles can be aggregated to provide
ancillary service to transmission system operator; then present how electric ve-
hicles can be used to maximize the production of renewable energy producers;
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next, the discussion will be moved on to the proposed commercial actor, i.e.,
fleet operator; finally, the optimization methods of minimizing the charging cost
of electric vehicles are examined.

Kempton et al. [11–14] analysed the potential profits of vehicle to grid (V2G)
support by comparing it to existing ancillary services and found that partici-
pating regulation power market appears to be most promising and offers a sub-
stantial earning potential to EV owners. This is because: (a) it has the highest
market value for V2G among the different forms of electric power (much higher
than peak power, for example), (b) it minimally stresses the vehicle power stor-
age system, and (c) battery-electric vehicles are especially well suited to provide
regulation services.

ISO

Figure 2.1: Illustrative schematic of proposed power line and wireless control
connections between vehicles and the electric power grid, adapted from [12]

As illustrated in Fig. 2.1, the electric vehicles can participate in the regulation
services individually or by joining a fleet, the communication can be facilitated
by power line and wireless control connections. It is advocated that fleets are
more easily accommodated within existing electric market rules, which typically
require power blocks of 1 MW. To fulfill the concept of V2G, each vehicle must
have three required elements: (a) a connection to the grid for electrical energy
flow, (b) control or logical connection necessary for communication with the grid
operator, and (c) controls and metering on-board the vehicle. Fig. 2.2 shows



2.1 Management of electric vehicle fleet and their business opportunities13

an example of electric vehicle control panel. By predefining the wanted driving
distance and the comfortable buffer, the electric vehicles can be connected to
the grid and then participate the regulation service market.
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Figure 2.2: Example control panel for a battery electric vehicle, allowing the
vehicle operator to constrain charging and discharging by the electric utility,
adapted from [11]

It is also learned from the studies [11–14] that important variables for the V2G
market are: (a) the value of ancillary services in the area, (b) the power capacity
of the electrical connections and wiring, and (c) the kWh capacity of the vehicle
battery. The amount of time the vehicles were on the road or discharged did
not turn out to be a major variable. The results showed that battery electric
vehicles fleets have significant potential revenue streams from vehicle to grid.

Regarding the Danish Power system, Divya et al. [15] carried out a study inves-
tigating the feasibility of integrating electric vehicles in the Danish electricity
network which is characterized by high wind power penetration. They found
that electric vehicles have the potential to assist in integrating more wind power
in 2025 when the electric vehicle penetration levels would be significant enough
to have an impact on the power systems. Østergaard et al [16–18] shows that
intelligent integration of electric vehicles in the Danish power system with high
wind power penetration has substantial socio-economic benefits due to its bal-
ancing capability.



14 State of the art

The studies presented in [12–19] are mainly investigated from the design and
analysis perspectives, they gave a good incentive for the electric vehicles to
participate into the regulation market. The subsequent work focused on the
method development. Rotering and Ilic [20] utilized the dynamical program-
ming to formulate the smart charging problem. They took into account vehicle
to grid as a mean of generating additional profits by participating in the ancil-
lary service markets. Based on the data of the independent system operator of
California, provision of regulating power substantially improves plug-in hybrid
electric vehicle economics and the daily profits amount to 1.71$, including the
cost of driving. Han et al. [21] proposed a fleet operator that manages electric
vehicles to provide frequency regulation services, the cost arising from the bat-
tery charging and the revenue obtained during the participation is investigated.
The question is formulated as an optimization problem and dynamic program-
ming is used to generate the charging profile. Pillai and Jensen [22] investigated
the V2G regulation capabilities in the West Denmark power system by using a
simplified load frequency control model, in the study, they used an aggregated
battery storage model and generators model. The results indicated the reg-
ulation needs from conventional generators are significantly minimized by the
faster up and down regulation characteristics of the EV battery storage. All
these results indicate that it is feasible to participate in the electricity market
and provide ancillary service to the gird.

In addition to the focus on providing ancillary services to transmission system
operator, several studies investigated the method of maximize the renewable
energy penetration with the integration of electric vehicles. Lopes et al. [23]
investigated the dynamic behaviour of an isolated distribution grid when wind
power and electric vehicles are presented. The objective is to quantify the
amount of intermittent renewable energy resources that can be safely integrated
into the electric power system with the utilization of EVs’ storage capacity. Lund
and Kempton [24] investigated the impact of using V2G technology to integrate
the sustainable energy system. Two national energy systems are modelled; one
for Denmark including combined heat and power (CHP), the other is a similarly
sized country without CHP. The model (EnergyPLAN) integrates energy for
electricity, transport and heat, includes hourly fluctuations in human needs and
the environment (wind resource and weather-driven need for heat). The results
indicated that adding electric vehicles and V2G to these national energy systems
allows integration of much higher levels of wind electricity without excess electric
production, and also greatly reduces national CO2 emissions.

In above discussion, mostly, these services can be practical in place only provided
by a large fleet of electric vehicles. Fleet operator is widely proposed to aggregate
the large penetration of electric vehicles in the near future. Alternatively names
for an electric vehicle fleet operator are used such as EV virtual power plant,
EV aggregator, EV charging service provider or EV service provider. Fleet
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operators could be independent or integrated in an existing business function
of the energy supplier or distribution system operator. For more discussion in
term of the fleet operator’s roles, the relationships between fleet operators and
other actors in a smart grid context, and the communication standards used by
the fleet operator and electric vehicles, please refers to paper A.1.

To aggregate and attract the participation of electric vehicles, one incentive for
EV owner is to minimize the charging cost, this could be facilitated by opti-
mally charge the electric vehicles when the electricity price is lower. Within
this scope, most the work [8,25,26] assume that the FO manages the electricity
market participation of an EV fleet and presents a framework for optimal charg-
ing or discharging of the electric vehicles. In addition, the electricity price of
the day-ahead spot market and the regulation market and the driving patterns
of the EV fleet are usually assumed to be known by the FO who is assumed to
be the price-taker in the electricity market in studies. By implementing linear
programming or dynamic programming based cost minimization calculation, an
optimal charging schedule for electric vehicles will be generated by the fleet
operator. However, Kristoffersen et al. [27] also investigated the possibilities
of EV management where the FO has a significant market share and can af-
fect electricity prices by changing the load through charging and discharging.
Besides studying the optimal charging from an EV fleet perspective, research
in [20, 28] showed how dynamic programming can be utilized by the individual
EV controller to make an optimal charging schedule taking into account the
electricity market price. In [29], an intelligent charging method is also proposed
for individual electric vehicle which responds to time of use price and minimize
the charging cost.

In general, these studies focus on manage the electric vehicle centrally. In con-
trast, although the decentralized control is a relative new application to EV
fleet control, there are still a lot of efforts that have been done considering the
amount of the articles. One notable study is about the valley filling study which
can be seen in [30–33] where market based control strategies are used. In fact,
the valley filling charging can date back to 1994 [34] where Ford argues that
valley filling would allow the utility to meet anticipated additional loads for
EV charging without additions to their existing resource plan. Therefore, he
argued, the utility would experience an increase in profits from increased sales
and better utilization of their generation equipment. In [30–33], the concepts are
similar and the authors assumed that the EVs determines the charging pattern
individually and are cost minimization.

In addition to the market based two way communication, by using one way price
signal, it means that the EV controller do not need to propose and submit their
charging profile to the fleet operator, instead the fleet operator will anticipate
their response to the dynamic price. The dynamic price ranges from simple
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time-of-use electricity rate [35, 36] to more varying hourly prices [37, 38]. Both
studies [35,36] suggested that the time of use rates can be properly designed to
reduce the peak demand as EVs penetrate the vehicle market. However, it is
also noted in [36] that the extent to which properly designed rates could assist in
maintaining grid reliability will remain open until empirically tested EV owner’s
price responsiveness through experiment pilots are known. Both studies [37,38]
investigated the price elasticity of electricity consumers and these are also the
key issues in one-way price signal approach.

2.2 Control strategies for distribution grid con-
gestion management

It is assumed that the distribution network has the capacity to allocate new loads
when achieving the objectives discussed above. However, a large penetration of
electric vehicles will bring some challenges to the utilities. The challenges usually
include peak power issue, grid congestion, power losses, voltage drop et al. Much
research has been performed to study the intelligent EV load control and their
effect on the grid, which can be dated back to the early 1980s [39]. Heydt [39]
argued that load management should be deployed to alleviate peak loading,
which is measured in term of load factor improvement. In 1993, Rahman [40] and
Shrestha indicated that even low penetration levels of electric vehicles can create
new peak loads exceeding the natural peak if sufficient attention is not paid to
distribute the charging load throughout the off-peak period. A penetration level
of 20% is found to be the upper limit which could be managed by distributing
the charging load. Basically, those studies mainly investigated the impacts by
adding the new EV loading profile to the already existing load profile and seeing
the overall effect and then proposed the load shifting strategy. Recently, more
technical parameters such as power losses, power qualities have been used for
grid congestion impact studies. In [7, 8, 41, 42], the impacts of electric vehicles
on distribution networks are studied, the conclusions are that without charging
coordination, the power consumption on a local scale can lead to grid problems.
While the coordination of the charging can prevent the grid congestion, reduce
the power losses, improve power quality etc.

In order to eliminate the grid congestions, three overall approaches have been
identified in [43] to handle the integration of distribution grid congestion and
electric energy balance. Three listed approaches include integrated process,
stepwise process form first electric energy balance, then grid congestion, and
stepwise process form first grid congestion, then electric energy balance. Advan-
tages and disadvantages of the three listed options are discussed in report [43].
Different types of approaches including payment for the right to use capacity,
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variable tariffs, direct control, a bid system etc., are discussed in the report.
In the following, some articles are presented which can elaborate the discussion
in [43] starting with the direct control, then with the market based control and
finally the price control method.

In study [44], the model being tested by Ericsson and partners is shown in Fig.
2.3. With this proposal, The charge schedule can thus be selected directly by
the electricity utility to meet the owner’s or driver’s requirements, as well as
spreading the demand over the course of the night. Further discussion are made
on the enabling technologies in the study.

1. Charging adapter is 
connected to dumb outlet

2. Car state changes to ready 
to charge

Public mobile network

4. Charging schedule request 
from the car to EVCS

5. EVCS submits charge 
schedule to utility

6. Utility validates car and 
provides detailed charge 

schedule

3. Driver selects charging 
requirements

EVCS

Grid

7. EVCS sends detailed 
charging schedule to the car

8. Charging logic in the car 
executes charging schedule

Figure 2.3: The electric vehicle charging system, adapted from [44]
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In [8], a complex scheduling problem involving the EV owners, the FO (charging
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service provider (CSP) in the article) and the DSO is analyzed. The approach
requires a complex interaction between the DSO and the CSP, on each interac-
tion, the CSP will get a specific grid constraint from the DSO and add it into
the EV charging cost minimization problem. The results show that both the
CSP and the EV owners can achieve the objectives of minimizing charging costs
and fulfilling driving requirements without violating the grid constraints. Fig.
2.4 illustrates the information flow between the relevant actors.

Lopes et al. [45] proposed a conceptual framework consisting of both a technical
grid operation strategy and a market environment to integrate electric vehicles
into the distribution systems, as shown in Fig. 2.5. The fleet operator is pro-
posed to manage the electric vehicles and the fleet operators will prepare the
buy/sell bids into the electricity market. Having this defined, a prior interaction
with the DSO must exist to prevent the occurrence of congestion and voltage
problem in the distribution network. The smart charging algorithm is mainly
designed for the operation of the DSO which can maximize the density of the
EV deployment into the grid.
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Figure 2.5: Technical management and market operation framework for EV
integration into electric power systems, adapted from [45]

Alternatively, several ways of solving the congestion problem have been sug-
gested from market perspective. In study [46], Ipakchi pointed out that a tran-
sition from a traditional view of power systems operation towards smart grid
operating paradigm is needed. It is also pointed that the higher penetration
of distributed resources will require a greater attention to distribution conges-
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Figure 2.6: Concept of micro-transactions for management of charging loads of
plug in electric vehicles, adapted from [46]

tion issues and the need for improved distribution automation and distribution
management capabilities. A transactive based approach is proposed to solve
the problems, Fig. 2.6 illustrates the concept. In the concept, A plug-in electric
vehicle requests using 7.8 kWh of charging energy over the next two hours. This
request can be presented as a demand transaction and sent to a Demand-Side
Management application operated by the utility distribution company. Knowing
the service delivery point to which the car charger is connected to, this applica-
tion will check the available capacity of the secondary distribution transformer,
lateral and feeder circuits and determine if this additional load will not impact
the circuit reliability and cause any adverse phase imbalances. The Demand-
Side Management application will then schedule the charging for the requested
time period. At the same time, the application may receive many more informa-
tion such charging requests that have to be checked, and in aggregate they have
to be coordinated with wholesale scheduling at substation supplying the feeders
to ensure adequate supply. Each of these actions could be modeled as a transac-
tion between a consumer system, a utility decision support system, distribution
field equipment and supply scheduling system in an aggregate form.

Transactive control is a kind of market based control technology and considered
as a specific instantiation of a GridWise Architecture Council [47,48]. The intent
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of transactive control is to standardize a scalable, distributed mechanism for ex-
changing information about generation, loads, constraints and responsive assets
over dynamic, real-time forecasting periods using economic incentive signaling.
Fig. 2.7 from [49] lists the key issues of the concept. It presented an exam-
ple that precise, stable control of congested grid nodes can be derived from (1)
customer price-responsive controls that (2) express their available flexibility to
(3) a price discovery mechanism. In other words, the GridWise initiative have
adopted an agent based computational economics modeling for incorporating
the market mechanisms that allow the system to evolve over time in response
to market dynamics.
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Figure 2.7: Key issues in a transactive control, adapted from [49]

PowerMatcher 1 is another good example of a market-based control concept
for supply and demand matching in electricity networks. It is discussed in
[50] that the PowerMatcher technology is based on multi-agent systems and
electronic markets which form an appropriate technology needed for control
and coordination tasks in the future electricity network. Background theories
used are control theory and micro-economics, unified in market-based control
theory and it is presented in [51], one of the conclusions from the study is that
computational economies with dynamic pricing mechanisms are able to handle
scarce resources for control adaptively in ways that are optimal locally as well
as globally. The basic structures and agents are illustrated in Fig. 2.8, for the
roles and functions of the agents, please refer to PowerMatcher website.

In addition to the proposed market based approach, price control is also exten-
sively discussed in several studies [9,43,52]. Several tariff signals including time

1http://www.powermatcher.net/
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Figure 2.8: Concept of PowerMatcher technology, adapted from [50]

of use tariffs, critical peak pricing, variable tariff and dynamic tariff have been
general discussed and compared in [43,52]. The comparison are discussed from
the activation, timing of price determination, tariff characteristics, price varia-
tions, advantages and disadvantages perspectives. In both reports, a bid-less,
day-ahead setup market model is discussed, Fig. 2.9 illustrates the model. The
model has been tested in study [9] and the results indicated that it could be
useful to alleviate the grid congestion.
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Figure 2.9: A bid-less day-ahead setup market model, adapted from [52]
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2.3 Multi-agents systems for smart distribution
grid operation and simulations

Multi-agent systems (MAS) have been widely proposed for several studies in the
context of power systems, such as power system restoration [53], power system
operation and control [54], and electricity markets modeling and analyzing [55,
56]. More recently, the multi-agent concept is proposed for distribution system
operation and control [57–61], especially, considering the capacity management
with a large penetration of electric vehicles [62,63] and the capacity management
with more general loads [64].

The authors [62] proposed a distributed, multi-agent electric vehicle charging
control method based on Nash certainty equivalence principle that considers dis-
tribution network impacts. Four types of agents are included in the study, EV
aggregator agent, regional aggregation agent, microgrid aggregation agent and
cluster of vehicles controller agent, and vehicle controller agents. In the non-
cooperative, dynamic game, all the vehicles controller agents decide the strategy
that minimizes his own objective functions. The up-level agents coordinate ve-
hicles controller agents’ charging behaviour by changing the price signal. The
price signal is a reflection of congestion conditions. The results indicate that
the proposed approach allocates electric vehicle energy requirements efficiently
during off-peak hours which achieves effectively valley filling and also leads to
maximization of load factor and minimization of energy losses. The authors
in [63] used the MAS to design a distributed, modular, coordinated and collab-
orative intelligent charging network with the objective of pro-actively scheduling
the charging of up to fifty electric vehicles as well as eliminating the grid over-
loading issue. The study mainly considered how the electricity is distributed to
the multiple charging point agent under one local power manager agent and this
is done by an auction mechanism. Each charging point agent makes a bid for
the energy in the next 15 minutes until it get the desired state of charge of the
battery, then the local power manager agent sorts out the orders to determine
which electric vehicle can be charged during the time slot. In [64], an active dis-
tribution network (ADN) is presented with its actors and their objectives. The
multi-agent technology is proposed for the normal operation of the ADN, in
which the auctioneer agent (placed at the MV/LV transformer) communicates
with the device agent by sending the price signal and receiving the bid curve.
Further on, capacity management is investigated by transforming the bid curves
of the device agents.

In general, the above studies [62–64] adopted an agent-based computational
economics modeling 2 for incorporating market mechanisms to allocate the grid

2Please see the discussion regarding GridWise and PowerMatcher concept review.
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capacities and the results indicated the agent-based market mechanisms solve
the grid congestion efficiently. However, in term of simulations, much work
needs to be studied, as discussed in [57], currently available software tools pro-
vides either modeling of dynamic electric power networks or implementation
of intelligent system techniques such as intelligent agents. Therefore, a soft-
ware platform which can simulate multi-agents based control strategies that
incorporates power system dynamics and intelligent control strategies is highly
required. In [57], the author developed a software platform based on the inte-
gration of JADE and DigSilent PowerFactory which can enables design, test,
and verification of agents based control technologies. Besides, in [65], a simula-
tion framework named mosaik is developed to facilitate the simulations running
several separately software together, the purpose of the developed framework is
to reuse existing models in a common context to simulate complex smart Grid
scenarios in order to evaluate control strategies, such as agent based control
strategies.

2.4 Summary

The overall state of the art of the technology for capturing the business oppor-
tunities provided by electric vehicle fleet is quite feasible and promising. But as
a commercial actor, which control strategies is optimal, and what is the implica-
tions for choosing one control strategies to manage the electric vehicle fleet? At
the same time, the commercial actor needs to coordinate with the distribution
system operator to prevent the congestion before bidding into the conventional
markets, several approaches have been reviewed and there is a need to devise
the suitable one for this context. In addition to this, to simulate and evaluate
the control strategies developed for distribution grid congestion management
with EV integration, whether multi-agents based technology is a good approach
and if yes, how to develop a multi-agent systems? The need to answer such
questions have motivated the choice of research topics for this thesis.
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Chapter 3

Optimization and control for
integrating electric vehicles

In this chapter the main results concerning the first research topic are summa-
rized. The main results and details have been published in separate papers A.1,
A.2, A.3, and A.4 that are included in appendices of this report. The chap-
ter starts with some background knowledge including the electricity market,
battery modeling, and vehicle driving pattern, because these are the primary
inputs that are needed in an electric vehicle optimal charging problem. Then, we
present the main results including a comprehensive review on the three control
strategies developed for electric vehicle integration and four developed meth-
ods during the PhD study, i.e., problem formulations of electric vehicle optimal
charging schedule by linear programming, dynamic programming, mix integer
linear programming and statistic modeling based techniques.

3.1 Background knowledge

3.1.1 Nordic electricity market

In the Danish Edison project 1, an overall discussion is given on the current
Nordic electricity market and how the electric vehicles can be integrated into
the current and future markets [43,66]. The reader is referred to the two reports
for more details. Here we briefly introduce the spot market and the regulation
market since they are most relevant to the thesis.

1http://www.edison-net.dk/
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3.1.1.1 Spot market

In the Nordic electric power market, energy is exchanged by direct trading
amongst player (bilateral trade) and via the Nordic power exchange, NordPool.
There are two main markets for energy exchange within NordPool that are
Elspot for day-ahead trading and Elbas for the balancing market. Elspot is
a day-ahead market where hourly exchanges are traded. The way of calculat-
ing the price is called double auctions, as both the buyers and the sellers have
submitted bids. At noon, NordPool Spot’s computer in Oslo starts calculating
the day-ahead price. Having finished the calculation, NordPool Spot publishes
the prices. At the same time, NordPool Spots reports to the participants how
much electricity they have bought or sold for each hour of the following day.
These reports on buying and selling are also sent to the TSO in the NordPool
spot area. The TSO use this information, when they later calculate the balanc-
ing energy for each participant. Apart from calculating day-ahead prices, the
Elspot market is also used to carry out day-ahead congestion management in the
Nordic region. The day-ahead congestion management system is called market
splitting. More discussion regarding market splitting can be seen in [67,68].

3.1.1.2 Regulating power market

The regulating power market is managed by the transmission system operator
2 in order to obtain ancillary services in the transmission grid. It may happen
that the consumption exceeds (or lags behind) the generation. In this case, the
frequency of the alternating current will fall to (exceed) a value below (above)
50 Hz. As renewable energy will become an increasing important resource for
reducing emissions from fossil fuels, production will become more intermittent,
and therefore it is anticipated that the need for regulating power will increase
[43,66].

3.1.2 Battery modeling

Basically, there are two ways to model the charging characteristics of electric
vehicles, i.e., the battery. One is the individual battery pack model, another
is the aggregated or cell based model. For simplicity, most of the studies re-
viewed considered it as a battery pack when investigating the optimal charging
or discharging problem. Currently, most battery model studies focus on three
different characteristics [69,70]:

2http://www.energinet.dk/EN/El/Systemydelser-for-el/Sider/Systemydelserforel.aspx
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• The first and most commonly used model is termed as a performance or a
charge model and focuses on modelling the state of charge of the battery,
which is the single most important parameter in system assessments.

• The second type of model is the voltage model, which is used to model
the terminal voltage so that it can be used in more detailed modelling of
the battery management system and the more detailed calculation of the
losses in the battery.

• The third type of model is the lifetime model used for assessing the impact
of a particular operating scheme on the expected lifetime of the battery.

The present study mainly focuses on smart charging of electric vehicle and
therefore we present more introduction on the first characteristic, i.e., modeling
the state of charge of a battery during the operation.

Rint

=

I2

U2
Uoc

Figure 3.1: Equivalent circuit of a battery

A basic physical model of a battery can be derived by considering an equivalent
circuit of the system like the one shown in Fig. 3.1. The steady state battery
equivalent circuit has been applied mainly for various lead acid batteries, but
also for nickel cadmium, nickel metal hydride and lithium-ion batteries. In
this circuit, the battery is represented by an voltage source in series with an
internal resistance. Kirchhoff’s law for the equivalent circuit yields the following
equations:

Uoc(t)−Rint(t).I2(t) = U2(t). (3.1)
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Both the voltage source Uoc(t) and the internal resistance Rint(t) are dependent
on the state of charge (soc) 3 of the battery.

Normally, two ways are used to characterize the capacity of a battery, kWh and
Ah 4. If the dynamics of the state of charge of the battery is calculated by
adding kWh into the available capacity, it usually starts with the calculation
of the internal power of the battery which can be approximated linearly or
nonlinearly 5 with the external charging power, like the one presented in the
study [8,25], also described in the section B.1. The studies [8,25] have shown that
the difference between the two charging schedules using linear approximation
and nonlinear approximation (second-order Taylor series expansion) is minor
and indicates that the linear approximation is sufficient and the benefit of using
a nonlinear approximation does not justify the increase in computation time.
If the dynamic of the state of charge of the battery is characterized by the
calculation of the dynamics of the electric charge, like the one used in study
[20,28], also described in the section B.1, dynamic programming is usually used
to formulate the optimal charging of electric vehicle.

3.1.3 Driving pattern and associated electricity consump-
tion

The analysis of driving pattern can be divided into two main directions:

• Utilization of electric vehicles, in other words, when and how long the
electric vehicle will be used in the next scheduling period, e.g., 24 hours in
the present study. This is because when and how long decide the energy
that need to be procured or charged for the next scheduling period.

• Location of electric vehicles when charging and how many of them will be
charged at a time, because the location of the electric vehicles inside the
network will determine where the grid will be possibly congested.

In most studies [8,20,25], the authors assume that the fleet operator knows the
users’ driving patterns and thereby can forecast the electricity demand. There
are few studies on investigating the driving pattern. Kristoffersen et al. [27]

3Usually, the abbreviation for state of charge should be capital letter, i.e., SOC. Here, we
use ’soc’ because it will be used as a variable in section B.1.

4kWh=Ah*voltage
5Using linear approximation, the internal power is assumed to be equal to the external

power; using nonlinear approximation, the internal losses in the battery can not be neglected,
therefore, the internal power is not equal to the external power
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investigated a method to construct driving patterns from the historic data in
Danish case. By clustering the survey data on the vehicle fleet in Western Den-
mark (January 2006-December 2007), representative driving patterns for each
vehicle user are constructed. S. Shahidinejad et al. [71] developed a daily duty
cycle which provides a complete data set for optimization of energy require-
ments of users. And furthermore, this information is used to analyse the impact
of daytime charging by a fleet of plug-in electric vehicles on the electric utility
grid that may create a peak demand during the day to be met by the local utility
grid. Normally, intra city or short term driving patterns are largely predictable
due to fixed working hours and fixed business schedules and routes.

In the present thesis, the driving pattern is based on the 2003AKTA Survey
[72], where 360 cars in Copenhagen were tracked using GPS from 14 to 100
days. Each data file includes starting and finishing time, and the corresponding
duration and distance. The original data is transferred into 15 minutes interval
driving energy requirements based on the assumption of that an electric vehicle
will use 15 kWh per 100 km (typically, the number ranges from 11 kWh to
18 kWh per 100 km). Some artificial driving data of the electric vehicles have
been generated from the database based on some facts observed in study [73].
In [73], a Danish driving pattern analysis is presented which listed that the
average driving distance in Denmark is 42.7 km per day. With the assumption
of 0.15 kWh/km for energy used per km of electric vehicles, one can deduce
that the monthly energy requirement for an electric vehicle will be around 192
kWh (42.7 km*30*0.15 kWh/km). Using Nissan Leaf (EV battery capacity is
24 kWh) as an example, this would imply that the users need to charge the Leaf
around 8 times (192 kWh/24 kWh). However, owners will rarely fully discharge
their Leaf before recharging it. For discussion purposes, it is assumed users will
charge the electric vehicle 20 times per month which implies that each time 9.6
kWh energy will be procured. In the current case, they would imply around
five hours charging (9.6 kWh/2.3 kW). Using 9.6 kWh as an average number,
the driving data is randomly chosen and transferred into a 15 minutes interval
driving energy requirements.

3.2 Main results

3.2.1 Three control strategies for integrating electric ve-
hicles

As discussed in paper A.1, also reviewed in section 2.1, several business oppor-
tunities provided by EV fleet have been identified such as providing ancillary
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services to transmission system operation and storing service to renewable en-
ergy producers. To capture the business opportunities, fleet operator has been
proposed to manage EVs. Fleet operator [74, 75] could be independent or in-
tegrated in an existing business function of the energy supplier. Furthermore,
Fleet operator needs to coordinate with the distribution system operator to
manage the congestions in the distribution network. In principle, two types of
control architectures can be used by FOs when aiming at realizing the business
opportunities, named centralized and decentralized control. In both control ar-
chitectures, the grid constraint from the distribution grid should be considered.

FO 
operation

 Modeling the state of 
charging of the battery 
with linear or nonlinear 
approximation

 life time assessing model, 
battery degration analysis

 Day-ahead market
 Regulation power market
 Other reserve market

 Forecasting driving 
requirement of EV owner

 Location prediction of Evs
 Normal vehicle’s historical 

data are used
 Normal distribution, 

Monte-Carlo based method

 Thermal constraint of cable 
and transformers

 Voltage constraint

Battery Model

EV FO

Electricity Market

Driving Pattern

Grid Constraints

EV1 EV2 EVNEVi

Control Signal

Status 
information

Information 
source

Decision making

Figure 3.2: Centralized control: primary inputs and output of the electric vehicle
fleet operator

In centralized control, electric vehicles are aggregated and controlled by fleet
operator directly. e.g., by dictating the charging schedules. In decentralized
architecture, the control is implemented in the form of price signal, i.e. the
individual EV optimizes the charging schedule based on the electricity price
information made available to them either from FO or the utility. Figure 3.2
depicts the mainly four inputs when making the control strategies in the case
of centralized control. The FO obtains all the relevant information including
the battery model, the driving patterns, the grid constraints and the electricity
price and centrally makes the charging schedule for each EV. In contrast, in the
context of decentralized charging, the FO uses price signal to coordinate the EV
users’ charging behavior. Two methods of implementing decentralized charging
control are summarized. The scheme of the information flow in decentralized
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charging control is presented in Fig 3.3. In Fig. 3.3 (a), the basic idea for market
based control strategy is that EVs update their charging profiles independently
given the price signal; the FO guides their updates by altering the price signal.
Several iterations are usually required for the implementation. In Fig. 3.3 (b),
the price control method requires FO to predict the users’ response to the prices.
The price signal can be designed simply as time-of-use price or as dynamic prices.
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EV FO perspective

 Send the updated price/
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 Intelligent Individual controller

 Sophisticated control equipment

 Send back the charging profile

EV FO
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Figure 3.3: Decentralized control: a schematic view of the information flow
below the fleet operator and the electric vehicles

3.2.2 Formulation of the optimal charging of electric ve-
hicles by centralized control architecture

In the following, we introduce the method to formulate the optimal charging
schedule of electric vehicles based on linear programming, dynamical program-
ming, and mixed integer programming techniques.
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3.2.2.1 Linear programming based optimal charging schedule gener-
ation

As explained in section 3.1.2, this study uses the linear approximation method.
Linear programming approach is utilized to optimize the charging schedule of an
EV fleet both taking into account spot price and individual EV driving require-
ment with the goal of minimizing charging costs. A simplified version of Fig. 3.2
is used to guide the control algorithm design. The charging schedules of the EV
fleet are optimized individually and then each EV’ schedule is summed, since it
is considered that the individual’s driving requirements should be fulfilled and
calculated separately. The formulation is shown in the following:

minimize

NT∑

i=1

Φj,i · Pj,i · t, j = 1, ..., NE
k

subject to





SOC0,j +
nT∑
i=1

Pj,i · tj,i ≥ SOCMin,j +
nT−1∑
i=0

Ed,i+1

SOC0,j +
nT∑
i=1

Pj,i · tj,i ≤ w · Ecap,j +
nT+1∑
i=2

Ed,i−1

0 ≤ Pj,i · tj,i ≤ Pmax,j · tj,i, i = 1, ..., NT

(3.2)

With the above optimization problem, the FO can generate a unique energy
schedule for EV owner; the sum of the individual EV energy schedule will be
denoted as PEk,i, and

PEk,i =

NE
k∑

j=1

Pj,i, k = 1, ..., NB , i = 1, ..., NT ,

where

NE
k Number of EVs under FO k.

NT Number of time slot in the scheduling period.

NB Number of FOs.

j Index for the number of EVs under each FO, j = 1, 2, ..., NE
k .

i Index of time slot in the scheduling period, i = 1, 2, ..., nT , ..., NT .

k Index for the number of FOs, k = 1, ..., NB .
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Φj,i Predicted day-ahead electricity market price vector.

Pj,i Decision variable vector.

t Length of each time slot.

PEk,i Power requirements of EVs of each FO in each time slot.

SOC0,j Initial state of charge of individual EV.

SOCMin,j Recommended minimum state of charge of the EV.

Ed The predicted individual EV owner’s driving requirement.

Pmax,j Charge rate in term of energy of individual EV.

w ∗ Ecap,j Recommended maximum state of charge of the EV, where w is the
parameter which express the charging behavior of the battery of the EV
is a linear process, Ecap,j is the capacity of the battery of the EV.

In Eq. (3.2), the first constraint means that the available energy in the battery
should be greater than or equal to the energy requirement for the next trip.
The second constraint indicates that the available energy in the battery should
be less than or equal to the power capacity of the battery. The third constraint
represents that the charging rate is less than or equal to its maximum power
rate of a charger. The physical meaning of the decision variable vector Pj,i is to
make a decision to distribute/charge the power on the certain time slots, where
the charging cost can be minimized. The solutions of some numerical studies
are presented in paper A.2, A.6.

3.2.2.2 Dynamic programming based optimal charging schedule gen-
eration

As explained in section 3.1.2, the study presented in paper A.3 considers the
dynamics of the state of charge of the battery using electric charge. The control
architecture used in the study is also a simplified version of the one shown in Fig
3.2. For the day-ahead scheduling, the time horizon [0, N ] of a day is discretized
into equidistant time intervals [k, k+1] with k = 0, . . . , N−1. It is assumed that
the time interval is ∆t. This problem is addressed by considering the following
discrete system which describes the battery:

xk+1 = T (xk, uk, k) (3.3)
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State variable xk represents the state of charge of the battery at time k. xk
is not only discrete in time (index k) but also in value. Any value has to be
included in the predefined set X, which can be calculated by a function of charge
Qk and total capacity Qmax.

xk =
Qk
Qmax

(3.4)

uk in equation 3.3 is the control variable, which is dimensionless and discrete.
uk is multiplied with the maximum available charge power (Pmax) when electric
vehicle is connected with the grid. The values of uk are fixed at 0 when driving,
while these values range from 0 to 1 when electric vehicle is connected to the
grid. If Uplug is the set that covers all possible values of uk, its discretization
may be described as follows:

uk =

{
uk ∈ Uplug, k ∈ Kplug

uk = 0, k ∈ Kdriv
(3.5)

Kplug is a set of indices k within the time periods where the vehicle is plugged
in, while Kdriv refers to the driving intervals. The summation of the number
of elements in Kplug and Kdriv is N, the total number of time intervals. Any
index k in Kplug or Kdriv has to be element of the predefined set K.

k ∈ K = {Kplug,Kdriv} (3.6)

A specific control strategy is represented by

u = {u0, u1, u2, ..., uN−1} (3.7)

Any value of uk has to be element of a predefined set U, which is known as the
set of admissible decision. The total cost of a sequence, fU0 , is given by the cost
of the final step, fN (xN ), plus the cost for all other previous steps, vk(xk, uk, k),
then we have:

fU0 (x0) = fN (xN ) + ΣN−1
k=1 vk(xk, uk, k) (3.8)

The optimal control strategy u∗ = {u∗0, u∗1, u∗2, . . . , u∗N−1} minimizes the cost
function 3.8 and can be determined by the dynamic programming. For case
studies and their solutions, please refer to paper A.3.

3.2.2.3 Mixed integer linear programming based optimal charging
and discharging schedule making

In order to investigate the economics of vehicle to grid technology, e.g., providing
ancillary service to the regulating power market, four different charging schemes
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including night charging, night charging with V2G, 24 hour charging and 24 hour
charging with V2G are studied in paper A.4 to compare their annual cost.

Two steps are used in the study. In the first step, the numerical comparison of
four charging schemes only includes charging cost (charging cost is equal to cost
of electricity procured minus profits of implementing V2G). This is obtained by
solving a mixed integer programming problem with the purpose of minimizing
the charging cost by taking into account the users’ driving needs and the prac-
tical limitations of the EV battery (capacity of the battery, recommended state
of charge range). A formulation of the problem is shown below:

min

N∑

i=1

{
∆Ec(i) · Φ(i) · u1(i)

ηc
+ ∆Ed(i) · Φ(i) · u2(i) · ηd

}

subject to




E(i) = E0 +
∑k=i
k=1{∆Ec(k) · u1(k) + ∆Ed(k) · u2(k)− Ed(k) · u3(k)}

δmin · Ecap ≤ E(i) ≤ δmax · Ecap
Ed(i+ 1) · u3(i+ 1) ≥ E(i)

0 ≤ ∆Ec(i) ≤ Pc,max · ηc ·∆t
−Pd,max

ηd
≤ ∆Ed(i) ≤ 0

u1(i) + u2(i) + u3(i) = 1
(3.9)

where Φ(i) is the electricity price and Ed(i) denotes driving energy requirements.
The decision variables ∆Ec(i) and ∆Ed(i) represent the energy charged into and
discharged from the battery in each time interval respectively, while the other
three binary variables u1(i), u2(i), u3(i) indicate the on/off status of charging,
vehicle to grid (discharging), and driving for each corresponding time inter-
val. To facilitate the formulation, an intermediate variable E(i) is introduced
representing the energy level of the battery at the end of each time interval.
Parameters Ecap and E0 represent the nominal energy capacity and the initial
energy of the battery in the planning period, while the charging and discharg-
ing efficiency are represented by ηc and ηd. The maximum power exchanged
between the EV inverter and the electrical grid are expressed by Pc,max charg-
ing and Pd,max discharging respectively, which constrains the maximum energy
exchanged between the electric vehicle and the grid. Concerning battery life,
δmin and δmax are further introduced to represent the manufacturer recom-
mended sate of charge (SOC) range. Explanations of the inequality constraints
can be found in section 3.2.2.1. Based on the model, optimal charging plans
with 5 minutes resolutions are derived.

In the second step, or the post processing stage, the rainflow counting algo-
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rithm is implemented to assess the lifetime usage of a lithium-ion EV battery
for the four charging schemes. By applying the rainflow counting algorithm to
the monthly charging profiles calculated in the first step, and take the relation-
ship between the number of cycles and depth of discharge, the battery lifetime
consumption for different charging schemes are calculated. (For the details of
rainflow counting algorithms, please refer to paper A.4.) Finally, a simple ap-
proach is introduced to roughly estimate the annual cost for different charging
schemes:

Cann = (Ccapacity + Ccharging)/Lexp (3.10)

where Ccapacity and Ccharging represent the capital cost of the battery and charg-
ing cost incurred during the battery lifetime respectively, and Lexp indicates the
expected lifetime for different charging schemes. This complete the calculation
of the annual cost. The study illustrated that the night charging scheme is the
cheapest solution among four different charging schemes. For parameters values
and calculation results etc., they are presented in paper A.4.

3.2.2.4 Algorithm comparisons

Together with the observations from other research, the readers are referred to
paper A.1, table 3 to find the comparison among the chosen algorithms such
as linear programming, dynamic programming, quadratic programming, and
stochastic programming. The comparisons include the computation time, the
certainty of performance, and the applicability.

3.2.3 Formulation of the optimal charging of electric ve-
hicles using decentralized control architecture

For the decentralized control architecture, price control is studied. As illustrated
in Fig. 3.3 (b), the price control method requires FO to predict the users’
response to the prices. In order to study how the price can regulate the EV user’s
charging behavior, a statistical model of demand elasticity proposed in [38] is
used for this study. In the model, the marginal utility function of the loads is
realized by the following parametric stochastic process:

r(t) =

{
β − δ(t− α), α ≤ t ≤ α+ γ
0, otherwise

(3.11)

where α, β, γ, δ are random variables that describes the different characteristics
of utility function as follows:
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a) α stands for the time slot that a task is initially requested, which also reflects
the task distribution.

b) β is the initial marginal utility, which stands for the magnitude of the
marginal utility.

c) γ is the tolerable delay, which determines the maximum delay that a user can
tolerate to finish a task.

d) δ means the utility decay rate, which represents the cost of inconvenience by
the delay.

Under this model, the scheduling of each individual task is now a random event
whose probability distribution is controlled by the stochastic process r(t). The
aggregated demand curve can be estimated through expectation with respect to
the distribution of r(t). Note that some assumptions have been made before,
such as the time period of the scheduling is divided into T time slots, the total
M individual tasks m : m = 1, ...,M of different electric vehicles that are to
be initialized by all the users within the scheduling period, and each task will
consumer xm kWh energy, all in all, X0 is the total energy consumption to
be scheduled in the target scheduling period. Furthermore, it is assumed that
each task can be completed within one time slot; therefore, tasks that have
duration longer than one time slot will be decomposed into multiple tasks that
are considered independently. A case study is performed and the simulations
are presented in section B.2.

3.3 Summary and discussions

This chapter mainly investigates the control strategies for commercial actors,
such as fleet operators. However, some methods can also be used by the utility
to coordinate the charging profiles of electric vehicles. The control strategies
investigated including centralized control and price control. For centralized
control, three algorithms have been used for the methods development. It is
recommended that linear programming based technique is considered for char-
acterizing the optimal charging scheduling problems. The recommendation is
based its overall performance and its fast computational time. Regarding price
control, it is demonstrated that price signal is an effective way of regulating
the charging behavior of electric vehicles, however, more research is needed in
designing a proper rate which can mitigate the uncertainty caused by using the
price control.
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Considering fleet operators’ practical operations, it is assumed that EVs need
to subscribe to one FO, maybe in the form of signing a contract that is valid
for certain time period. Such subscription would possibly following the existing
geographical areas, i.e., the neighborhood supplied by one FO, under one sub-
station. The mobility of electric vehicle, in such context, will also require the
roaming-related agreement/standards among different FOs as well as an stan-
dardized information and communication infrastructure, in order to make sure
the fleet operators can access the EV information immediately when the electric
vehicles switch fleet operators.

In order to generate an optimal charging schedule, forecasted electricity price
and predicted EVs driving pattern are essential, fortunately, they are pre-
dictable. Among the presented control strategies, it depends on the context
to choose the right method (suppose the electric vehicles can be either direct
controlled or be price coordinated). Some business scenarios are considered
here:

• In scenario 1, FOs only participate in the day ahead market with the
objective of minimizing the energy cost, it is recommend that direct control
is most efficient and economical, together with the linear programming
based technology.

• In scenario 2, the FO would like to participate in both the day-ahead spot
market and the regulating power market, direct control is still our first
option considering it high certainty in term of biding resources preparation
and activation.

• In scenario 3, the FO will help the DSO to reduce the peak load, it is
suggested that either direct control or price control can be used, each
method has its advantages and disadvantages, for example, price control
is easy to be implemented comparing to direct control while direct control
can ensure a low risk.

Such illustrative scenarios are presented to show that although the options for
fleet operators are not one and only, the difference does exist considering differ-
ent questions/contexts.



Chapter 4

Market based control for
distribution grid congestion

management

In this chapter the main results concerning the second research topic are sum-
marized. The main results have been published in separate papers A.5, A.6,
A.7, A.8, included in appendices of this report. The chapter starts with the
formulation of congestion problems in distribution network. Then, the chapter
introduces the background knowledge for market based control method which is
the solution for distribution grid congestions in the present thesis. Finally, the
chapter presents the main results of the second research topic.

4.1 Formulation of the congestion problems in
distribution network

In this section, first, the impact of electric vehicle’s charging as an extra load
on the distribution grids is illustrated. Then, congestions management in dis-
tribution network operation and its enabling functions in a smart distribution
grid paradigm are presented.
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4.1.1 Electricity consumption by electric vehicles and its
impact on the distribution grids

It is mainly regarded that electric vehicle as a kind of new load will mainly bring
challenges to the distribution network level such as congestions and voltage
drops, while some discussions are taken from the perspective that simultaneous
charging of electric vehicle at system peak could result in shortage or create a
need for large new investment in generating capacity. To explain these points,
we provide some illustrative calculations based on the parameters or estimated
numbers related to Danish power systems [2,73,76,77]. Report series [2,76] pub-
lished by the Danish authorities have estimated the number of electric vehicle
could be around 600,000 by 2025. Since there are around 70 distribution com-
panies in Denmark, the average number of electric vehicle for each distribution
companies would accordingly be around 8600 1. Two charging rate scenarios are
considered in the distribution networks (residential area) which include 2.3 kW
(AC 10 A*230 V) and 3.7 kW (AC 16 A*230 V). Considering the worst case,
i.e., the users simultaneously charging the electric vehicle, this will introduce
loads of demand around 20 MW and 31 MW correspondingly to the distribu-
tion companies. Generally, the utilities have the capability to address this load
growth.

However, as discussed in [36, 52, 77], congestion might happen in the middle or
low voltage grid. Each distribution grid has a different history of development,
such as in some cases congestion is first expected to emerge in the medium
voltage grid, while in other grids the low voltage grid is considered to be more
critical. In [36], the authors presented a case in the United States where the
typical transformer serves anywhere from four to ten homes. In an area where
the household load is 3 kilowatts (kW), the new load of an electric vehicle could
easily double and become 6 kW per house. In areas where it is currently 6
kW per house, it could rise by 50 percent and become 9 kW per house (or
more). In [77], a Danish case is presented to illustrate the changes of the load
profile with one hundred percent penetration of EV and it is clearly shown that
without any control, the transformer and the cable in a low voltage grid will be
operated under pressure. As discussed in section 3.1.3, an electric vehicle owner
in Denmark will probably charge the electric vehicle 20 times per month. Each
time, the electric vehicle need to be charged five hours. Without any control,
the distribution systems are operated with high load profile nearly fifty percent
of a year.

Basically, the above discussion is an illustrative calculation on the load profiles of

1It is noticed that Dong Energy Distribution is the largest distribution companies in Den-
mark, certainly the share of the number of electric vehicle will be high, this implies that other
relatively smaller distribution companies share less comparing to the average numbers.
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the distribution system. Some complicated models [78–81] have been proposed
to address the load demand in distribution system considering the electric vehicle
charging behavior and can give more accurate estimation on the impact of the
EV loads to the distribution network.

4.1.2 Congestions management in distribution network op-
eration and its enabling functions

Typically, the challenges in the distribution grid caused by demand spikes are
solved by expanding the grid to fit the size and the patterns of demand. As an
alternative, inspired by the congestion management at the transmission level 2,
described in section B.3. This study will consider allocation of the capacity of
the distribution network according to economic principles. In order to identify
and solve congestion problems caused by the increasing new loads such as elec-
tric vehicles, heat pumps, the distribution system operator requires additional
information about the current and anticipated operating state of the distribu-
tion grids. This implies a need for measurement equipment and/or technology
enabling identification and anticipation of load patterns and grid ’bottlenecks’.
Key operations for DSO congestion management in a smart grid operation would
be:

• Demand forecasting (conventional loads and new demands such as EV and
heat pump)

• Generation forecasting

• Grid state estimation

• Online grid measurements

• Real-time intervention in case of unexpected deviations challenging grid
reliability

• Meter data collection and analysis

However, DSOs’ tasks in conventional system operation [82], are mostly focused
on ‘off-line’ tasks related to asset management and maintenance during normal
system conditions. The primary objective under emergency conditions is to
organize restoration of the network as quickly as possible. Distribution systems

2The methods for congestion management in the transmission system is described in section
B.3. In addition, the similarities and differences of congestion management in the transmission
system and distribution networks are also compared in that section.
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today tend to be weakly monitored as compared to transmission grids, and they
are controlled in a decentralized fashion on the basis of pre-configured local
controls (e.g. by means of grid codes and protection settings).

To illustrate a future operation scenario or smart grid operation scenario with
a higher level of automation, in [83, 84], smart grid for distribution systems
has been envisioned and the benefits and challenges of implementing the many
different distribution automation functions are also presented. It is believed that
the functions required in a smart grid operation can be extended with additional
online and data intensive acquisition from the functions existing in the current
distribution grid operations.

4.2 Background knowledge of the market based
control solution

4.2.1 What is market based control?

Market based control [51,85–87], is a paradigm for controlling complex systems
with conflicting resources. It typically includes the features found in a market
such as decentralized decision making and interacting agents. As discussed
in [85], the “control” in a market based system emerges from the individual
goals of the agents rather than having a goal imposed from above. Compared
to centralized control, there is no need for any of the agents in a market based
system to know all the parameters of the system in order for the overall system
to function smoothly. Instead, in the market, with very little information, i.e.,
price, it is possible to facilitate allocation of resource. In fact, the market-based
approach has been recommended to be used in the power distribution system,
such as the discussion in joint research center European Forum 3 or in the
research [88].

There are many mechanisms which can be used to find the clearing prices such
as the general equilibrium market mechanism explained in the following section,
the auction based approach and contract net protocols described in section B.4
which are not the focus in the present thesis. The general equilibrium market
mechanism is mainly considered due to the following reasons:

• Considering the size of the market in the distribution system level 4, it is

3European commission Joint research centre, Scientific support to capacity markets and
the integration of renewables, Brussels (BE) - 22/07/13

4Imagine that the highly possible actors in this market will be multiple DSOs, multiple
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easier for the DSO to use the price to regulate the FO’s energy consump-
tions.

• Considering the fact that DSOs can be seen as a monopoly inside its net-
work, it is reasonable for the distribution system operator being a central
price coordinator whose role is to coordinate the load behaviors of the com-
mercial actors. The central price coordinator is supported by the general
equilibrium market mechanisms.

• Comparing the general equilibrium market mechanisms and the double
auction approach, one simple explanation is that the former uses price
to penalize the power consumptions during the peak moments, while the
latter regards price as an incentive to shift the power consumptions during
peak time. If the size of the market is not flourishing, it is assumed
that the former one will solve the grid congestion more efficiently. More
discussion regarding the comparisons between the ‘penalty scheme’ and
the ‘compensation scheme’ is presented in the discussion section of this
chapter, i.e., section 4.4.

• The general equilibrium can be easily adopted for large scale of distributed
energy resources, individual households supported by the recently devel-
oped powerful computational devices [89] and the idea is recently studied
in [90] where home area network management system and distribution
utility company exchange information on energy consumption and price.

4.2.2 General equilibrium market mechanisms

General equilibrium market mechanisms is a microeconomic market framework
that has been recently been successfully adapted for and used in computational
multi-agent systems in many application domains [86, 87, 91]. Some properties
of general equilibrium such as Pareto efficiency, coalitional stability, existence,
uniqueness under gross substitutes, and convergence have been discussed in
[91]. It is pointed out that there are many algorithms which can be used to
search for a general equilibrium, some centralized, and some decentralized. The
most common decentralized algorithm for this purpose is the price tâtonnement
process which is a steepest descent search method. The pseudo-code of the
algorithm is presented in [91]. The distributed price tâtonnement algorithm is
modified in the present thesis to facilitate the allocation of the grid capacity to
the FOs. The algorithm can be mathematically supported by the combination
of dual decomposition method and subgradient method which are described in

FOs or aggregators which means the number of the actors will be countable. Besides, note
that the purpose of this market is to solve the grid congestion issue, which means for each
DSO, they only interact with the FOs who use its network.
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section B.5. In the process of find the equilibrium, the market participant, i.e.,
the fleet operator can choose different approaches to participate into the market,
such as strident antagonist or cooperative antagonist, described in section B.6.
It is assumed that the market participant will honestly behave in the market in
the present study.

4.3 Main results

4.3.1 Map of the market based control operation

As we have explained in chapter 1, four functional levels are applied to address
the congestion problems and have been adopted into four fundamental stages:
1, Offline planning. 2, Online scheduling. 3, Real time operation. 4, Offline
settlement.
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Figure 4.1: Map of distribution grid capacity market operation

In the first stage, planning has been distinguished from scheduling in the same
fashion as unit commitment is distinguished from dispatch: depending on the
specific coordination strategy, we distinguish operations that can be coordinated
in a ad-hoc fashion and those that provide the basis for such ad-hoc decisions.
The online scheduling stage can in time be closely coupled with operation (e.g.
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reactive scheduling with a 5min resolution) or extend hours or days ahead of
it. Scheduling is the stage in which available resources are best known and
the platform for execution is to be prepared. The operation stage is about
pure execution in real-time. Plans are only executed, and unplanned events
occur and physical as well as automatic controls respond without deliberation.
Settlement is about the aftermath: recordings (measurements, sent commands,
etc.) of executed operations are consolidated and (financial) responsibility is
allocated. Due to these clear distinctions, the four stages supports the discussion
of interactions between key operation tasks for cross-stakeholder coordination
for the complete process.

In the study, the operations DSO, FO and EV owner would be required to
execute in the market based control scheme are mapped out which is shown in
fig. 4.1. More explanations are found in paper A.5.

4.3.2 Market based approach for grid congestion preven-
tion

We focus on stage 2, i.e., scheduling and the main results of developing the
market based control for grid congestion prevention are presented in paper A.6.
A cost and schedule adjustment algorithms modified from previous introduced
distributed price tâtonnement algorithm is presented in the following. The
purpose of the algorithm is to minimize the charging cost of EV fleet as well
as preventing the grid congestions. The above algorithms describe the details
of the market based control. For case studies and simulations, please refer to
paper A.6.

4.3.3 Price coordinated hierarchical scheduling system

Based on the understanding obtained from the study in paper A.5 and A.6,
the proposed scheme is further extended into a price coordinated hierarchical
scheduling system in paper A.7. The extensions lie in the discussion of applying
several approaches to find the price inside the market, such as uniform price auc-
tion mechanism and the general equilibrium market mechanisms. In addition,
we also discuss the control relationship between the FOs and the EVs, such as
instead of central scheduling and control of the charging profile of the EV fleet,
the EV users can individually make the charging schedule given the price. The
combination of applying market based control for the interaction between the
DSO and the FOs and using the decentralized coordination between the FOs
and the EVs is simulated and presented in paper A.9.
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Algorithm 1 Cost and schedule adjustment algorithm

function 1. Schedule generation and congestion verification
FOs calculate the optimal charging schedule and send the schedule to the

DSO/market operator.
The DSO/market operator conducts congestion verfication, if happens, go

to function 2, otherwise, the energy schedule is approved.
end function
function 2. Operation of Market based control

Initialize the shadow price which reflects the grid capacity margin.
loop

DSO/Market operator sends the price to all the FOs.
FOs updates the charging schedule and bid the charging schedule to the

market operator.
The market operator updates the shadow price and broadcasts it to all

the FOs, until the price converges.
end loop

end function
function 3. Adjustment

loop
The new shadow price is sent to FOs.
Go through function 1 and 2, until Λ(i) ≤ 0, i.e., the shadow price is

less than or equal to zero, then terminate the iteration.
end loop
Bid final energy/power schedule to the electricity spot market.

end function

In paper A.9, we compare the results of two cases where the DSO both use
the market based control to interact with the FOs, however, the coordination
methods between the FOs and the EVs are different. In the first case, three fleet
operators are assumed to centrally schedule and control the electric vehicle’
charging which is also the scenario in paper A.6, while in the second case,
it is assumed that three fleet operators only aggregate the charging schedules
which are made by the electric vehicle controllers. The results show that the
congestion problems are solved after 5 steps in the first case while only 2 steps
in the second case. The difference is because that the electric vehicles in the first
case are always responding the shadow price and trying to avoid the charging
on the higher price period, as a result, the electric vehicles will be scheduled
to charge at other lower price period where congestion might happens as well.
While in the second case, only some electric vehicles are assumed to responds to
the shadow price which means that only part of the charging plan is rescheduled
to other lower price period and thereby reduce the possibility of causing a new
congestion period.
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4.3.4 A flexibility clearinghouse concept (FLECH)

As aforementioned that this project is associated with the Danish iPower project,
one of the highlights of the project is the concept of FLECH (a flexibility clear-
inghouse). In paper A.8, we presented the concept for facilitating ancillary
services at the distribution system level. With the emergence of new play-
ers in distribution system ancillary service markets, it is foreseen that such a
mechanism will be needed to minimize transaction costs. In contrast to other
contributions on distribution congestion mitigation, the FLECH adapts to the
actual DSO needs and is not tied to a specific aggregator architecture. The role
of FLECH and its interactions with stakeholders of the distribution flexibility
service market are illustrated in Fig. 4.2. Note that the single side auction
mechanism is used by the FLECH to find the price, i.e., the equilibrium in the
market.
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Figure 4.2: Schematic overview of the considered actors and their roles in rela-
tion to the FLECH

A case study has been presented showing how FLECH is envisioned to facilitate
the service required by the DSO. In the scenario, distribution system operator
foresees that a low voltage transformer will be overload by the power consump-
tion of electric vehicles.
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At the planning stage, the DSO submits the following service tender to FLECH:
PowerMax:Ensure that the capacity limits specified here are not violated :

CAPACITY REDUCTION [AREA T1]: 37.8kW

TIME 4:30pm TO 8:00pm ON weekdays

PERIOD 01 Dec 2014 TO 28 Feb 2015

RECOMMENDED RATE 10 EUR/kW

This tender is then announced by FLECH to all fleet operators registered for
area T1. The fleet operators bid into the FLECH:
AggID [BidID]: reduction FROM capacity AT rate flex?

FO1[FO1B1]: 12.3kW FROM 14.8kW AT 10 EUR/kW FULL

FO2[FO2B1]: 12.3kW FROM 14.8kW AT 12 EUR/kW FULL

FO2[FO2B2]: 15.4kW FROM 18.5kW 20 EUR/kW FLEX

Note that FO1 did not bid with all of its resources, effectively only using 4 out
of 5 cars, and that the second bid by FO2 is FLEX bid, i.e., it does not need
to be accepted entirely. After gate closure their bids are forwarded to the DSO
which evaluates the offers and decides to accept the following bids:
BidID: FO1B1, FO2B1, FO2B2*90% AT 20 EUR/kW

This leads to an effective capacity reduction of 38.5kW which fulfills the required
37.8kW . The prices of this case study are completely fictitious and not anchored
in real costs. We further use a multiagent system to demonstrate the case study,
the developed multiagent system will be described in section 5.2.2 of Chapter 5.

4.4 Summary and discussions

4.4.1 Comparisons among the three control strategies

Although the centralized control and price control for distribution grid conges-
tion management are not investigated directly, some comparisons can still be
performed thanks to relevant topics studied in [9] and [8]. In both studies, grid
congestion management and EV integration are investigated. In [9], day-ahead
dynamic tariff control is used. In [8], centralized approach is utilized. In order to
intuitively illustrate the interactions/control relationships between the involved
actors, Fig. 4.3 shows information flows of the market based control, price
control and centralized control for distribution grid congestion prevention. We
adapt and draw the information flows presented in [9] and [8] into the current
one.
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Figure 4.3: Information flow of the three control strategies for distribution grid
congestion prevention

From figure 4.3, it is shown that EV owners firstly communicate with the FO
to define their personal requirements in all three studies [8, 9] and paper A.6.
Then, the FOs make the charging schedules for the electric vehicles. In the
case of price control, the FOs may be firstly notified by the DSO with a price
signal reflecting the forecasted congestions, then the FOs generate the charging
schedule considering the price sent by the DSO and submit bids to the spot
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market. This is different with the market based control and centralized control
method where the FOs need to coordinate with the distribution grid market
operator and DSO to prevent the congestions. The interactions between the FO
and the DSO/market operator may require multiple iterations. Note that in
the centralized control, the FOs will get an constraint (power limits) from the
DSO every iteration, it is not addressed in [8] that how the constraint is set for
each FO if multiple FOs share one power distribution network. In the market
based control, this is handled by the economic principles, and the negotiation is
facilitated by a market operator. It should be pointed out the market operator
could be an independent entity such as the case in A.8 or be the same entity
with the DSO such as the case in paper A.6.

Some comparisons are listed in Table 4.1, which is shown in the following.

Table 4.1: Comparison of control strategies for distribution grid congestion
management
Actor Complexity Value Risk Other issues

Market based control
FO High High Low Privacy improved, flexible, price

and technical constraint are re-
solved via the general equilib-
rium market mechanism.

DSO Relatively
high

High Low Enable a comparatively high uti-
lization factor of the grid.

Price control
FO Medium Low Low Easy to interact, price received.
DSO Medium Medium High N.A.

Centralized control
FO Medium Low Low Easy to interact, technical con-

straint received.
DSO Medium Medium Low N.A.

The overall rationale is to provide cost-efficient solutions, no firm quantification
of benefits or costs have been performed in the thesis. In addition to this, this
thesis has not addressed one aspect of distribution grid congestion management,
i.e., the long-term problem of distribution grid reinforcement-deciding when and
where to build new transmission facilities. Such discussions can also be found
in [43,52] where the importance is emphasized and some illustrative calculations
are presented. However, it is clearly stated in [43,52] that smart control strate-
gies incurred demand response is most likely the attractive way for the DSO to
solve the congestion if it only occurs a few times per year. Besides, regarding
the discussion on pricing through compensation mechanism or through penalty
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mechanism, if we use a dialectic perspective to view the two mechanisms, there
is no big differences. For example, the cost saved by the DSO on new investment
could be used for compensation in the congestion market or in another way, the
saving could be directly share with all the customers firstly, then, the DSO can
use the price to penalize the one who use the electricity in the peak time.

4.4.2 Market based control related issue

The overall assumption for market based control is that there exists an equi-
librium price that will clear the negotiation in each round, e.g., the negotiation
between the market operator and the fleet operators. This works fine when
the cost functions of the fleet operators are convex. However, the presence of
units cost functions that are not strictly convex which brings some difficulties
in finding the clearing price. In a traditional auction-based market, like Elspot
or the regulating power market when the price is determined by submitted bids,
this problem can be overcome by only accepting the bids needed. However, in
the present case, the market operation method is different. In the present case,
one situation might happen, i.e., that the fleet operators respond the same way
if the given price range is not obvious which means that the iteration numbers
may increase a lot to find the clearing price. Some studies [90, 92, 93] have
been given on solving this problems. In [90, 93] the suggestion is using primal
averaging method if the objective function of the market participant is neither
strictly convex nor finite and the authors in [93] proved that the algorithm (dual
decomposition and sub-gradient method which supports the price finding in the
general equilibrium market) finds near-optimal schedules even when advanced
metering infrastructures (AMI) messages (updated prices and residential load)
are lost, which can happen in the present communications network. In [92], a
method using randomized price offsets was presented to deal with non-convex,
non-continuous supply and demand functions. The method relied solely on
small but fair alternations of the price signal for each prosumer leaving the
utility functions untouched and the results showed that both the convergence
behavior and solution quality improves with the market size

Besides, although using market based approach has been demonstrated to en-
able an optimal resource allocation, the uncertain in terms clear business models
for fleet operators and distribution system operators, and the necessity for the
regulatory support makes using price as a coordination tool for serving grid ser-
vices is still a challenging task. But, some lessons can be drawn from the present
study, if the size of the market is great, an independent capacity market could
be created to facilitate the transactions between distribution system operators
and fleet operators, maybe in a national level. However, if the size of the market
is small, the market based control could be facilitated by a functions insides the
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distribution system operation. Nevertheless, to ensure enough competition and
fairness of the capacity market, one prerequisite is the number of market par-
ticipants, i.e., fleet operators. If there are few fleet operators in the distribution
area, issue e.g., market power will become a major challenge from the market
perspective. A mechanism needed to be developed to hedge the risks.



Chapter 5

Multi-agent system for
distribution grid congestion

management

In this chapter the main results regarding the third research objective are sum-
marized. The main results have been mainly presented in the manuscript A.9
and A.10, included in appendices of this report. The chapter starts with a
general discussion on using multi-agent system (MAS) for a hierarchical organi-
zation based distribution systems. Then, the main finding of the third research
topic are summarized.

5.1 Characteristics of multi-agents system

Jennings and Bussmann [94] pointed out that modern control systems must meet
increasingly demanding requirements stemming from the need to cope with sig-
nificant degrees of uncertainty, as well as with more dynamic environments, and
to provide greater flexibility. This, in turn, means that control systems soft-
ware is highly complex in that it invariably has a large number of interacting
parts. It is argued in the article that analyzing, designing, and implementing
such complex software systems could be implemented as a collection of inter-
acting, autonomous, flexible components (i.e., agents) which affords software
engineers several significant advantages over contemporary methods. The study
firstly discussed that a canonical view of a complex system can be defined as
the following in Fig. 5.1. The system’s hierarchical nature is expressed through
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the “related to” links; components within a subsystem are connected through
“frequent interaction links”, and interactions between components are expressed
through “infrequent interaction” links. The complex system specifically in the
article is complex software systems (of which control systems is an instance).

Subsystem

Subsystem 
component

Frequent 
interaction

Infrequent 
interaction

Related to

Figure 5.1: View of a complex system

It is further discussed that software engineers have devised several fundamental
tools to help manage this complexity including decomposition, abstraction and
organization approaches. Then the authors [94] argued that the case for agent
oriented software engineering. The arguments are mainly performed from three
aspects: 1) The merits of agent-oriented decompositions. 2) The suitability of
agent-oriented abstractions. 3) The need for flexible management of changing
organizational structures. In the article, a canonical view of an agent-based
system (Fig. 5.2) is presented. Fig. 5.2 shows that: 1) adopting an agent-
oriented approach to software engineering means decomposing the problem into
multiple autonomous components that can act and interact in flexible ways to
achieve their set objectives; 2) the key abstraction models that define the agent-
oriented concepts are agents, interactions, and organizations; and 3) explicit
structures and mechanisms are often used to describe and manage the complex
and changing web of organizational relationships that exist between the agents.
Regarding organizational relationships, the author in [95] show that four orga-
nizations are widely used for computer-based agents. Organization means a set
of policies (rules and criteria) by which agents are aggregated to form greater
or super-agents, just as birds, fish and people aggregate to form flocks, schools
and corporations. In the study, it is discussed that a data flow and a control
flow describe the structure of a super agent. Furthermore, the data flow is par-
titioned into two fuzzy subsets: the subset of strongly cyclic data flows, and its
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complement; the control flow is partitioned into two fuzzy subsets: the subset
of hierarchical control flows and its complement. Then, the super-agent can be
partitioned into four regions, i.e., cyclic data, hierarchical control; cyclic data,
null control; acyclic data, hierarchical control; acyclic data, null control.

Physical Environment

Agents

Interaction

Organizational 

relationship

Physical environment

Physical device

Related to 

Figure 5.2: Canonical view of an agent-based system interacting with a physical
environment

When adopting an agent-oriented view of the system, it is apparent that the
agents will need to interact with one another, either to achieve their individual
objectives or to manage the dependencies in the common environment. These
interactions can vary from simple semantic interoperation (information pass-
ing), through traditional client-server-type interactions, to rich social interac-
tions (the ability to cooperate, coordinate, and negotiate about a course of ac-
tion). FIPA (The Foundation for Intelligent Physical agents) standards 1 define
a framework for inter-agent interaction in multi-agents system, it also speci-
fies abstract architectures for multi-agents system implementation, as shown in
Figure. 5.3.

Besides the application of agents, the FIPA architecture includes several ser-
vices. A Directory Facilitator provides yellow page services i.e., different agents
interact with this service to register and discover available agent services. Agent
Management Services provide white page services. This agent is responsible for
creating, destroying and managing agents and containers in a multi-agent plat-

1FIPA, The Foundation for Intelligent Physical Agents:http://www.fipa.org/
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Figure 5.3: FIPA abstract architecture for MAS implementation

form. The Message Transport Service is responsible for message transportation
between agents. This service also enables synchronization of messages when
several messages are sent and received from different agents in parallel. FIPA
also provides a language specification for communication between agents. This
language specification is called the FIPA agent communication language (FIPA
ACL).

5.2 Main results

5.2.1 Modeling the price coordinated hierarchical schedul-
ing system by multi-agent concepts

In previous chapter, a price coordinated hierarchical scheduling system is pro-
posed to optimally integrate electric vehicles into the distribution network where
the DSO uses market based control to allocate the grid capacity among the FOs,
and the control policies between the FO and the EVs are implemented both
centrally and distributed. To simulate and evaluate the proposed scheme, a
multi-agent system based technology is very suitable for modeling the proposed
control systems. This can be justified by the following reasons:

• The increase in complexity and size of the whole electric vehicle charging
network bring up the need for distributed intelligence and local solution,
which fall into the scope of MAS based technology.

• The information flow, optimizations and the negotiations in the smart
charging network of electric vehicles can be well demonstrated and inte-
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grated into a MAS.

• The system can be pre-tested and pre-analyzed by using a MAS before
going to real implementation.

• The MAS can be used to test different control strategies, various business
scenarios, and different behaviors of the market participants.

An agent view of the price coordinated hierarchical scheduling system is pre-
sented in Fig. 5.4. In the figure, operations of the agents are not shown,
nevertheless, it is shown that multi-agent based technology can be used to char-
acterize a complex hierarchical system for scheduling.

Fleet operator agent layer with 

agent directly Schedule/indirectly 

coordinate the charging behavior 

of Evs.

Physical Power Systems layer with devices such as 

conventional loads, Electric vehicles, and heat pumps etc.

Central control agents Layer with 

implementation of higher level of 

control and communication with 

medium level agents

EV agent level with agents 

represent the EV operation 

and interact with the up-level 

FO agent.  

Figure 5.4: Agents view of the price coordinated hierarchical scheduling system

5.2.2 Platforms Development

To implement the multiagent systems described above, Fig. 5.5 illustrates the
MAS system architecture, in which, all the agents are built in JACK which is
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Figure 5.5: A MultiAgent system architecture.

an agent-oriented development environment built on top of and fully integrated
with the Java programming language [96]. JACK offers the environment and
facilities for message sending/receiving. MATLAB based functions enables a
procedural implementation of decision modules. Simulink is used to model the
distribution grid and for power flow calculation. The java application program-
ming interface matlabcontrol 2 is used for JACK to interact with MATLAB.
DSO agent interacts with the Simulink through a matlab file. A case study
is performed to examine the developed platform. In the case study, one DSO
agent, one market operator agent, three FO agents, and fourteen EVs agents are
included. The simulations show that it well emulates the negotiation behavior
inside a capacity market by the interaction diagrams. For more details such as
the features of JACK, how the market actors in the system are mapped into
the agents in the multiagent systems, and the simulation results, the readers are
referred to manuscript A.9.

The platform has also been used to simulate a negotiation bidding framework
in [97]. The negotiation sequence in [97] following the discussions in paper
A.8 where three different agents, the DSO, the FLECH and the Fleet operator
agent aim to eliminate the grid congestions by market based approach. The
negotiation sequence shall find a price, i.e., the equilibrium for the market ne-

2https://code.google.com/p/matlabcontrol/



5.3 Summary and discussions 59

gotiation when services are initiated by the DSO. The framework is focusing on
the day-ahead market and is using an auctioning approach to clear the market.
It is assumed that this clearing does not necessarily happens in first bidding
round, but could extend to several bidding rounds before the market clearance
is found, although a max of 7 rounds is implemented. Several case studies have
been tested to show the functionality of the negotiation platform including a
simple case clearing in first round, two cases need multiple rounds where price
and power are regulated to find the equilibrium, and a extreme case where the
price is too high to find the equilibrium. The case studies illustrate that the
platform is able to conduct negotiations which lowers the fleet operators’ con-
sumption in a certain period in exchange of an economic compensation to the
fleet operators.

In addition, it is planned in paper A.10 that the platform will be used to explore
a case study where the fleet operators have slightly more complex operations.
In the study, the multiple fleet operators will do the similar negotiations with
the distribution system operator as the one shown in paper A.9, but the fleet
operators in paper A.10 will try to explore more economical benefits which
can be offered by the electric vehicles. These extra economical benefits will
be achieved by using the EV’s discharging capability. The question is formu-
lated as a mixed-integer non-linear programming based problem, implemented
in General Algebraic Modeling System (GAMS) 3 using the DICOP Solver 4.

5.3 Summary and discussions

In this study, we developed and used an integrated environment consisting of
JACK agent software and MATLAB/Simulink to analyze the interactions be-
tween the agents considering their own decision making, information flow ex-
changes and the influences on the physical grids. JACK is good for demon-
strating the coordination schemes among the actors, MATLAB is competent to
carry out the technical computation of optimization problem, Simulink is known
for its interaction with MATLAB and it is adequate to perform the technical
validation for the present study. In a general case, various simulation platforms
can be utilized in a distribution grid congestion demonstration. For example,
besides JACK, JADE 5 is also widely used for multiagent simulation. JACK
is chosen because of its capability and support for the explicit modelling of the
typical MAS entities such as agent, plan, event and capabilities. Moreover, in
JACK it is easier to design and analyze interactions and dependencies among

3http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
4http://www.gams.com/dd/docs/solvers/dicopt.pdf
5http://jade.tilab.com/
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such entities. In term of solving an optimization problem, GAMS (the General
Algebraic Modeling System) 6 also has good performance, however, MATLAB
is easier to be used and seems more popular in the academically field. Last but
not least, grid modeling tool is also an important part. The currently existing
grid modeling tools include Simulink, MatPower 7, PowerFactory 8, ARISTO 9,
NEPLAN 10 etc. However, here it is not the aim to give a comparison of the
various platforms, instead, we want to emphasize that the relevant tools can be
integrated with the MAS settings.

Currently, the agents in this project can be categorized as being reactive be-
cause the agents chooses their actions based solely on the immediate input and
some logical control defined for the study. In order to fully use the advantages
of different simulation tools, especially if the multi-agent system is used for
real time control simulation, a simulation methodology such as using high-level
architecture that allows individual subsystems/components to be simulated by
different simulation tools running simultaneously and exchanging information
in a collaborative manner need to be implemented. This could be a topic for
future work.

6http://www.gams.com/
7http://www.pserc.cornell.edu//matpower/
8http://www.digsilent.de/index.php/products-powerfactory.html
9Advanced Real-Time Interactive Simulator for Training and Operation, Sweden

10http://www.neplan.ch/



Chapter 6

Conclusions and Future Work

This thesis firstly examined three control strategies for the exploitation of service
based electric vehicle aggregation, mainly from a commercial actor’s perspective.
Then, the thesis investigated the control strategies for the distribution system
operator to coordinate with the commercial actors to eliminate grid congestion.
Finally, to evaluate the proposed control strategies, a multi-agent system is used
to model and simulate the system. The main outcome of this project is a price
coordinated hierarchical scheduling system for large scale integration of electric
vehicles into the power distribution network. In this system, the distribution
system operator uses market based control to interact with the commercial actor
to prevent the grid congestions. The commercial actor uses either direct control
or price control to manage the distributed charging behavior of electric vehicles
depending on the actual situations. This chapter presents a number of key
results from the present study and recommends several topics for future work.

6.1 Conclusions

In section 1.2.2, three research problems are outlined for the project. In the
following, the results are concluded:

1. For a commercial actor (fleet operator in the present thesis), how to choose
a control strategy to manage a large scale of electric vehicles?

Based on the review and methods development presented in chapter 3, cen-
tralized direct control and price control are concluded to be more suitable
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comparing to market based control for management of a EV fleet. Cen-
tralized direct control offers the best performance in controlling the EV
fleet and therefore making better optimized charging profiles, especially if
the participation into the regulating power markets was considered. For
the centralized direct control, it is recommended that linear programming
based techniques is considered to characterize the optimal charging prob-
lem and generate the optimal charging schedule. In order to generate an
optimal charging schedule, a forecasted electricity price and predicted EVs
driving pattern are essential. Fortunately, they can be estimated by the
commercial actors. Nevertheless, EV owners are encouraged to submit a
provisional EV utilization plan for next day to the commercial actor for
generating an optimal charging schedule. For the centralized control to
become a success, more research is needed in setting up a collaborative
business model which ensures the proper engagement of commercial actors
and EV owners.

Price control is probably the most attractive way for the commercial ac-
tor to regulate the charging behavior of the electric vehicles considering its
easier implementation. It is especially effective in the case of decreasing
the charging in the peak time for DSO or the case of increasing the load for
transmission system operator 1. For the price control to become a success,
more research is needed in price responsive models or price elasticity mod-
els to obtain satisfactory performance and grid reliability. Market based
control is not recommended here considering some barriers, such as an
automated negotiation device need to be mounted in the electric vehicle
which performs the enabling function if using the market based control.
Such automated control devices are not currently available.

2. To manage the congestion of the distribution network, which control strat-
egy should be considered taking into account the distribution system op-
erator, the commercial actor’s self-interests and operational constraints?

The thesis focused on the development of control strategies for the DSO
to interact with the commercial actors instead of distributed demand side
units such as individual EVs, heat pumps etc. Three control strategies
have been examined and compared in section 4.4.1. The chosen market
based control is being developed and tested. There are several advantages
for the utilization of market based control. First, market based control is
proven to be an effective way of allocating conflicting resources. Second,
the negotiations required in the market can be enabled and operated by
the DSO and commercial actors without much burden. Third, market

1Using price control for providing services to transmission system operator is not the fo-
cus of this thesis, for such discussion, please refer to Ecogrid EU project http://www.eu-
ecogrid.net/. In addition to this, in [98], the authors prioritizes the needs to handle the
conflicting resources, e.g., the services required by the transmission system operator might
cause overloading issue for distribution network.
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based control can ensure a low risk for DSO when solving the grid con-
gestion, since price and power schedule are resolved via the price clearing
mechanisms. In section 4.2.2, general equilibrium market mechanisms are
used to find the clearing price instead of auction approach. In order to
benefit from the market based control strategy, more work is needed for
studying the non-convex cost problem which has not been addressed in
this thesis.

3. Development of tools to simulate the control strategies developed for dis-
tribution grid congestion management.

It is demonstrated that multi-agent system based technology is very suit-
able to evaluate the development of market based control strategies con-
sidering the DSO and FO’s operations. Motivations have been given in
section 5.2.1, in addition, for a practical case using the market based con-
trol scheme, the market participant may behave differently, which can also
be well simulated in a multi-agent system.

6.2 Future Work

The present research addressed a comparatively open and new field of study and
there is a large scope for continuing the current work. Some topics are listed
below to direct future research as a follow-up to this project.

• Commercial actors, having integrated control strategies such as direct con-
trol and price control may be a feasible solution to mitigate the downside
of the price control. In addition, considering the fact that maybe some
customers prefer their EVs directly controlled while some EV users would
like to receive the price signals and respond the price individually, it is
interesting to make a study to analyze the related issues. A preliminary
study [99] has been performed where the modern portfolio theory was
adopted.

• Similarly, the distribution system operator, having an integrated control
scheme such as direct control, market based control and price control may
be a feasible solution to mitigate the uncertainty of the price control, the
high communication cost of market based control and the high computa-
tional cost of direct control. It is interesting to e.g., design a framework
for choosing the suitable control strategies such as one that is based on the
available controllable resources, the control requirements, and the relevant
information and communication facilities.
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• The overall rationale of the present work is to provide cost-efficient solu-
tions, but no quantification of benefits or costs has been performed. Future
analyses could be performed on the cost of the different control concepts.
For example, for an advanced control concept, the immediate benefits may
appear less obvious, compared with the complexity that is introduced to
realize it. In addition, the long-term marginal costs of reinforcement of
the grid could also be performed in order to be able to compare these costs
with the cost involved to make the end-users reducing demand in a given
period to avoid congestions in the distribution grid.

• In order to fully understand the grid congestion problem, a distribution
grid power flow calculation method should be chosen and used to support
the control strategy. For example, the network flow model and Newton-
Raphson method have been used in [8] where centralized control is used
to prevent the grid congestion; the optimal power flow based calculation
is used in [9] where day-ahead dynamic price control is used to manage
the grid congestion. To fully integrate the market based control with
the power flow calculations, the recently proposed alternating direction
method of multipliers (ADMM) could be used to facilitate the integration.
This idea is currently under investigation, please see the further discussion
in section B.7.

• Mainly, thermal limits of the distribution grid has been investigated in the
present work, but it is also known that other constraints such as voltage
limits are important and need to be studied. In a practical way, in the
planning period, the DSO considers and pre-handles voltage problem by
reinforcing the grid infrastructure based on the regulations. These regu-
lations describe the allowed voltage safety limits in the distribution grid.
In the normal operation period, on the substation level, transformers has
tap changers which can be used to regulate the voltage. In Denmark, in
general, 60kV/10kV transformer has on-load tap-changers. In the future,
the system operator could set up grid codes for DERs, requiring the DERs
to have their own embedded voltage control, which could solve the prob-
lem preventively. In the context of this study, voltage control can also
be implemented by e.g., market based control scheme which could be an
interesting topic for future work.



Bibliography

[1] W. Justin and M. Jacopo, “Wind in power: 2012 european statistics,”
The European Wind energy association, Tech. Rep., 2013. 1.1

[2] E. DK and D. E. Association, “Smart grid in denmark 2.0,” Energinet.
DK and Danish Energy Association, Tech. Rep., 2013. 1.1, 4.1.1

[3] L. E. Jones, “Strategies and decision support systems for integrating vari-
able energy resources in control centers for reliable grid operations,” Al-
stom Grid Inc., Tech. Rep., 2012. 1.1

[4] C. Binding, D. Gantenbein, B. Jansen, O. Sundstrom, P. Andersen,
F. Marra, B. Poulsen, and C. Traeholt, “Electric vehicle fleet integra-
tion in the danish edison project - a virtual power plant on the island of
bornholm,” in Power and Energy Society General Meeting, 2010 IEEE,
2010, pp. 1–8. 1.1

[5] B. Jansen, C. Binding, O. Sundstrom, and D. Gantenbein, “Architecture
and communication of an electric vehicle virtual power plant,” in Smart
Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, 2010, pp. 149–154. 1.1

[6] P. B. Andersen, “Intelligent electric vehicle integration-domain interfaces
and supporting informatics,” Ph.D. dissertation, Technical University of
Denmark, 2012. 1.1

[7] O. Sundstrom and C. Binding, “Planning electric-drive vehicle charging
under constrained grid conditions,” in 2010 International Conference on
Power System Technology (POWERCON),. IEEE, pp. 1–6. 1.1, 2.2



66 BIBLIOGRAPHY

[8] ——, “Flexible Charging Optimization for Electric Vehicles Considering
Distribution Grid Constraints,” IEEE Transactions on Smart Grid, vol. 3,
no. 1, pp. 26–37, 2012. 1.1, 2.1, 2.2, 2.4, 2.2, 3.1.2, 3.1.3, 4.4.1, 4.4.1, 6.2,
B.1, B.1

[9] N. O’Connell, Q. Wu, J. Østergaard, A. Nielsen, S.-T. Cha, and Y. Ding,
“Electric vehicle (ev) charging management with dynamic distribution
system tariff,” in 2011 2nd IEEE PES on Innovative Smart Grid Tech-
nologies, 2011, pp. 1–7. 1.1, 2.2, 4.4.1, 4.4.1, 6.2
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[96] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-summary of an agent infrastructure,” in 5th International confer-
ence on autonomous agents, 2001. 5.2.2

[97] B. Mads, S. N. Michael, and B. R. Theis, “The flexibility clearinghouse, a
bidding framework,” Technical University of Denmark, Tech. Rep., 2013.
5.2.2

[98] H. Hansen, H.-H. Holm-Hansen, O. Samuelsson, L. H. Hansen, H. W.
Bindner, H. Johannsson, and P. Cajar, “Coordination of system needs
and provision of services,” in Electricity Distribution (CIRED 2013), 22nd
International Conference and Exhibition on, 2013, pp. 1–4. 1

[99] S. You, J. Hu, K. Heussen, and C. Zhang, “Analytical framework for
market-oriented dsr flexibility integration and management,” Energy and
Power Engineering, vol. 5, p. 1367, 2013. 6.2

[100] J. Hu, S. You, M. Lind, and J. Østergaard, “Coordinated charging of
electric vehicle for congestion prevention in the distribution grid,” accepted
for the publication on IEEE Transactions on smart grids, 2013. B.1

[101] X. Han, “Quantitaive analysis of distribtued energy resources in future dis-
tribution networks,” Master’s thesis, Royal Institute of Technology, 2012.
B.2

[102] R. D. Christie, B. F. Wollenberg, and I. Wangensteen, “Transmission
management in the deregulated environment,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 170–195, 2000. B.3



74 BIBLIOGRAPHY

[103] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” Computers, IEEE Transactions
on, vol. C-29, no. 12, pp. 1104–1113, 1980. B.4

[104] R. D. Zimmerman, “Uniform price auctions and optimal power flow,”
Matpower Technical Note 1, February 2010., Tech. Rep., 2010. B.4

[105] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Stanford
University, Autumn Quarter, vol. 2004, 2003. B.5, B.5

[106] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decomposi-
tion methods,” Stanford University, 2007. B.5, B.5

[107] J. McCalley, Z. Zhong, V. Vishwanathan, and V. Honavar, “Multiagent
negotiation models for power system applications,” Autonomous systems
and intelligent agents in power system control and operation, C. Rehtanz,
editor, Springer-Verlag, Berlin, pp. 49–74, 2003. B.6

[108] H. Raiffa, The art and science of negotiation. Harvard University Press,
1982. B.6

[109] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy
management via proximal message passing,” Optimization, vol. 1, no. 2,
pp. 1–54, 2013. B.7



Appendix A

Core publications

A.1 Optimization and control methods for smart
charging of electric vehicles facilitated by
fleet operator: review and classification

This paper is published in International Journal of Distributed Energy Resources
and Smart grids, Volume 10, Number 1, 2014.



OPTIMIZATION AND CONTROL METHODS FOR 
SMART CHARGING OF ELECTRIC VEHICLES 

FACILITATED BY FLEET OPERATOR: REVIEW AND 
CLASSIFICATION 

Junjie Hu1, Shi You1, Chengyong Si2, Morten Lind1, Jacob Østergaard1 
1Department of Electrical Engineering, Technical University of Denmark  

Building 325, Elektrovej, 2800, Lyngby, Denmark.                                                                      
E-mail: junhu@elektro.dtu.dk                                                                                                                                 

2College of Electronics and Information Engineering, TongJi University, Shanghai, China 

Keywords: Electric vehicles; Smart charging; Review and classification; Direct 
control and price control 

ABSTRACT 

Electric vehicles (EV) can become integral parts of a smart grid, since they are 
capable of providing valuable services to power systems other than just consuming 
power. As an important solution to balance the intermittent renewable energy re-
sources, such as wind power and PVs, EVs can absorb the energy during the period 
of high electricity penetration and feed the electricity back into the grid when the 
demand is high or in situations of insufficient electricity generation. However, the 
extra loads created by increasing EVs may have adverse impacts on grid. These 
factors will bring new challenges to the utility system operator; accordingly, smart 
charging of EVs is needed. This paper presents a review and classification of 
methods for smart charging of EVs found in the literature. The study is mainly 
executed from the control theory perspectives. Firstly, service dependent aggrega-
tion and the facilitator EV fleet operator are introduced. Secondly, control architec-
tures and their integrations in term of electricity market and distribution grid are 
discussed. Then, data analysis of EVs including a battery model and driving pattern 
is presented. Further discussion is given on mathematical modelling and control of 
smart charging of EVs. Finally, the paper discusses and proposes future research 
directions in the area. 



1 INTRODUCTION 
EVs are commonly recognized as smart grid assets in addition to their primary 
transport function. They can be utilized to balance power fluctuations caused by 
the high penetration of intermittent renewable energy sources [1], [2]. However, a 
large scale application of EVs also mean new loads to electric utilities, and unde-
sirable peaks may exist in the distribution network when recharging the battery [2]. 
All these factors bring new challenges to the system operator. As a result, smart 
charging (including power to vehicle and vehicle to grid (V2G)) solutions are 
needed which can make EV an asset to the grid rather than a mere traditional load 
and make the grid more flexible. 

Much research has been done to address the above challenges. The purpose of this 
study is to give a review and classification of the control strategies used for smart 
charging of EV fleets. From the literature, it is summarized and concluded that a 
new business entity, namely the EV fleet operator (FO) has been widely proposed 
capturing the new business opportunities by providing the multiple services of EVs 
and then by this contributing to the challenges solving of power distribution system 
operator. Alternatively names for an EV FO are used such as EV virtual power 
plant, EV aggregator, EV charging service provider or EV service provider 
(EVSP). The new entities [3], [4] could be independent or integrated in an existing 
business function of the energy supplier or distribution system operator.  

In principle, two types of control architectures are used by FOs when aiming at the 
above objectives, named centralized and decentralized control. Centralized control 
means electric vehicles can be aggregated and controlled by FO directly, while the 
decentralized control usually is implemented in the form of price signal, i.e. the 
individual EV optimizes the charging based on the electricity price information 
made available to them either from EV FO or the utility. A comprehensive discus-
sion and comparison on these architectures can be found in [5], [6]. From the dis-
cussions in [5]-[7], it can be shortly summarized that for a centralized charging the 
decisions are made on the system-level and therefore can give better results such as 
ensuring the safety of the distribution network; however, the cost of communica-
tion infrastructure would be high for centralized charging. For a decentralized 
charging, one of main advantages is the possibility to minimize the communica-
tions infrastructure cost [8], however, the solution may or may not be optimal, de-
pending on the information sharing and methods used to make the charging 
scheme.  

The paper is organized as follows: The control objectives are discussed in Section 
2. Section 3, 4 describes the role and control architectures of EV FO. The battery 
model and driving patterns of EVs are briefly discussed in section 5. Some com-
monly used algorithms in the centralized and decentralized control of smart charg-
ing of EVs are presented in Section 6 and 7, respectively. Section 8 concludes the 
paper with some suggestions for future research. 



2 SERVICE DEPENDENT AGGREGATION 
In [9], Lopes et al. shortly summarized that a large deployment of EVs will involve 
the following studies: 1) Evaluation of the impacts that battery charging may have 
on system operation; 2) Identification of adequate operational management and 
control strategies regarding batteries’ charging periods; 3) Identification of the best 
strategies to be adopted in order to use preferentially renewable energy sources  
(RES) to charge EVs; 4) Assessment of the EV potential to participate in the provi-
sion of power system services, including reserves provision and power delivery, 
within a vehicle to grid (V2G) concept. Inspired by this summary, we will first 
review four kinds of goals when investigating in smart charging of an EV fleet. In 
addition, we also see these four objectives as four types of opportunities and prod-
ucts that can be captured by FOs and then provided to other actors in a smart grid 
context.  

2.1 Providing ancillary services to the transmission system operator (TSO) 
Kempton et al. [10], [11] analysed the potential profits of V2G support by compar-
ing it to existing ancillary services and found that participating regulation power 
market appears to be most promising and offers a substantial earning potential to 
EV owners. Rotering and Ilic [12] took into account vehicle to grid as a mean of 
generating additional profits by participating in the ancillary service markets. 
Based on the data of the independent system operator of California, provision of 
regulating power substantially improves plug-in hybrid electric vehicle economics 
and the daily profits amount to $ 1.71, including the cost of driving. Han et al. [13] 
proposed an FO that manages EVs to provide frequency regulation services, the 
cost arising from the battery charging and the revenue obtained during the partici-
pation is investigated. The problem is formulated as an optimization problem and 
dynamic programming is used to generate the charging control profile.  Divya et al. 
[14] carried out  a study investigating the feasibility of integrating EVs in the Dan-
ish electricity network which is characterized by high wind power penetration. 
They found that EVs have the potential to assist in integrating more wind power in 
2025 when the EV penetration levels would be significant enough to have an im-
pact on the power systems. Tuffner and Meyer [15] explored two different charg-
ing schemes: V2G Half and V2G Full to handle the entire additional energy imbal-
ance imposed by adding 10GW of additional wind to the Northwest Power Pool. 
The result indicates that the proposed frequency based charging strategy can meet 
the new balancing requirements. However, this also depends on the charging sta-
tion availability (residential and public charging station), the economics of the im-
plementation and a viable and compelling business model. All these results indicate 
that it is reasonable and profitable to participate in the electricity market and pro-
vide ancillary service to the gird. 

2.2 Providing services to renewable energy source (RES) supplier 
Lopes et al. [16] investigated the dynamic behaviour of an isolated distribution grid 
when wind power and electric vehicles are presented. The objective is to quantify 



the amount of intermittent RES that can be safely integrated into the electric power 
system with the utilization of EVs’ storage capacity. Another study [17] by the 
same author analyse two tasks. The first part of the work studied the maximum 
share of EVs on the low voltage networks without violating the system’s technical 
restrictions. The second part focused on the prevention of wasting renewable ener-
gy surplus when charging the EVs. The results indicate that the grid can allocate 
higher penetration of EVs with a smart charging strategy compared with a dumb 
charging and that the EVs have the capability to store energy and discharge to grid 
later into the system. In this way, the RES can be utilized more. Lund and Kempton 
[18] investigated the impact of using V2G technology to integrate the sustainable 
energy system. Two national energy systems are modelled; one for Denmark in-
cluding combined heat and power (CHP), the other is a similarly sized country 
without CHP. The model (EnergyPLAN) integrates energy for electricity, transport 
and heat, includes hourly fluctuations in human needs and the environment (wind 
resource and weather-driven need for heat) The results indicated that adding EVs 
and V2G to these national energy systems allows integration of much higher levels 
of wind electricity without excess electric production, and also greatly reduces 
national CO2 emissions. 

2.3 Minimizing charging cost 
An electricity market is presumed and is ideally suited for the application of opti-
mal charging control; this is because the various hourly market prices can bring 
benefits for EVs if they are scheduled to charge in the period of lower prices. With-
in this scope, most the work [19]-[21] assume that the EV FO manages the electric-
ity market participation of an EV fleet and presents a framework for optimal charg-
ing or discharging of the EVs. In addition, the electricity price of the day-ahead 
spot market and the regulation market and the driving patterns of the EV fleet are 
usually assumed to be known by the FO who is assumed to be the price-taker in the 
electricity market in studies. However, Kristoffersen et al. [22] also investigated 
the possibilities of EV management where the FO has a significant market share 
and can affect electricity prices by changing the load through charging and dis-
charging. Besides studying the optimal charging from an EV fleet perspective, 
research in [12], [23] showed how dynamic programming can be utilized by the 
individual EV controller to make an optimal charging schedule taking into account 
the electricity market price. In [24], an intelligent charging method is proposed 
which responds to TOU price and minimize the charging cost.  

2.4 Providing ancillary services to distribution system operator (DSO) 
It is assumed that the distribution network has the capacity to allocate new loads 
when achieving the objectives discussed above. With the objective of avoiding grid 
bottlenecks, the purpose of the smart charging is to solve the potential grid conges-
tion problem. Many investigations has been performed studying the impact of EVs 
on grid, which can be dated back to the early 1980s [25]. In [26], the authors gave a 
review and outlook about the impact of EVs on distribution networks. Sundstrom 



and Binding [27] considered the power grid on the Danish island of Bornholm, 
where the grid of the isolated island is used to study the impact of EVs and the 
potential profit to be made of grid services. The focus of the paper is on proposing 
a method for planning the individual charging schedules of a large EV fleet as well 
as respecting the constraints in the low-voltage distribution grid. The impact of 
EVs on the electricity grid is studied in [28], where the focus is on the Vermont 
power grid. They assume a dual-tariff, nightly charging scheme, and conclude that 
enough transport capacity is available in the power grid. Lopes et al. [29] studied 
the potential impact on a low-voltage distribution grid. Smart charging behaviour is 
here considered to maximize the density of EV deployment into the grid, i.e., to 
reach the maximally tolerable number of EVs and meanwhile maintaining grid 
constraints. Kristien et al. [30] investigated the impact of charging EVs on a resi-
dential distribution grid and illustrated the results of coordinated and uncoordinated 
charging. Without coordination of the charging, the power consumption on a local 
scale can lead to grid problems. While the coordination of the charging can reduce 
the power losses, power quality is improved to a level which is similar to the case 
where no EVs are present. 

2.5 Analysis of the research framework and the goals of smart charging 
Several questions would naturally arise after reviewing the four goals described in 
2.1 to 2.4, e.g., whether some goals can be integrated when making the optimal 
charging schedules of an EV fleet, what are the relationships between these four 
goals. In [12], the authors took into account vehicle to grid as a mean of generating 
additional profits by participating in the ancillary service markets and integrated it 
with the goal of minimizing the charging cost of the EV. The result indicated that 
the combined goals substantially improve EV economics.  Sundstorm and Binding 
[27] considered the distribution grid congestion issue when minimizing the charg-
ing cost of an EV fleet. It is observed that multi-goals study is already performed, 
however, a systematic way of understanding the relationships between the de-
scribed goals is missing.    

In general, relationships between goals can be described as [31]: 

• Independence: the goals do not affect each other. 
• Cooperation: achieving one goal makes it easier to achieve the other. 
• Competition: one goal can be achieved only at the expense of the other. 
• Interference/Coordination: one goal must be achieved in a way that takes 

the other goal into account.    

We use these four relationships as guideline and analyse the relationships between 
the four goals of smart charging. Table 1 presents the results.  



Table 1: Relationships between the four goals discussed above 

 
 Providing 
services to 
RES supplier 

Providing 
ancillary ser-
vices to TSO 

Minimizing 
charging 
cost 

Providing 
ancillary ser-
vices to DSO 

Providing ser-
vices to RES 
supplier 

N.A. Cooperation Cooperation Coordination 

Providing ancil-
lary services to 
TSO 

Cooperation N.A. Cooperation Coordination 

Minimizing 
charging cost Cooperation Cooperation N.A. Coordination 

Providing ancil-
lary services to 
DSO 

Coordination Coordination Coordination N.A. 

 

It is shown in Table 1 that the first three goals needed to be coordinated with the 
last one, and this coordination is usually called congestion management in distribu-
tion network and the topic has recently attracted many researches. Besides, Table 1 
shows that the first three objectives can be well integrated when generating the 
optimal schedule of EV fleets. With this qualitative analysis, it is beneficial for the 
FO to make global optimal schedules.  

3 INTRODUCTION OF FO IN THE CONTEXT OF SMART GRIDS 
From previous discussion, despite some services like minimizing charging cost 
could be done by individual EV, in most cases, these services can be practical in 
place only provided by a large fleet of EV. As shortly mentioned above, FO is 
widely proposed to aggregate the large penetration of EVs in the near future (FO 
used in the Edison project: http://www.edison-net.dk/). Firstly, the roles of the FOs 
are summarized from the literature; then we show the relationships between the 
FOs and other actors in a smart grid context; further discussion is made on the 
communication standard used for implementing the charging schedules. 

3.1 Role of FOs 
Tomas et al. [4] proposed two new electricity market agents: the EV charging man-
ager and the EV aggregator/FO which are in charge of developing charging infra-
structure and providing charging services, respectively; based on this, the authors 
proposed a regulatory framework for charging EVs. Similar concept is introduced 
in [32], where the concept of EV service provider (EVSP) is discussed. In [32], the 
EVSP has two functions: one is responsible for installing and operating the charg-



ing equipment, another is supplying electricity to the EVs. In term of the feasibility 
of applying the FO concept, Bessa and Matos [3] gave a literature review regarding 
the economic and technical management of an aggregation agent for electric vehi-
cles. The reviewed papers are organized into three technical categories: electricity 
market and EV technical and economic issues; aggregation agent concept, role and 
business model; algorithms for EV management as a load/resource. 

It is observed that the main difference between the proposed solutions of FO lies on 
whether the FO has twofold functions or sole function, i.e., some studies assumed 
that a FO functions as both charging equipment supplier and charging service pro-
vider, others only refer FO as the charging service provider. Although various dif-
ferences exist in the details of the proposed FO concepts, they are assumed to 
achieve the same goals in this study, regardless the ownership of the charging 
equipment: 

• Guarantee driving needs of the EV owners with optimal management of 
EV charging; 

• Provide ancillary services to power system operators with optimal alloca-
tion of EV fleet resources.  

3.2 Service relationships between FOs and other actors in a smart grid  
Fig.1 illustrates the relationships between FOs and other actors in a smart grid by 
showing the services that FOs can provide to them.  
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Fig.1: The services relationships between FO and other actors in a smart grid. 

Note that the relationship between FOs and EVs is a slightly more complex. From 
one perspective, FOs need to attract the participation of EVs and then have the 
ability to provide services to other actors in the smart grid; from another perspec-



tive, FOs can provide the service of minimizing charging cost to EVs which help 
the EV owner to save money. Therefore, FO may need to consider many factors 
rather than purely make benefits when providing services to EVs.   

3.3 Implementing the charging services/schedule provided by FOs 
With the purpose of illustrating how the charging schedule is implemented, this 
section discusses the relevant communication standard for integrating EVs into the 
distribution grid. For example, the studies in [12], [13], [19], [22] focus on generat-
ing the optimal charging schedule instead of implementing it. These parts are sup-
plemented by the works in [33]-[37]. It is noted that the purpose is to provide the 
relevant/widely used communication standard which can support the EV smart 
charging rather than comparing the various communication standards. Su et al. [33] 
presented a overview of EVs from the perspectives: 1) charging infrastructure (so-
ciety of automotive engineers standard) and Plug-in Hybrid Electric Vehicles 
(PHEVs)/Plug-In Electric Vehicles (PEVs) batteries, 2) communication require-
ments. In European area, studies in [34]-[37] recommended the IEC standards 
which are illustrated in Fig.2. The objectives of all the studies [34]-[37] are the 
realization of a standardized communication interface, the vehicle to grid commu-
nication interface. The standardization will make it possible for users of EVs to 
have easy access to EV charging equipment (EVSE) and related service throughout 
Europe. EVSE refers to all the devices installed for the delivery of power from the 
electrical supply point to the EV. EVSE supports the smart charging functions. The 
decision can be made on the EV level or on the FOs level. The IEC 15118 is the 
most recommended communication standard in the work [34]-[37] and demon-
strated in details in [34], [35] by showing the sequence diagram of a charging pro-
cess between the EVSE and the EVs. For the communication between the EVSE 
and the FOs, it is recommended that IEC 61850 can fulfil the functions. 
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IEC 61850
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Figure 2: Relevant ICT standards support the EV smart charging in the 

context of smart grids  

In general, we define EVi as the combination of the EVSE and the EV as well as 
holding the intelligence endowed by the EV owner (illustrated in the Fig.2). With 



this background, for the next parts of this paper, we will review the control archi-
tectures, the algorithms which are used by FOs in the literature and the communi-
cation part will be ignored.  

4 CONTROL ARCHITECTURES AND THEIR INTEGRATION 

4.1 Centralized charging control of EV FO 
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Figure 3: Primary inputs and output of EV FO. 

Fig. 3 mainly depicts the four inputs when making the control strategies. In this 
context, FO obtains all the relevant information including the EV battery model, 
the EV driving patterns, the grid constraint and the electricity price and centrally 
makes the charging schedule for each EV. In contrast, some EV owners want to 
generate the charging schedule by themselves, this is called decentralized control. 
However in the context of decentralized charging, the FO still needs to coordinate 
the grid constraints with the EV owners and this coordination is usually imple-
mented by using price signal. In the following section, we will present two meth-
ods of implementing decentralized charging control as well as respecting to the 
grid constraint.  

4.2 Decentralized charging management of EV FO 
The scheme of the information flow in decentralized charging control is presented 
in Fig.4. 
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Figure 4: Schematic view of the information flow between the FO and the 

EVs. 

In Fig.4, two kinds of price signals are presented. For the left figure, i.e., two way 
price signal, this is also used such as game theory, valley filling. The basic idea is 
that EVs update their charging profiles independently given the price signal; the 
FO guides their updates by altering the price signal. Several iterations are required 
for the implementation. For the right figure, we call it one way price signal method; 
this method requires FO to predict the users’ response to the prices. The price sig-
nal can be designed simply as time-of-use price or more dynamic prices.  

4.3 Comparison between control strategies 
Table 2 compares the two control methods based on literature review. We first 
clarify the terminologies used in this study: centralized control and decentralized 
control are regarded as architectures, which mean the charging schedule decision is 
made either in upper FO level or local EV controller level. Direct control means 
that FO sends the control signal to the EVs and the EVs executes the charging 
schedule. Price control means that the FO coordinate their requirements (distribu-
tion grid constraints) by sending electricity price to the EV controller and the EV 
controller takes the decision to generate the charging schedule. This is indirect 
control for the FO because the FO is only specifying a constraint (the price) for the 
charging schedule and not the charging schedule itself. 

  



Table 2: Comparison between direct control and price control strategy 

 
Control Methods 

Direct control Price control 

Features of the 
control method 

• Control signals (i.e., set 
points) 

• High level controller 
makes the decision 

• Price incentive 
• Consumer make 

decision 

Advantages • High certainty 
• Better optimal results 

• Privacy improved 
• Less communica-

tion cost 

Disadvantages 

• Inflexible 
• High communication 

cost 
• High computation re-

quirement 

• Lower certainty 
• Better knowledge 

on customer’s re-
sponse to price re-
quired 

5 DATA ANALYSIS OF BATTERY MODEL, DRIVING PATTERN 

5.1 Battery model 
Basically, there are two ways to model the charging characteristics of the EV, i.e., 
the battery model. One is an individual battery pack model, another is aggregated 
(characterize the state of charge of an EV fleet in one model). For simplicity, most 
of the studies considered EV as a battery pack when investigating the optimal 
charging and discharging problem. Currently, most battery model studies [38]-[40] 
focus on three different characteristics: 

• The first and most commonly used model is termed as a performance or a 
charge model and focuses on modelling the state of charge of the battery, 
which is the single most important quantity in system assessments.  

• The second type of model is the voltage model, which is employed to 
model the terminal voltage so that it can be used in more detailed model-
ling of the battery management system and the more detailed calculation 
of the losses in the battery.  

• The third type of model is the lifetime model used for assessing the impact 
of a particular operating scheme on the expected lifetime of the battery.  

We give further discussion on the first model, usually, linear and nonlinear approx-
imation are used to characterize the state of charge of the battery. Linear approxi-
mation are utilized in works [19]-[21] to approach the charging behaviour of an EV 
battery. Rotering and Ilic [12] considered a nonlinear battery model. The studies 
[20], [21] has shown that violations of the battery boundaries when applying the 
charging schedule based on the linear approximation are relatively small, i.e., less 



than 2% of the usable capacity. The benefit of using a nonlinear approximation 
does not justify the increase in computation time. 

5.2 Driving pattern 
The analysis of driving pattern can be divided into two main directions:  

• Utilization of EVs, in other words, a typical user daily life means that at 
any point during the day an EV could possibly be in the garage, in an em-
ployer’s parking lot, in a store parking lot or on the road. This means that 
the aggregator needs to characterize/predict the driving pattern of EVs. 

• Location of EVs when charging and how many of them will be charged at 
a time, since such driving patterns produce an impact on the distribution 
gird.  

In most papers [19]-[21] the authors assume that the aggregator know the users’ 
driving patterns. There are few studies on investigating the driving pattern issue. 
Kristoffersen et al. [22] investigated the method to construct driving patterns with 
the historic data in Danish case. By clustering the survey data on the vehicle fleet 
in Western Denmark (January 2006-December 2007), a representative driving pat-
terns for each vehicle user are constructed. S. Shahidinejad et al. [41] developed a 
daily duty cycle which provides a complete data set for optimization of energy 
requirements of users and furthermore, this information can also be used to analyse 
the impact of daytime charging by a fleet of plug-in electric vehicles on the electric 
utility grid that may create a peak demand during the day to be met by the local 
utility grid. Normally, intra city or short term driving patterns are largely predicta-
ble due to fixed working hours and fixed business schedules and routes.  

6 MATHEMATICAL MODELING AND CONTROL: CENTRALIZED 
CONTROL 

In this section, we will present algorithms often used for the centralized control. 
Linear programming, quadratic programming, dynamic programming and stochas-
tic programming will be shown for the discussion through an extensive literature 
review. Further, a qualitative comparison among the four algorithms will be pre-
sented in the end of this section.  

6.1 Linear programming (LP) 
Sundstrom and Binding [20], [21] used linear approximation to characterize the 
state of charge of a battery and formulate the charging process for an EV fleet into 
a linear programming based optimization problem: 
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With the time slot st , cost vector 𝑐, the charging power 𝑃𝑏, the stopover inequality 
constraints (As, bs), the generation inequality constraints (Ag, bg), the battery ine-
quality constraints (Ab, bb), and the upper and lower bounds (bu, bl). The solution of 
this linear optimization problem is the optimal charging profile while minimizing 
the charging cost of EV fleet.  

6.2 Quadratic programming (QP) 
A nonlinear approximation (quadratic formulation) of the battery charging model is 
also studied in [20], [21]. The results showed that the number of constraints is 
higher and increases faster with a growing fleet in the quadratic formulation than in 
the linear formulation, the difference in calculation time increase with increasing 
fleet size. An example is conducted for comparison and the result indicated that 
calculating time using the quadratic formulation is 819 times the calculation time 
using the linear formulation. But the result difference does not justify the benefits 
of using quadratic formulation.  Another example of using quadratic programming 
method was introduced by Kristien et al. [30] who formulated the power loss prob-
lem caused by large penetration of EVs in the grid into a sequential quadratic opti-
mization problem. The objective is to minimize the power losses which are treated 
as a reformulation of the nonlinear power flow equations. The charging power 
obtained by the quadratic programming cannot be larger than the maximum power 
of the charger 𝑃𝑚𝑎𝑥. The batteries must be fully charged at the end of cycle, so the 
energy which flows to the batteries must equal the capacity of the batteries 𝐶𝑚𝑎𝑥. 
𝑥𝑛 is zero if there is no EV connected and is one if there is an EV connected at 
node n. The above problem specification can be represented as follow: 

min � � 𝑅𝑙 . 𝐼𝑙,𝑡2
𝑙𝑖𝑛𝑒𝑠

𝑙=1

𝑡𝑚𝑎𝑥

𝑡=1

 

Subject to 

                                                �
∀𝑡,∀𝑛 ∈ {𝑛𝑜𝑑𝑒𝑠}: 0 ≤ 𝑃𝑛,𝑡 ≤ 𝑃𝑚𝑎𝑥

∀𝑛 ∈ {𝑛𝑜𝑑𝑒𝑠}:∑ 𝑃𝑛,𝑡 .∆𝑡. 𝑥𝑛 = 𝐶𝑚𝑎𝑥
𝑡𝑚𝑎𝑥
𝑡=1
𝑥𝑛 ∈ 0,1

            (3) 

 

The quadratic programming techniques are applied using both deterministic and 
stochastic methods in Kristien’s paper. The input variables in both cases are the 
daily/hourly load profile. In the deterministic case, the load profiles are static. In 



the stochastic case, the load profile are transformed into probability density func-
tions, which means that the fixed input parameters are converted into random input 
variables with normal distributions assumed at each node. The details of stochastic 
case are presented in the following section.  

6.3 Dynamic programming (DP) 
Dynamic programming is widely used in many papers [12], [13], [23], [30] with 
different purposes. We introduce the work in [12]. In the paper, a specific control 
strategy is denoted by  

𝜋 = {𝑢0,𝑢1, …𝑢𝑘 , … ,𝑢𝑁−1} 

Where 𝑢𝑘  is the control variable denotes a dimensionless and discrete representa-
tion of 𝑃𝑘.  𝑃𝑘 corresponds to the purchased power flow.  The total cost of a whole 
charging sequence, 𝐽𝜋 is then given as below:  

𝐽0𝜋(𝑥0) = 𝐽𝑁(𝑥𝑁) + � 𝑙𝑘(𝑥𝑘,𝑢𝑘 ,𝑘)
𝑁−1

𝑘=1

 

𝐽𝑁 means cost of the final step, 𝑙𝑘(. ) denotes the cost-to-go for all other steps, N 
denotes the total number of time intervals. The objective is to find the optimal con-
trol variables which can minimize the total cost. The detailed mathematic formula 
of cost of final step and cost-to-go are not presented here. The purpose of the func-
tion used for calculation of cost of final step is ensuring that the battery is fully 
recharged before the first trip of the following morning. For the function of cost-to-
go, the electricity price, regulating-up price and regulating-down price are consid-
ered.  

This is a classical dynamic programming formulation and the optimal trajectory is 
calculated starting with the cost of the last state and going backwards through time 
until the first state’s optimal cost 𝐽00(𝑥0) is given by the algorithm. Concerning the 
computing time of dynamic programming, the results in [30] show that the differ-
ence of the charging profiles for the QP and DP technique are negligible, however, 
considering the computational time and storage requirements, the storage require-
ments are heavier for the DP technique compared to the QP technique, hence, the 
computational time for DP technique is longer. 

6.4 Stochastic programming 
Most of the current researches [12], [19], [21] assume that the load profiles, initial 
state of charge, driving pattern, grid conditions and electricity price are known and 
determined to the FO, however, this is certainly not the case in the reality. It is 
therefore necessary to put efforts on stochastic approach to reduce the risks, and 
some works have been done recently [30], [42]-[45].  

A stochastic approach for calculation of the daily load profiles is considered in [30] 
when minimizing the power loss problem. A sample average approximation meth-



od [46] is utilized to formulate the random inputs and the lower bound estimate 
principle is used to estimate the optimal value. It is noted that the model is the 
same as presented in equation (3) of this section (section 6.2). The uncertainties of 
these parameters can be described in terms of probability density functions. In that 
way, the fixed input parameters are converted into random input variables with 
normal distributions assumed at each node. N independent samples of the random 
input variable 𝜔𝑗, the daily load profile, are selected. Following equation (4) gives 
the estimation for the stochastic optimum 𝑣�𝑛. The function 𝑔(𝑃𝑛,𝑡,𝜔𝑗) gives the 
power losses and 𝑃𝑛,𝑡 is the power rate of the charger for all the EVs and time 
steps. 𝑓𝑁 is a sample-average approximation of the objective of the stochastic pro-
gramming problem: 

                                      𝑣�𝑛 = 𝑚𝑖𝑛{𝑓𝑁(𝑃𝑛,𝑡) ≡ 1
𝑁
∑ 𝑔�𝑃𝑛,𝑡,𝜔𝑗�𝑁
𝑗=1 }                       (4) 

The mean value of the power losses, 𝐸(𝑣�𝑛), is a lower bound for the real optimal 
value of the stochastic programming problem, 𝑣∗, as shown in the below:  

𝐸(𝑣�𝑛) ≤ 𝑣∗ 

𝐸(𝑣�𝑛) can be estimated by generating M independent samples 𝜔𝑖,𝑗 of the random 
input variable each of size N. M optimization runs are performed in which the non-
linear power flow equations are solved by using the backward-forward sweep 
method. The optimal values of M samples constitute a normal distribution: 

𝑣�𝑛
𝑗 = 𝑚𝑖𝑛 �𝑓𝑁�𝑃𝑛,𝑡� ≔

1
𝑁
�𝑔(𝑃𝑛,𝑡 ,𝜔𝑖,𝑗)
𝑁

𝑖=1

� , 𝑗 = 1, … ,𝑀. 

𝑣�𝑛
𝑗 is the mean optimal value of the problem for each of the M samples.  𝐿𝑁,𝑀 is an 

unbiased estimator of  𝐸(𝑣�𝑛). Simulations indicate that in this type of problem, the 
lower bound converges to the real optimal value when N is sufficiently high: 

𝐿𝑁,𝑀 = 1
𝑀
∑ 𝑣�𝑁

𝑗𝑀
𝑗=1 . 

A forecasting model for the daily load file for the next 24 hours is required at first, 
then the daily profile of the available set are varied by a normal distribution func-
tion. The standard deviation 𝜎 is determined in such a way that 99.7% of the sam-
ples vary at maximum 5% or 25% of the average. In general, the simulation results 
indicated that the difference between the power losses of the stochastic and the 
deterministic optimum is rather small. 

Other studies such as Fluhr et al. [42] use Monte-Carlo method to generate the 
probability distributions of the driven travel paths for one week with the survey 
”Mobility in Germany” (MIG), because the original data MIG only provide one 
day driving behavior;  studies in [43]-[45] use normal distribution and Poisson 
distribution to investigate the probabilistic distribution of plugin time and initial 
state of charge of EVs. 



6.5 A summary of the presented algorithms with three types of criteria 
In table 3, we mainly summarize the information of the presented algorithms in 
term of the computation time, the certainty of performance, and the applicability. 
The summary aggregates the comparisons described in the literatures in term of 
computation time and performance of the presented algorithms. Besides, the ap-
plicability of the presented algorithms is summarized from two perspectives. 

Table 3: General comparison between the presented algorithms 

 Computation 
time 

Certainty of 
Performance 

Applicability in 
general 

Applications 
to EV charg-
ing 

Linear  

programming 
Used in: [19], 
[20], [21]. 

Generally, it is the 
fastest.  

Results in [19], 
[20], [21] showed 
that the perfor-
mance is excellent 
in term of finding 
the optimal solu-
tion.  

1) The objective function 
is linear, and the set of 
constraints is specified 
using only linear equali-
ties and inequalities.  

2) Standard model, easy 
for implementation. 

Minimize charg-
ing cost of EVs. 

Quadratic 
programming 
Used in: [20], 
[21], [30]. 

Ref. [20] showed 
that the calcula-
tion time using 
the QP is 819 
times than the one 
using LP for a 
fleet of 50 vehi-
cles. 

Ref. [20] showed 
that the difference 
between using LP 
and QP is minor. 
Therefore, the 
benefit of using the 
QP does not justify 
the increase in 
computation time. 

1) The objective function 
has quadratic terms, 
while the feasible set 
must be specified with 
linear equalities and 
inequalities.  

2) Standard model, easy 
for implementation. 

1) Minimize 
charging cost of 
EVs. 

2) Minimize 
power losses of 
power systems. 

Dynamic  

programming 
Used in: [12], 
[13], [23], [30]. 

Ref. [30] indicat-
ed that the com-
putational time 
for DP is slower 
compared to QP. 

Ref. [30] showed 
that the difference 
between the charg-
ing profile of using 
QP and DP is 
negligible, although 
the QP gave more 
accurate results. 

1) Studies the case in 
which the optimization 
strategy is based on 
splitting the problem (EV 
charging schedule) into 
smaller subproblems 
(multi-time slots).  

2) No standard model, 
difficulty increases for 
complex problem. 

3) Give global optimal 
result. 

1) Minimize 
charging cost of 
EVs. 

2) Minimize 
power losses of 
power systems. 

3) Maximize 
profit of provid-
ing regulation 
services. 

Stochastic 
programming 
Used in: [30], 
[42], [43], [44], 
[45]. 

The computation 
time is longer 
generally because 
more scenarios 
are considered. 

The simulation 
results in [30] 
indicated that the 
difference between 
the power losses of 
the stochastic and 
the deterministic 
optimum is rather 
small. 

Studies the case in which 
some of the constraints or 
parameters (Load profile, 
driving pattern etc.) 
depend on random varia-
bles.  

1) Minimize 
charging cost of 
EVs. 

2) Minimize 
power losses of 
power systems.  

3) Maximize 
profit of provid-
ing regulation 
services. 



7 MATHEMATICAL MODELING AND CONTROL: DECENTRALIZED 
CONTROL 

Compared to centralized control, the decentralized control is a relative new appli-
cation to EV fleet control, but still a lot of efforts have been done considering the 
amount of the articles. 

7.1 Two way price signal- Price and power negotiation 
As discussed in section 3, the following papers [7], [47]-[51] are chosen to further 
illustrate the two way price signal control method. Considering the similarities of 
the papers, we will discuss and present the papers in the following: the detailed 
formulas are given in the first paper with the purpose of facilitating reader’s under-
standing. In paper [7], decentralized charging control of large population of electric 
vehicles is formulated as a class of finite-horizon dynamic games. Within this 
game, the control objective is to minimize electricity generation costs by establish-
ing an EV charging schedule that fills the overnight demand valley. Moreover, the 
paper establishes a sufficient condition under which the system converges to the 
unique Nash equilibrium.  

The key formulas are listed below: 

𝑥𝑡+1𝑛 = 𝑥𝑡𝑛 +
𝛼𝑛

𝛽𝑛
𝑢𝑡𝑛, 𝑡 = 0, … ,𝑇 − 1 

Where 𝑥𝑛 is the state of charge of 𝐸𝑉𝑛,  𝛼𝑛and 𝛽𝑛 means the charging efficiency 
and battery size of 𝐸𝑉𝑛, and 𝑢𝑛 represents the local control variable. The purpose 
of the study is to find the set of feasible full charging controls, which are described 
below: 

𝜔𝑛 ≔ {𝑢𝑛 ≡ (𝑢0𝑛, … , 𝑢𝑇−1𝑛 ); 𝑠. 𝑡.𝑢𝑡𝑛 ≥ 0, 𝑥𝑇𝑛 = 1} 
Where the final constraint on 𝑥𝑇𝑛 requires that all EVs are fully charged by the end 
of the interval. The cost function of agent n, denoted by 𝐽𝑛(𝑢) is used as criteria 
and specified as: 

𝐽𝑛(𝑢) ≔ �{𝑝(𝑟𝑡)𝑢𝑡𝑛 + 𝛿�𝑢𝑡𝑛 − 𝑎𝑣𝑔(𝑢𝑡)�
2}

𝑇−1

𝑡=0

 

Where each agent’s optimal charging strategy must achieve a trade-off between the 
total electricity cost 𝑝(𝑟)𝑢𝑛 and the cost incurred in deviating from the average 
behaviour of the EV population�𝑢𝑛 − 𝑎𝑣𝑔(𝑢)�2. With these criteria and certain 
conditions, the theorem about the existence of the Nash equilibrium is presented in 
the paper.  

The proposed algorithm ensures convergence to a flat, or optimally valley filling 
aggregate charging profile. However, in both papers [47], [48], all EVs are required 
to participated the negotiation at the same time, and implement the schedules they 



commit to. In a more realistic scenario, EVs may join the negotiation at different 
time, not necessarily known to the FO beforehand. Furthermore, the approach is 
suitable to today’s system or those mainly comprised of conventional demand, this 
limits the cycling required in thermal plants; however the response to intermittent 
generation will be of more interest. During periods of intermittent (renewable) 
generation (RG), the price is unlikely to be directly related to demand, as RG typi-
cally has lower or zero marginal cost. 

Zhong Fan [50] applied the concept of congestion pricing in internet traffic control 
and showed that price information is very useful to regulate user demand and con-
sequently balance the network load. Individual users adapt to the price signals to 
maximize their own benefits. User preference is modelled as a willingness to pay 
parameter which will influence both individual charging rate/cost and overall sys-
tem behaviour, because, the unit price of energy in a time slot is a function of the 
aggregate demand in the paper. Charging power is allocated according to fair pay 
principle which is economically efficient and the mechanism ensure the system 
stable under arbitrary network topologies. However, the approach is not compatible 
with current market structure since in Zhong Fan’s paper, iterative convergence is 
required. Besides, the assumption that price is a function of demand, with a fixed 
constant of proportionality is weak, because reductions in demand won’t necessari-
ly lead to corresponding reductions in price. Moreover, only the EV load is consid-
ered in the paper, it is arguable to inquiry the conventional load. As mentioned by 
the authors in the paper, the proposed model is also a kind of game theory.  

In short conclusion, both papers [49][50] made a good effort in trying to use game 
theory to formulate the complex decision making process for future energy traders, 
especially the FO. In the future smart grids, the distributed generation resources 
(DER) are most likely to be integrated via market-based mechanisms; therefore 
game theory will be a very useful tool to study the dual impacts between DERs and 
the markets. 

7.2 One-way price signal-Price and demand elasticity 
By using one-way price signal, we mean that the EVs controller do not need to 
propose and submit their charging profile to the EV FO, instead the FOs will antic-
ipate their response to the dynamic price. The dynamic price ranges from simple 
time-of-use electricity rate [52][53] to more varying hourly prices [54][55].  Both 
studies [52][53] suggested that the TOU rates can be properly designed to reduce 
the peak demand as EVs penetrate the vehicle market. However, it is also noted in 
[52] that the extent to which properly designed rates could assist in maintaining 
grid reliability will remain open until empirically tested EV owner’s price respon-
siveness through experiment pilots are known.  

 

Both studies [54][55] investigated the price elasticity of electricity consumers and 
these are also the key issues in one-way price signal approach. Details in [55] is 



presented.  In the model [55], the marginal utility function of loads is realized by 
the following parametric stochastic process:  

( ), ;
( )

0, .
t t

r t
otherwise

β δ α α α γ− − ≤ ≤ +
= 


    (4) 

where , , ,α β γ δ are random variables that describes the different characteristics of 
utility function as follows: 

a) α stands for the time slot that a task is initially requested, which also reflects the 
task distribution; 

b) β is the initial marginal utility, which stands for the magnitude of the marginal 
utility. 

c) γ is the tolerable delay, which determines the maximum delay that a user can 
tolerate to finish a task; 

d) δ means the utility decay rate, which represents the cost of inconvenience by the 
delay. 

Under this model, the scheduling of each individual task is now a random event 
whose probability distribution is controlled by the stochastic process 𝑟(𝑡). The 
aggregated demand curve can be estimated through expectation with respect to the 
distribution of 𝑟(𝑡). Note that some assumptions have been made before, such as 
the time period of the scheduling is divided into T time slots, the total M individual 
tasks m: m=1,…, M of different appliances that are to be initialized by all the users 
within the scheduling period, and each task will consumer 𝑥𝑚 kWh energy. Fur-
thermore, it is assumed that each task can be completed within one time slot; there-
fore, tasks that have duration longer than one time slot will be decomposed into 
multiple tasks that are considered independently.  

In general, one can see that within decentralized control, no significant computing 
resources are required and the communication infrastructure is also simplified 
compare to centralized control.  

8 CONCLUSION AND RECOMMENDATIONS 

8.1 Conclusion and discussions 
As a conclusion, it is learned from this study that: 

• Control objectives of aggregating a large penetration of EVs are essential 
for the starting of generating EVs’ schedules.  

• Linear approximation of state of charge of battery (EV) is acceptable when 
doing the smart charging study. 

• Linear programming is suitable for the smart charging study of EV fleet 
and individual EV. 



• Price signal can be well designed and utilized to coordinate the charging 
profiles of EVs. 

The following benefits of present study can be identified: 

• The study outlines a foundation for future improvements in term of smart 
charging from a control theory perspective.  

• The advantage and disadvantage of centralized and decentralized control 
are discussed, which gives a basis for comparing available methods for fu-
ture developments.  

• Details modelling method and algorithms are illustrated by showing the 
key formulas and compared in term of their performance, calculation time 
etc. 

However, it should be observed and emphasized that the above discussion did not 
consider the real time operations, i.e., there is no continuous monitoring and as-
sessment of the state of dynamic system and therefore lack of the appropriate re-
sponse in abnormal situations. This means that new procedures considering the 
dynamic behaviour of EV fleet and distribution networks should be developed as 
well.  

8.2 Recommendations on future research directions in the area 
Based on the discussions in the present study, future research directions are out-
lined below:  

1) Coordinate the multi-goals of smart charging of EVs 

Recently, the trend in smart charging of EVs is to integrate the interests of EV 
owners, ancillary services required by the transmission system operator as well as 
respecting the hard constraint imposed by the distribution system operator. Re-
search in [9] [21] aim to coordinate these multiple objectives centrally. Alternative-
ly, some studies [56] used a price signal/market approach to coordinate the multi-
ple objectives.  

2) Integrating the control method 

Although most research assumed either centralized control or decentralized control 
methods when starting the study, this is indeed an important decision which should 
be taken in the earlier stage. From our perspective, three issues shall be investigat-
ed thoroughly.  

• Depending on the aggregation goals, this is due to different goals have var-
ious requirement on EVs in term of response time etc. 

• Depending on the EV consumer’s participation, such as some consumers 
do not like their EVs to be controlled by FOs, under such circumstance, 
price incentives are a suitable method. 

• Depending on the business model, we means whether the economic bene-
fits of optimal charging of EVs can justify the cost of communication in-



frastructure in all cases; this will be an important consideration when 
choosing the control method. 

Studies in [57], [58] compared the centralized control and decentralized control 
method when utilizing them to make an optimal plan which can optimal delivery 
energy to EVs as well as avoiding grid congestions. They outlined the advantages 
and disadvantages of both strategies. Fig. 5 illustrates the structures of integrating 
control strategies in a smart grid environment especially considering the congestion 
management in distribution networks. The argument for proposing this integration 
relies on the fact that this system architecture is comprehensive for the solution of 
integrating EVs into the power distribution systems. 

Current market place

FO
(Centralized)

FO
(Decentralized)

EV EV EV

EVEVEV

Bids and activations

Grid Zone 1

Grid Zone 2

Direct 
control signal

Price signal

 
Figure 5: Integrating control method considering grid congestion man-

agement 

3) A multi-agent systems based realization of smart charging of EVs  

It is observed that when implementing both control strategies of smart charging of 
EVs, especially decentralized control method, multi-agents system based technolo-
gy is very suitable to design a coordinated and collaborative system for an intelli-
gent charging network of EVs. In the multi-agent systems, different interests of 
various actors shown in Fig.1 can be presented and coordinated by using smart 
charging method. By using multi-agent systems technology, one can model the 
optimizations and the negotiations happened in the smart charging of EVs.  In [58], 



[59], the authors modelled the smart charging of EVs using multi-agent systems 
technology.  
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Abstract—In this paper, we propose an approach to optimize
the charging schedule of an Electric Vehicle (EV) fleet both taking
into account spot price and individual EV driving requirement
with the goal of minimizing charging costs. A flexible and suit-
able mathematic model is introduced to characterize the smart
charging behavior and detailed parameters needed for charging
behavior of an individual EV are analyzed. The individual
charging schedule is extended to the EV fleet. Simulation results
are presented to illustrate the effectiveness of the proposed model.

Index Terms—Electric Vehicle, Fleet Operator, Charging
Schedule, Linear Program

I. INTRODUCTION

The Danish government has issued a long-term energy
policy aiming at 30% production from renewable energy and
50% of the average electricity consumption from wind power
by 2025 [1]. This policy conforms well to the procedure of
dealing with global environmental issues and has led to a
growing interest in EVs. EVs have V2G and G2V capabil-
ities which can be used as a storage device for smoothing
wind power fluctuations and to provide more reliable power
operation as well as presents flexible demands.

Several investigations have been made to reach the goal
of this new Danish energy policy, Larsen et al. [2] proposed
scheme to improve system operations, which considered EVs
as new power consumers and also the possibilities as providers
of energy storage. The possibility of using vehicle to grid
to improve wind power integration was studied in [3] and
the result suggested that a small share of EVs may partially
diminish the short period oscillations, while a high share
of EVs achieved much better improvements. A feasibility
study of implementing V2G scenario in Denmark was done in
[4][5]. The system constraints for integrating EVs into power
systems were examined in the study and the technical and
economical viability of various possible V2G architectures
were evaluated. It was concluded that the V2G technology can
assist in realizing the goal of Danish government. In additional
to these feasibility studies, a V2G demonstration project was
implemented by AC Propulsion Inc. to evaluate the practicality
of EVs providing regulation services [6].

Extensive research about EV optimal charging management
have been conducted around the world in recent years. As early
as 1983, Heydt [7] researched the impact of EV deployment

on loads and proposed the methods to alleviate peak loading
with off-peak recharging and the shift of peak loads to off-
peak periods. Koof et al. [8] presented an extensive study on
controlling an EV energy system to reduce the fuel consump-
tion and exhaust emissions with three algorithms, dynamic
programming, quadratic programming and model predictive
control. Kristien et al. [9] researched the impact of charging
PHEVs on a residential distribution grid and illustrated the
results of coordinated and uncoordinated charging. Niklas et
al. [10] proposed two algorithms to address optimal charging
control to avoid the peak load, one is to optimize the charging
time and energy flow, another is generating profits by partici-
pating ancillary service markets which can alleviate the peak
load. Sundstrom and Binding [11] established charging plan to
optimize the cost as well as achieve optimal power balancing.
In [12], Kristoffersen presented a framework for optimizing
electric drive vehicles charging and discharging given vari-
ations in electricity spot prices and driving patterns of the
vehicle fleet. However, some methods lack the flexible ability
to adapt to any driving pattern since most of these methods
are based on an hourly charging scenario, some methods did
not present a simple and effective way to formulate and solve
the optimal charging problem of EV fleets, and most of them
investigated the problem from the overall availability of the
EV fleet instead of from the individual EVs perspective.

The purpose of this paper is to investigate methods of
obtaining the optimally individual EVs charging schedule and
the charging schedule of an EV fleet and test it with realistic
data. Detailed model is used to address the individual charging
schedule and is then extended to an EV fleet. Based on
predicted data including driving pattern information [13] and
electricity spot price, the day-ahead charging schedule of an
EV fleet is obtained by linear programming. The paper is
organized as follows: Section II describes the system archi-
tecture of an fleet operator and some assumptions. In section
III, we present methods to formulate the problem and get the
individual charging schedule. The methods are extended to a
large scale of an EV fleet in section IV. Simulation results
are illustrated in Section V. Finally, concluding remarks are
collected in Section VI.



Fig. 1. System architecture of fleet operator

II. SYSTEM ARCHITECTURE AND ASSUMPTIONS

Nowadays, it is widely accepted to charge the EV batteries
with mainly three options [14]:

1. Fast charging: pull over EVs at the fast charging stations
and charge the EV batteries within, e.g., 10-15 minutes.

2. Battery swapping: drive EVs to the battery swapping
stations and exchange the used battery with a fully charged
one.

3. Low power charging: charge EVs at homes, parking lots
near home, working place or shopping malls.

The third option is analyzed for this paper, by introducing
more advanced communication equipments, a centralized con-
trol system fleet operator is used for the interactions between
the EVs and the electricity market. The overview system
architecture of the fleet operator is depicted in Fig.1. The fleet
operator need historical or statistic data of all the EVs and
electricity spot price in order to predict spot price and driving
pattern for next day. In this paper, we will not investigate the
way of forecasting these data, the fleet operator is assumed to
obtain the predicted electricity spot price and driving pattern.
In term of relevance of the predicted electricity spot price, the
Nordic electricity market is ideally suited for the application
of optimal charging control with fleet operator for its day-
ahead spot market price. Some researches [15][16][17] have
been done on forecasting the electricity price in the Nordic
electricity market. Thus it is reasonable for the fleet operator
to predict the spot price for next day and to manage the optimal
charging behavior according to user’s preference.

Some assumptions are given for the fleet operator before
we start to formulate and analyze the problem:

• Based on a previous study [11], the difference is relatively
small between of charging schedule based on a linear approx-
imation battery model and a quadratic approximation battery
model. A Linear battery model is chosen for simplicity in this
paper.

• Charging power is constant.
• The economic impacts of depth of discharge (DOD) to

the battery life are ignored.
• Energy content E0, i.e. initial status of battery SOC0 is

assumed to be known, the state of charge (SOC) is the relative
energy level

SOC =
Et

Ecap
.100%

where Et is the available energy of the battery in time t, Ecap

is the rated capacity of the battery.

III. METHODS

In this section, we analyze the optimal charging process
with the goal of minimizing the charging cost when getting the
day-ahead charging schedule of an EV fleet. The individual’s
optimal charging process is considered first since the charging
schedule should be in accordance to their requirements. With
the constant charging power ability, this problem can be
formulated as a linear one:

minCT E

subject to 



AtE ≥ Be

AtE ≤ Bb

AtE ≥ Bset

0 ≤ E ≤ Emax

(1)

with the cost vector C, the decision variable vector E, the stop-
over inequality constraints (At, Be), the battery inequality
constraints (At, Bb), the inequality constraints (At, Bset) and
the upper and lower bounds (0, Emax). The first constraint
means that the available energy in battery should be greater
than or equal to the energy requirement for the next trip. The
second constraint indicates that available energy in battery
should be less than or equal to the maximum power capacity.
The third constraint requires that the planning charge energy
should accord to the user’s special preference. The last one
represents that the planning charge energy should less than its
charging ability.

Assume j = 1, 2, ..., n, ..., N is the index for the time slot
contained in one plan duration. k = 1, 2, ..., mj is the index
for the stop-over contained in one time slot j. Therefore, the
cost vector C comprises the cost concerning the time slot j
and stop-over index k, Cj,k. The charging energy vector E
comprises the charging energy for each time slot index and
stop-over index Ej,k.

C =

[
C1,1, C1,2, ..., C1,m1 , ..., CN,1, CN,2, ..., CN,mN

]T

(2)

E =

[
E1,1, E1,2, ..., E1,m1 , ..., EN,1, EN,2, ..., EN,mN

]T

(3)
As we assumed before, individual’s driving pattern is pre-

dicted, which means the following information is available for
each EV:

⋄ Time of stop-over tstopj,k

⋄ Time of disconnection (driving time) tdrivej,k, the k is
the same one with the stop-over index.

⋄ The time loss during the process of connecting the car to
the grid is ignored when the driving procedure is finished and
the connection time is assumed equal to the stop-over time.



⋄ Energy requirement for the next trip Edrivej,k. This can
be calculated with the driving time, driving speed and energy
consumption per km. An example is given in section VI.

The minimum amount of energy that need to be charged in
one time slot j before the end of stop-over k should require
the following inequality

SOC0 +

n∑

j=1

r∑

k=1

Ej,k ≥ SOCMin +

n∑

j=1

r∑

k=1

Edrivej,k, (4)

where SOCMin means the lowest allowed SOC of EV battery,
denotes Min, r is the rth stop-over during each time slot j.

The stop-over inequality constraints At is a lower triangular
unit matrix and the dimensions of matrix At can be deduced
from the time slot j and stop-over index k.

From inequality formula 4, it follows that

Be =

[
{−E0 + Min + Edrive1,1}, ...,

{−E0 + Min + Edrive1,1 + ... + Edrive1,m1}, ...,

{−E0 + Min + Edrive1,1 + ... + Edrive1,m1 + ... +

EdriveN,1}, ..., {−E0 + Min + Edrive1,1 + ... +

EdriveN,1 + ... + EdriveN,mN
}
]T

(5)

Let the maximum amount charged energy in each stop-over
k during slot j be

SOC0 +
n∑

j=1

r∑

k=1

Ej,k ≤
{

wEcap +
n∑

j=1

r∑

k=1

Edrivej,k−1

}
,

(6)

where w is the parameter which express that the charging
behavior of the battery is a linear process.

Thus, one can get

Bb =

[
{wEcap − E0}, ...,

{wEcap − E0 + Edrive1,1... + Edrive1,m1−1}, ...,

{wEcap − E0 + Edrive1,1... + Edrive1,m1−1... +

EdriveN,1}, ..., {wEcap − E0 + Edrive1,1... +

Edrive1,m1 ... + EdriveN,1... + EdriveN,mN −1}
]T

(7)

In reality, it is reasonable to assume that users expect the
EV battery at a certain status in a specific time. This can be
illustrated by the following equation:
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Fig. 2. Driving requirements Edrivej,k for EV 1

n∑

j=1

r∑

k=1

Ej,k + SOC0 −
n∑

j=1

r∑

k=1

Edrivej,k ≥ SOCset (8)

Because the charging power ability is constant, we let
Emax = P ∗ tstopj,k.

IV. EXTENSION TO A LARGE SCALE OF EV FLEET

Since the model is suitable for each vehicle, and if matrix
of At is noted by Aj,k in formula (1), i is introduced to denote
the index of EV, 1, 2, ..., i, ..., M , then the extendable model
of EV fleet can be given by following formula:




A1,j,k

A2,j,k

...
AM,j,k


 (9)

The same approach is also used for other parameters Be, Bb. In
this way, the charging schedule for each EV can be obtained.
For individual EVs, the charging schedule may include two
or more charged energy sections in one time slot. With the
purpose of calculating the whole charged energy/power in one
time slot, we will sum those time slots in which they contain
two or more charged energy section for each individual EV:

Ei,j =

mj∑

k=1

Ei,j,k (10)

We can then get the charging schedule of the EV fleet by the
sum of each EV corresponding to each time slot, which can
be expressed by the following equation:

Ej =

M∑

i=1

Ei,j . (11)

V. RESULTS

In this section, we give examples to demonstrate the ef-
fectiveness of the proposed methods with two scenarios. In
scenario A, two cases are studied with the goal of minimizing
the charging cost. In order to manage the uncertainty of
the driving pattern, a certain amount of driving requirements
are added for each Edrivej,k in scenario B. Besides this,
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Fig. 3. Driving requirements Edrivej,k for EV 2

the optimal charging results concerning the user’s special
preference are also studied. In addition, longer time horizons
are introduced for planning charging with the purpose of
getting more optimal results. All three studies in scenario B
are in terms of other factors.

A. Optimal Charging Schedule With Basic Driving Require-
ments

This scenario presents the case studies with basic driving
requirements. The plan duration is 24 hours and the time slot is
set to 1h. We expect to use the representative driving patterns
of EVs in Denmark to test and illustrate this methods, however,
this kind of driving pattern are not available at this moment.
But, we are in the process of generating this driving pattern
from the GPS survey data on vehicle fleets (December 2001-
April 2003) provided by Department of Transport, Technical
University of Denmark. Meanwhile, this paper focus on the
methods to generate the charging schedule for an EV fleet,
therefore, some artificial driving requirements and assumptions
are given in the following:

• Based on the study [13], 150Wh/km is used to calculate
the energy consumption from the driving distance.

• The drive speed is constant for all EVs, e.g. 60km/h.
• Power capacity of Battery is 20kWh, i.e. Ecap and the

charging power is 2.3kW based on 10A ∗ 230V .
• State of charge (SOC) should be between 20% and 85%

Ecap, because the battery life can be longer if the SOC is large
than or equal to 20% and the charging behavior will be close
to linear equation when the SOC is below 85%.

Two individual cases EV 1 and EV 2 are considered
based on the above assumptions, representing the normal and
complicated case, respectively. In Fig. 2 and Fig. 3, we give
the driving requirements for these two EVs with the light blue
block. Fig. 4 presents the spot price in one day (blue curve)
(12, Jan, 2011), DK-West, from NordPool, which is used for
the predicted price for fleet operator.

The initial energy state E0 is set 4kWh, 4kWh for EV 1
and EV 2, respectively. In Fig. 5 and Fig. 6, the charging
schedule for EV 1 and EV 2 are given. It is clear that the
charging time is located during the time slots where the
electricity price is lower compared to other time slots while
still fulfilling the driving needs.
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B. Optimal Charging Schedule With other Factors

The question in this mathematical model is that this will
always result in minimum SOC at the end of the plan duration,
which can be shown by the fig. 8. In order to manage it,
the extended plan duration is introduced here. By taking
advantage of more decision variables, more optimal results can
be obtained. One question remains: how long should the plan
duration be? This relies on the prediction of the spot price. If
the more accurately predicted spot price is available for this
longer plan duration, the fleet operator can benefit from such
solution. However, the fleet operator might lose more if there
are large deviations between forecasted and the real price. An
example with a two-days time duration is studied here, Fig. 4
shows continuous two-day electricity spot price, (12-13, Jan,
2011), DK-West. The charging schedule is shown in Fig. 9,
in which the last hour of the first day is also charged for next
day. With this method, the day-ahead charging schedule can
be iteratively calculated.

In addition, the above scenario has limitations when the
users might want to change their driving requirements, e.g,
need more energy than predicted Edrivej,k. Therefore, with

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n
e
rg
y
/
k
W
h

Time/h

Fig. 10. Charging schedule of EV1 with more driving requirements in
scenario B

the purpose of managing the uncertainty of user’s driving
requirements, it is reasonable to add a certain amount driv-
ing requirements for the predicted Edrivej,k. But how many
driving requirements should be added? This question should
rely on two main aspects, charging costs and the possibilities
of managing uncertainties of driving requirements. In other
words, the charging costs can be lower with the more accu-
rately predicted driving requirements. We do not give such data
analysis since the real driving pattern is not available now. One
case is given to show the difference, this can be illustrated in
Fig 2 and Fig 3 with the red block on the top of the light blue
block, which here 20% more driving requirements are added
for each Edrivej,k. The corresponding charging schedule is
shown by Fig 10.

Besides the above conditions, some users might have special
preferences, e.g, they want to ensure their EVs are close to be
fully charged in the morning since they can have more flexible
choices. If we assume the users in Scenario A are risk takers,
then the users in this Scenario are more focus on the reliability.
However, how far the SOC of the battery should be charged?
This is the similar problem compared to the above one. Also,
we give an example, based on the normal case EV1 with the
light blue in Fig. 2 driving requirements. We assume that this
user want his/her EV to be charged to SOC 85% at 7:00 AM.
Fig. 11. illustrates the charging schedule.

The above case studies only gave examples of an EV fleet
with two EVs and Fig. 7 illustrates the result of EV fleet
charging schedule. This is indeed a small number. Fig. 12,
which is obtained from ongoing project named Edison [18],
can illustrate the aggregation management of the EV fleet by
fleet operator. Meanwhile, this picture also show the potential
importance of the fleet operator, since a large scale EV fleet
need to be managed which can optimally use the batteries to
balance the intermittency of wind. We think the above work
can give a method for the fleet operator to obtain the optimal
charging schedule for the whole EV fleet.
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VI. DISCUSSION AND CONCLUSIONS

This paper presents a theoretical framework for designing
and analysis of an EV fleet optimal charging schedule. The
model reveals a general charging process for individual EVs
to get their charging schedules with the criteria of obtaining
a minimum charging cost. By formulating this problems via
linear models under a certain assumptions, this model for
optimal charging can adapt to any driving pattern with flexible
time intervals (from hour to minutes).

Future research is planned to be done from the following
perspectives:

1. Analyze the given ’Danish National Transport Survey
data’ and present a representative driving pattern, and this
driving pattern will be used in the analysis of EV optimal
charging.

2. Extension the EV fleet charging schedule with intra-
day markets, regulating power markets. With the intra-day
markets and regulating power markets, the EV aggregator can
dynamically evaluate the day-ahead charging schedule and
obtain the optimal potential profits after day-ahead market.
This research can also be extended to a real time market.
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Abstract As increasing numbers of electric vehicles

(EVs) enter into the society, the charging behavior of EVs

has got lots of attention due to its economical difference

within the electricity market. The charging cost for EVs

generally differ from each other in choosing the charging

time interval (hourly), since the hourly electricity prices are

different in the market. In this paper, the problem is for-

mulated into an optimal control one and solved by dynamic

programming. Optimization aims to find the economically

optimal charging solution for each vehicle. In this paper, a

nonlinear battery model is characterized and presented, and

a given future electricity prices is assumed and utilized.

Simulation results indicate that daily charing cost is

reduced by smart charing.

Keywords Optimal control � Dynamic programming �
Nonlinear control � Electric vehicles

1 Introduction

An important solution to curb CO2 emission and oil depen-

dency taken by the automobile industry is the introduction of

electric vehicles (EVs) [1, 2], since the EVs can shift

petroleum consumption to electricity. As an asset, it is well

understand that the EV can provide valuable service to power

systems, more than its transportation function. On the one

hand, battery of the EV can be considered as a controllable

load. With optimal charging or smart charging for the bat-

tery, the peak load can be shaved, and by doing this, EV

owners could maximize their profits by purchasing energy at

the possibly lowest electricity price. On the other hand,

battery of the EV can also be seen as energy storage equip-

ment which has possibility to provide vehicle-to-grid (V2G)

and grid-to-vehicle service and thereby earning profit [3–6].

Therefore, an optimal charging scheme is required to coor-

dinate the needs from the power system and maximize the

EV owner’s profit. In a general word, for a power system

operator, ‘‘optimal’’ can be interpreted as enable the large

penetration of renewable and distributed energy resources,

like wind power, photovatics, and also accommodate the

new loads, like EV and heat pump, both reliably; from EV

users perspective, optimal means minimizing their charging

cost without interfering their daily drive profile.

Many researches have been done on EV optimal charging

management. In the early 1980s, Heydt has already resear-

ched the impact of electric vehicles on the grid and con-

cluded that typical driving patterns will likely to coincide the

charging with peak load periods of power system [7]. So,

methods are developed to avoid overloading with off-peak

charging. In paper [8], Kristien researches the impact of

charging PHEVs on a residential distribution grid, investi-

gates the difference between coordinated and uncoordinated

charging with respect to various penetrations of PHEVs. Olle

presents a linear approximation-based method to formulate

and coordinate the optimal charging problems, grid con-

straints in terms of thermal overloading are considered. With

this method, the flexible charging ability of EVs is utilized to
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mitigate the grid overloading problem; and with this charg-

ing flexibility, individual EV owner’s can be controlled to

charge at the period with the lower electricity price [9]. In

paper [10], Niklas proposes two dynamic programming-

based algorithms to find the economically optimal solution

for vehicle owner. The first reduces daily electricity cost

substantially. The latter takes into account vehicle-to-grid

support as a means of generating additional profits by par-

ticipating in ancillary service markets. Sekyung proposes an

aggregator that makes efficient use of the distributed power

of electric vehicles to produce the desired grid scale power,

which is V2G concept that can make revenue from providing

regulation service [3].

Typically, an optimal control problem includes a cost

function of state and control variables and the control

objective is to find the paths of the control variables that

minimize the cost functions. In the scope of smart charging

of EVs, the cost function can be derived from two per-

spectives: one is the single charging cost of EV without

grid constraint, which means the grid is large to handle the

new load of EVs. Another optimal control problem is to

minimize the total monetary cost of fulfilling the charging

requirement, given assume spot price and monetary price

for overloading phenomenon. In this paper, we take the

first option and consider the EV as a controllable load, and

investigate its smart charging potential. The functionality

of regulation service will not be discussed here.

The following paper is organized as follows. A nonlin-

ear model of electric vehicle is modeled in Sect. 2. Section

3 gives a system architecture with appropriate assumptions.

Section 4 constructs a dynamic programming-based

mathematical model. In Sect. 5, one case is studied to

investigate the optimization of EV charging cost.

2 Electric vehicle model

With the purpose of charging planning, the EVs are con-

sidered to be battery packs in this study that have nonlinear

behavior [9]. Each battery is modeled as a steady-state

equivalent circuit, which represented by an ideal voltage

source Voc in series with an internal resistance Rint.

Both the voltage source and the internal resistance are

dependent on the state of charge (SOC) of the battery.

Based on the equivalent circuit, we have the following two

equations to describe it.

U2 ¼ Voc � Rint � I2 ð1Þ

and

P2 ¼ U2 � I2 ð2Þ

Equations (1) and (2) above are combined with Ohm’s law

to find the current, which is a function of the SOC, Voc, and

power P2 (negative during charging) to the battery. Two

solutions are mathematically possible, but only the smaller

one is physical because battery terminal voltage is limited

to a certain range around that of the open circuit [10].

I2ðSOC;P2Þ

¼
VocðSOCÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVocðSOCÞÞ2 � 4 � RintðSOCÞ � P2

q

2RintðSOCÞ

ð3Þ

In order to study the optimization charging planning for EV

battery, a battery cell is given in this paper. The battery

parameters depend on the information of certain cell

characteristics and the size of the battery pack, which are

shown in Fig. 1 and Table 1, including the datasheet

parameters for the Saft VL 45E [18]. This type of model is

commonly used when researching the optimal control of

EVs. Eint0 and Q0 represent the maximum energy storage

and total capacity of the battery cell, respectively. Other

parameters Voc, Rint, and so on have been defined using the

model of above equations and using information on the

datasheet. The equivalent resistance Rint is approximately

constant for the majority of the charge cycle. Therefore, in

this paper, it is modeled as a constant resistance.

The battery pack for electric vehicle is scaled according

to the scaling equations in Table 1. Note that the scaling

variables ns and np are not necessarily integers. Conse-

quently, the resulting battery pack after scaling may not be

implementable in a vehicle. It is however assumed that the

behavior of the pack reflects the real behavior sufficiently

well.

3 System architecture and assumptions

In general, two kinds of control architecture can be

deployed for the optimal charging of EVs, one is called

centralized control and the another is named decentralized

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

SOC x[−]

V
oc

 [V
]

0 0.2 0.4 0.6 0.8 1
1

2

3

4

SOC x[−]

R
in

t [
m

O
hm

]

Fig. 1 The open circuit voltage and internal resistance of the Saft VL

45E cell

Neural Comput & Applic

123



control, the main difference lies in the deployment of the

controller in different position. For the centralized control,

the controller is put on the aggregator level, and for the

decentralized control, the controller is located at the indi-

vidual EV level. Both of the centralized and decentralized

controls have its advantages and disadvantages. For cen-

tralized control, the aggregator can aggregate large popu-

lation of EVs and then have more competence in the

electricity market, for example, may have the chance to

buy cheaper electricity, provide ancillary service to grid

more stable. However, the system operator would require

significant communication ability with EVs and powerful

computation capability. While decentralized control can

release the highly requirement on communication, but the

drawback is that the individual EV needs to collect and

store trip history and that, if EVs need to consider their

charging schedule with grid constraints, the need for

communication will be high.

Consider the needs of an optimal control study, cen-

tralized control architecture is presumed, in which a single

entity (aggregator) directly controls the charging strategy

of every vehicle to facilitate smart charging [11], and each

vehicle indirectly accesses to electricity market through

this aggregator, which is a smart interface between EV

fleets and market to play a role of coordinating charge and

discharging operation of multiple vehicles. With this cen-

tralized control, there exists an underlying assumption, that

is, the existence of contracts between aggregator and

consumers, which enable the aggregator send explicit

control signal to charge or discharge the EVs. The general

information flow is depicted below:

Figure 2 shows that aggregator is fed with following

data for charging plan making: predicted electricity price,

future driving pattern, grid constraints, and EV data, such

as EV model and state of charge of EV battery. If Evs

implemented in a large scale, peak load increases signifi-

cantly and grid may be destabilized. In this case, grid

constraints are essential for aggregator. In our study,

however, only one vehicle’s charging schedule is resear-

ched, which means grid constraints could be neglect. With

all of these information, the aggregator can make an opti-

mal control strategy for EV.

In order to achieve these centralized control, some

assumptions are given and listed below:

• The aggregator is set up to be a price taker, which

means the aggregator does not have a sufficiently large

market share to affect electricity price.

• The electricity price is assumed to be known by the

aggregator, while in the reality, the aggregator needs to

predict the electricity spot price.

• An automated communication technology is exist to

enable the smart charging, that is, all information of

EVs can be immediately communicated to aggregator,

and the control signal generated by the aggregator can

be delivered to EVs.

• In order to have a successful charging plan, a repre-

sentative driving pattern is essential. Normally, intra

city or short-term driving patterns are largely predict-

able due to fixed working hours and fixed business

schedules and routes. Therefore, a future driving

pattern is assumed to be obtained by estimating data

of past trips or established driving plans. Moreover,

electricity demand of every trip is also needed to be

assumed based upon driving pattern.

4 Control task formulation

The following notation will be used throughout this paper.

Since the market with day-ahead pricing is assumed, the

charging plan covers an entire day. For this short-term

planning, the time horizon [0, N] of a day is discretized into

equidistant time intervals [k, k ? 1] with k ¼ 0; . . .;N � 1:

It is assumed that the time interval is Dt:

This problem is addressed by considering the following

discrete system which describes the battery:

xkþ1 ¼ Tðxk; uk; kÞ ð4Þ

State variable xk represents the state of charge (SOC) of the

battery at time k. xk is not only discrete in time (index k)

but also in value. Any value has to be included in the

predefined set X, which can be calculated by a function of

charge Qk and total capacity Qmax.

xk ¼
Qk

Qmax

ð5Þ

uk in Eq. (4) is the control variable, which is dimensionless

and discrete. Pk is the charge power when plug-in. In order

to obtain Pk, uk is multiplied with the maximum available

charge power (Pmax-plug) when plug-in. The electric vehicle

discussed in this paper is purely electric propulsion system,

which is characterized by an electric energy conversion

Table 1 Parameters of the VL 45E cell

Variable VL 45E Unit Scaling

Eint0 590.4 kJ Eint0 � np � ns

Q0 45 Ah Q0 � np

Vmax 4 V Vmax � ns

Vmin 2.7 V Vmin � ns

Imax 100 A Imax � np

Voc See Fig. 1 V Voc � ns

Rint See Fig. 1 ohm Rint � ns

np
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chain upstream of the drive train, roughly consisting of a

battery (or another electricity storage system) and an

electric motor with its controller [12]. EV does not have an

internal combustion engine to provide power for

propulsion. Battery must be charged from an external

electric network. Due to this fact, the values of uk are fixed

at 0 when driving, while these values range from 0 to 1

when plug-in. If Uplug is set that covers all possible values

of uk, its discretization may be described as follows:

uk ¼
uk 2 Uplug; k 2 Kplug

uk ¼ 0; k 2 Kdriv

�

ð6Þ

Kplug is a set of indices k within the time periods when the

vehicle is plugged in, while Kdriv refers to the driving

intervals. The summation of the number of elements in

Kplug and Kdriv is N, which denotes the total number of time

intervals. Any index k in Kplug or Kdriv has to be element of

the predefined set K.

k 2 K ¼ fKplug;Kdrivg ð7Þ

A specific control strategy is denoted by

u ¼ fu0; u1; u2; . . .; uN�1g ð8Þ

Any value of uk has to be element of a predefined set U, which

known as set of admissible decision. The total cost of a

sequence, f0
U, is given by the cost of the final step, fN(xN), plus

the cost for all other steps, vk(xk, uk, k), then we have:

f U
0 ðx0Þ ¼ fNðxNÞ þ RN�1

k¼1 vkðxk; uk; kÞ ð9Þ

To minimize the objective function (4.9), the optimal

control strategy u� ¼ fu�0; u�1; u�2; . . .; u�N�1g has to be

obtained. This is a classic dynamic programming

formulation and can be solved as described by the

literature [13, 14, 19]. The optimal trajectory is

calculated starting with the cost of the last step and going

backwards through time until the first state’s optimal cost

f0
*(x0) is given by the algorithm. The recursive equation is

listed as follows:

fkðxk; ukÞ ¼ minfvkðxk; ukÞ þ fkþ1ðxkþ1Þg
¼ minfvkðxk; ukÞ þ fkþ1ðTðxk; uk; kÞÞg

ð10Þ

u�k ¼ argminðfkðxk; ukÞÞ ð11Þ

According to dynamic programming, some special terms

are given as follows:

k: step

X: set of admissible state

U: set of admissible decision

Admissible state set X must be defined appropriately,

because T(xk, uk, k) may not be any of the elements of X

where fk?1 is know if set X is not defined good enough,

which means T(xk, uk, k) may not equal with xk?1 as

described in Eq. (4). Actually in practice operation, errors

are hardly avoided that T(xk, uk, k) will usually not be on a

grid point no matter how the set X is defined. Therefore, an

approximation is needed. Normally, xk?1 is defined as a

range by plus a margin of 10 % to cover the possible

T(xk, uk, k).

4.1 Cost of final step

The objective function is to ensure that the battery is fully

charged before the first trip of the following morning. Step

N is the moment right before the next day’s departure.

Therefore, the value of xN is 100 %, and no charging

operation happens at step N. The cost of final step fN(xN)

should be defined as.

fNðxNÞ ¼ 0 ð12Þ

4.2 Cost of other step

For EV, a purely electric propulsion system, it is important

to acknowledge different step function vk for driving mode

and plug-in charging mode. The most general case is given

by introducing the following discontinuity:

Fig. 2 Information flow in

centralized control

Neural Comput & Applic

123



vkðxk; uk; kÞ ¼
vplugðxk; uk; kÞ; k 2 Kplug

vdrivðkÞ; k 2 Kdriv

�

ð13Þ

where

vplugðxk; uk; kÞ ¼ gk � uk � Pmax�plug � CelðkÞ � Dt ð14Þ

and

vdrivðkÞ ¼ 0 ð15Þ

gk denotes the efficiency parameter between step k and

k ? 1. Cel is the price of electricity per unit of energy. Dt is

the time interval between step k and k ? 1. Since EV is a

purely electric propulsion system, charging cannot take

place during driving period as hybrid electric vehicle did,

and the charging cost is set to 0.

4.3 Equation of state transition

In order to well describe battery charging, a first-order

system is developed with Backward Euler method applied

to Eq. (5), where xk is an actual SOC at the step k, xk?1 is a

desired SOC at step k ? 1.

xkþ1 ¼ Tðxk; uk; kÞ ¼ xk þ Dt � _xkþ1

¼ xk þ Dt �
_Qk

Qmax

¼ xk þ Dt � I2ðxk; kÞ
Qmax

where

I2ðxk; kÞ ¼
VocðxkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVocðxkÞÞ2 � 4 � Rint � PBTðkÞ
ns

q

2Rint

ð16Þ

that comes from Eq. (3) given in Sect. 2. The battery

current is calculated using

PBT ¼ ns � U2 � I2 ð17Þ

and

PBTðkÞ ¼
�gk � uk � Pmax�plug; k 2 Kplug

Pdr; k 2 Kdriv

�

ð18Þ

Equations (17) and (18) are deduced based on Sect. 2 EVs

are considered to be battery packs in this study, which is

implied with a parallel wiring, resulting in an equal power

contribution of all cells. Pdr(k) denotes power requirement

during driving cycle. It is obvious that power requirement

of every step when driving is hardly predicted. Instead, it is

possible to predict energy requirement throughout a whole

driving trip, which can be a replacement of power

requirement. Note that the relation shown in Eq. (17) is

only exact for infinitesimal time intervals. To achieve

sufficient accuracy, time interval choosing is very important.

It should be done in a way that maximum charge Dt � I2

is small enough and does not influence the results of the

battery equations substantially.

These state transition models [Eq. (16)] are general

enough to account for the possibility of parallel processing

among the various control strategies, as well as for

redundancy in the database. Once the concept of state

transition has been properly defined, dynamic program-

ming can be used to find the state containing the answer to

the query that has the minimum cost and to find the optimal

trajectory to that state (i.e., optimal sequence of processing

operations) [15].

5 Case study

In this section, a case is studied and the goal of optimi-

zation is to present a charging schedule for every individual

vehicle to minimize the cost of electricity while satisfying

the vehicle owner’s requirements. In this case, vehicle

would be plugged in every time when the driving finished.

A comparison is made between the results of an EV with a

fast charging scheme and those of the dynamic program-

ming-based method.

The charging schedule is divided into time intervals for

a 24-h-based period. The period starts from the first second

when the vehicle owners begin their first trip and ends right

before the next day’s departure, which has 288 intervals of

5-min each. As mentioned previously, the objective func-

tion is to ensure that the battery is fully charged before the

first trip of the following morning, which means

x0 = 100 % and xN = 100 %. The vehicle used to study in

this paper is a battery packs, which is a purely electricity

propulsion system. The basic battery information is shown

in Sect. 2, and more additional is listed in Table 2. U is

defined as the set of admissible state which indicate the

possible control signals and contains 11 elements which

limited in ½0; 0:1; 0:2; . . .; 1:0�: X is defined as the set of

admissible decision which indicate the possible SOC of the

battery and contains 101 elements which limited in

½0; 1; 2; . . .; 99; 100 %�. Dt is time interval, which is defined

as 5 minutes. Here, we give ns = 100 and np = 1.12.

Typically, the battery operation is limited to a given state

of charge operating range. It is assume that battery has a

minimum state of charge of 10 %. Hence, here the SOC is

limited between 10 and 100 %. Moreover, it is important to

know a driving behavior of a vehicle, which includes the

departure time, return time, and energy requirements of

every trip. Based on the vehicle parameters, a driving map

includes three trips during a day is given in Table 3.

Another important piece of information is electricity

prices, which are based upon a typical work day of

04.05.2011 from Nordpool Spot market area Denmark

West [17]. To obtain an optimal charging schedule, a price

Neural Comput & Applic

123



for electricity service is prerequisite. Any optimization

should take use of real prices of one day.

5.1 Fast charging

Fast charging is a kind of uncoordinated charging. It

assumes that vehicles owners face a flat price throughout

the whole and consequently their vehicles are charged

instantaneously when they are plugged in, and the batteries

will be fully recharged as fast as possible without consid-

ering the daily electricity price. Some vehicle manufac-

turers, such as Nissan, give their own definition for battery

fast charging. For example, Nissan LEAF’s battery is

intended to accept several rapid charging scenarios

including a 50 KW ‘‘fast charge’’ which gives 80 % charge

in thirty minutes, or a five-minute fast charge which

delivers an additional 31 miles of range. These rapid

recharge modes will require a special three-phase charger,

which is most likely to be owned by commercial or gov-

ernmental entities in distributed charging stations [16].

This fast charging offers most flexibility to driver. How-

ever, it is not the fast charging we discussed here, because

homeowners do not have a spare 50 KW charging power,

but prefer to have a common, single-phase 220 V with

maximum 4 KW charging power. The profiles with fast

charging are given by Fig. 3. It is obvious that every time

when the vehicle finishes a trip, the battery will be charged

immediately without considering the electricity prices. The

battery is fully charged as fast as possible once it is plugged

in. The fast charging strategy provides customers with

flexibility; however, the electricity costs will be high,

which for the profiles amount to EU 2.2415.

5.2 Smart charging

The idea of the smart charging is to achieve optimal

charging to minimize the charging cost. The results of the

fast charging algorithm is compared to an EV with a

dynamic programming-based smart charging scheme. With

the automated communication technology, all information

can be immediately communicated to aggregator, which

then returns a charging plan for an individual EV for the

following day. The optimal control strategy will be

obtained and sent to the individual vehicle as control sig-

nals for charging power. It is expected that most of

charging occurs when given the comparably lower prices.

The results of the dynamic programming-based method are

shown in Fig. 4. The simulation parameters are given in

Table 2.

From Fig. 4, we have a general idea that electric vehicle

charging is done when the price for electricity is lowest.

The SOC of battery shows that the battery does not have to

be fully charged before next trip. Instead, it would be

sufficient if the SOC is charged enough to support the

energy consumption for the next trip. This leads to a

electricity cost of EU 1.8333 for a whole day, which is

cheaper than the fast charging cost. Smart charging cannot

offer flexibility for driver as fast charging does. Conse-

quently, sometimes when drivers drive away their vehicles

before the preannounced departure time, the battery may

not be enough charged to meet the energy requirement for

the next trip, which the drivers have to accept. It is also

interesting that when the vehicle is charged, it always does

Table 2 Simulation parameters

Discretization Parameters

U 11

X 101

Dt 300 s

Battery Value

Total capacity 50 Ah

Maximum energy storage 18.4 KWh

Maximum plug power 4 KW

Rint 0.0025 ohm

Table 3 Driving behavior

Trip Departure time Return time Energy

requirement (KWh)

1 8:00 9:00 11.04

2 15:00 16:00 13.25

3 20:00 21:00 11.04
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Fig. 3 Profile with fast charging
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its charging with the maximum available power, which

means uk is equal to 1 when xk is increasing. This is caused

by the fact that intraday price differences are higher than

loss costs and supported by increased inverter efficiency at

high power throughputs [10]. Due to this consideration,

some paper studies on control of charing sequence with

charging rate fixed to the maximum, instead of charging

rate control, such as [3].

5.3 Comparison for the simulation results

The code for smart charging optimizes a 24-h interval in

Matlab takes 13.19 s on 2.1-GHz CPU with 1.99 GB of

RAM.

The following Table 4 gives a comparison between two

charging algorithms. Each has both advantages and dis-

advantages as can be seen from the table. However, it is

widely recognized that electric vehicle will be a control-

lable load in the near future, which is more intelligent and

has more communication ability, even though giving a

smart charging schedule takes more time due to compli-

cated charging control algorithm.

6 Conclusions

This paper presents a mathematical formulation and a

dynamic programming-based algorithm for optimizing an

EV’s charging schedule with given electricity prices and

driving pattern within a centralized control architecture.

Smart charging without provision of regulation service

reduces daily electricity costs for driving from EU 2.2415

to EU 1.8333 compare with fast charging. With smart

charging, EV is recharged during the lowest electricity

price period, where is also the off-peak hours. It naturally

drops the possibility of grid overload during the peak load

hours.

More work could be done in the future. Only one

electric vehicle’s charging schedule has been researched

here. Studies of optimal control on large number of EVs

should be done, which involves high requirement on

communication, and possibility that EV charging may

impact the electricity price. Therefore, decentralized con-

trol architecture can be considered and electricity price

forecasting models should be properly developed. Fur-

thermore, the optimization model should be extended to

account for providing of regulation service and given dif-

ferent type of electric-drive vehicles as well as various

driving patterns.
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Abstract-- The optimal charging schemes for Electric vehicles 
(EV) generally differ from each other in the choice of charging 
periods and the possibility of performing vehicle-to-grid (V2G), 
and have different impacts on EV economics. Regarding these 
variations, this paper presents a numerical comparison of four 
different charging schemes, namely night charging, night 
charging with V2G, 24 hour charging and 24 hour charging with 
V2G, on the basis of real driving data and electricity price of 
Denmark in 2003. For all schemes, optimal charging plans with 5 
minute resolution are derived through the solving of a mixed 
integer programming problem which aims to minimize the 
charging cost and meanwhile takes into account the users' 
driving needs and the practical limitations of the EV battery. In 
the post processing stage, the rainflow counting algorithm is 
implemented to assess the lifetime usage of a lithium-ion EV 
battery for the four charging schemes. The night charging 
scheme is found to be the cheapest solution after conducting an 
annual cost comparison.  

Index Terms—Electric vehicle, mixed integer programming, 
optimal charging, rainflow counting, vehicle-to-grid, V2G 

I.  INTRODUCTION 
HE technique of optimal charging in the context of 
deregulated electricity markets, sometimes referred as 

smart charging, has recently caught a lot of attention, as there 
is a tremendously growing need for electrifying the 
transportation sector [1].  The term “optimal” can be generally 
interpreted from two perspectives: the EV owners and the 
power system operators.  

From the EV owners’ point of view, “optimal” can be 
simply interpreted as minimizing the cost of charging while 
guaranteeing their need for driving. In [2]-[5], this perspective 
has been intensively investigated based on various modeling 
techniques including linear programming, dynamic 
programming and quadratic programming. A common 
impression inferred by these studies is that the optimal 
charging as a feasibility solution can considerably reduce the 
cost of charging; however, to support a large-scale roll-out of 
EV, services like V2G have to be offered by EV or EV fleet to 
improve the EV economy [6]-[7].   

From the power system operators’ point of view, “optimal” 
can be generally interpreted as a complex objective which 
aims to maximize the advantages of EV and minimizes its 

This work is part of project ‘EcoGrid EU’ with EU funding. 
The authors are all with the Centre for Electric Technology, Department of 

Electrical Engineering, Technical University of Denmark, Kgs. Lyngby 
DK2880,  Denmark (e-mail:{sy, junhu, abp, pba, cnras, stc} @elektro.dtu.dk). 

disadvantages. The energy storage nature of EV makes it a 
potential solution to many power system problems, such as 
load shifting and frequency regulation. Meanwhile, its nature 
of being a mobile electrical load challenges the power system 
operation, as an inappropriate integration could easily cause 
voltage issues and overloading in the distribution network. 
Regarding this aspect, intensive studies have been done in [8]-
[11], wherein coordinated charging schemes for an EV fleet 
with either centralized or decentralized control structures are 
developed to handle grid constraints and meet the driving 
requirements at the same time. 

Apart from the different perspectives of the two groups of 
stakeholders, the optimal charging schemes are also heavily 
dependent on a large number of factors, including: 

1) range of uncertainty related to electricity price and
driving pattern [12]; 

2) fidelity of the EV battery models which varies from
linear to non-linear; 

3) modeling approaches used to describe the charging
process and the associated optimization techniques 
which span from the conventional linear programming 
to the genetic algorithms [13];    

4) time resolution used in the various simulations that
spans from a few minutes up to hours; 

and so on.  
In this study, four different optimal charging schemes for 

EV, namely night charging, night charging with V2G, 24 hour 
charging and 24 hour charging with V2G, are formulated as a 
set of mixed integer programming problems. Based on the 
practical driving data and electricity prices collected for 
Denmark in 2003, these charging schemes are simulated at a 
time resolution of 5 minute. Objectives for the four charging 
schemes are set to charging cost minimization, due to the fact 
that today’s EV penetration is relatively low compared to the 
other Distributed Energy Resources (DER) technologies and 
some distribution grids can handle the penetration level up to 
20% [14]. In the following text, the mathematical formulation 
for various optimal charging schemes is described in Section 
II. Section III presents the numerical model development.
Results and discussions are summarized in Section IV, 
wherein battery life and annual cost comparison among the 
four schemes are included. Section V concludes the study. 

II. PROBLEM FORMULATION

   Today, energy procurement of EVs into the power 
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system is very market-driven, given the fact that the economy 
of EVs can be improved by market participation via 
appropriate aggregation services, e.g. Virtual Power Plants 
(VPP). A comprehensive analysis of different aggregation 
setups has been carried out by the Danish EDISON project in 
the last few years [15]. The report from the EDISON project 
suggests three methods that can facilitate the EVs' 
participation in today's electricity spot market: 

1) The retailer broadcasts the electricity price once a day 
to the individual EV owners and the EV owners 
therefore make appropriate charging schedules 
according to the known price and the local 
intelligence; 

2) The charging strategy can be a simple time of day 
charging based on EV owners' empirical knowledge 
on when the electricity price is relatively cheap, such 
as at night; 

3) THE charging of EVs can be scheduled or controlled 
by a fleet operator based on a contractual setup, 
where the central intelligence is more relied upon. 

In this study, the first integration method is utilized and 
modified to accommodate four different charging schemes: 

1) Night charging: the charging period is constrained to 
be from 7pm to 7am, and discharging is not allowed; 

2) Night charging with V2G: the charging or discharging 
actions can be performed between 7pm to 7am; 

3) 24 hour charging: the charging can be performed 
anytime when the EV is not in use, and discharging is 
not allowed; 

4) 24 hour charging with V2G: the charging or 
discharging actions can be performed anytime in a 
day. 

 Since the market segment of today's EVs is primarily 
urban area due to the battery capacity limitation and public 
health concerns, this study firstly assumes that the charging 
infrastructure is available everywhere in the studied urban 
area, indicating that the EVs can be charged or discharged as 
long as they are not used for driving. Further, the terminology 
“V2G” used in this study refers to selling the battery energy 
back to the grid on an hourly basis at prices set the previous 
day; while in other literature V2G is normally referred to a 
mechanism that activates the provision of ancillary services. 

To enable the comparison study, a mixed integer 
programming formulation is developed and solved using 
Matlab to find the optimal solution for each charging scheme 
applied to an individual EV. The common objective of each 
charging scheme, as in (1), is to minimize the cost of charging 
given the broadcasted electricity price  and energy 
required for driving ; meanwhile, the four charging 
schemes are enabled separately by turning on/off the binary 
variables  and  . 

 ∆ ∙ ∙ +	∆ ∙ ∙ ∙ 	  

                                                                                                (1) 
s. t.                                                                                 

= + {∆ ∙ + ∆ ∙ − ∙ }∙ ≤ ≤ ∙ 																																																														+ 1 ∙ + 1 ≤ 																																																																									0 ≤ ∆ ≤ , ∙ ∙ ∆ 																																																																									− , ∙ ∆ ≤ ∆ ≤ 0																																																																												+ + = 1																																																																													  
                                                                                                (2) 
where the planning duration is divided into  time intervals 
with  denotes the number of sequence and ∆  denotes the time 
length of each interval. Decision variables ∆  and ∆  
represent the energy charged into and discharged from the 
battery in each time interval respectively, while the other three 
binary variables , , and  indicate the on/off status 
of charging, V2G and driving for each corresponding time 
interval. To facilitate the expression, an intermediate variable 

is introduced to represent the energy level of the battery in 
the end of each time interval.  

Parameters  and  represent the nominal energy 
capacity and the initial energy of the battery in the planning 
period, while the charging and discharging efficiency are 
represented by and . The maximum power exchanged 
between the EV inverter and the electrical grid is expressed by ,  and ,  respectively during charging and discharging 
processes, which constrains the maximum energy exchanged 
between the EV and the grid. For battery life concerns, 

and  are further introduced to represent the 
manufacturer recommended sate of charge (SOC) range. 

Explanations for the inequality constraints can be found in 
[3] wherein a similar problem is described using linear 
optimization by the same group of authors. Compared to the 
previous study, a major improvement is made in this study by 
formulating various charging schemes in a more generic and 
flexible way. Power performance of the battery is not included 
in this paper; however, given the energy performance within a 
certain time, the power performance can be derived simply by 
elaborating on the charging schemes e.g., constant power and 
constant current. 

III.  NUMERICAL MODEL DEVELOPMENT 
For this numerical case study, the optimal charging plans 

for different charging schemes are derived for the next day 
with 5 minute resolution given the broadcasted electricity 
price and EV owners pre-defined driving requirement. The 
assumption of flawless forecasting made in this paper aims to 
resemble the best case scenario for different charging 
schemes. In practice, EV owners may not be able to precisely 
forecast their driving needs for the next day with 5 minute 
resolution in practice, which could result in higher cost for 
charging.  

The daily optimization is further repeated over the course 
of a month to retrieve a more general charging performance. 
In this section, the selected battery model parameters, the 
driving information and the source of electricity hourly prices 
are briefly explained.  
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TABLE V 
ANNUAL COST COMPARISON FOR DIFFERENT CHARGING SCHEMES 

Charging Options  (DKK/year) 
night charging 8359 
night charging + V2G 9569 
24h charging 8875 
24h charging + V2G 13859 

 

V.  CONCLUSION 
This paper has provided a numerical comparison of four 

different optimal charging schemes, namely night charging, 
night charging with V2G, 24 hour charging and 24 hour 
charging with V2G, on the basis of real driving data and 
electricity price of Denmark in March 2003. Based on a best 
case scenario i.e. flawless forecasting, optimal charging 
schemes with 5 minute resolution are found by solving a 
mixed integer programming problem, and compared from both 
short-term and long-term perspective.  

It has been found that the “night charging” scheme exhibits 
the lowest annual cost of using the EV. On the contrary, 
although the V2G option can to a great extent reduce the 
charging cost, its severe impact on the battery lifetime 
noticeably increases the annual cost of using the EV. This also 
implies the importance of judicious designs for V2G 
operations, which shall not only account for the value of V2G 
but also suppress its negative effects. Difference between 
“night charging” and “24h charging” appears to be small as 
the electricity price is normally cheap around midnight. This 
may indicate the need for establishing a residential charging 
infrastructure could come before the need for having a public 
charging infrastructure.  

The EV economics are heavily dependent on the pattern of 
electricity prices and EV users as well as the other important 
factors, such as tax and subsidies. The study performed in this 
paper is therefore more informative than conclusive. To 
deliver an unbiased assessment of different charging schemes, 
collecting the sufficient representative information, refining 
the modeling assumptions, investigating the grid impacts and 
designing appropriate validation approaches are considered as 
future work.  For the V2G possibilities, instead of providing 
bulk energy back to the grid as presented in this study, it 
would also be interesting to examine the economy of 
providing ancillary services to the power system operators 
with various risk-averse algorithms.  
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Coordination Strategies for Distribution Grid
Congestion Management in a Multi-Actor,

Multi-Objective Setting
Peter Bach Andersen, Junjie Hu, Kai Heussen

Abstract—It is well understood that the electric vehicle as
a distributed energy resource can provide valuable services
to the power system. Such services, however, would have to
co-exist with hard constraints imposed by EV user demands
and distribution grid operation constraints. This paper aims
to address the interactions between the stakeholders involved,
mainly considering the distribution grid congestion problem, and
conceptualize several approaches by which their diverse, poten-
tially conflicting, objectives can be coordinated. A key aspect to be
considered is the relationship between the operational planning
and the handling of real-time events for reliable grid operation.
This paper presents an analysis of key stakeholders in terms of
their objectives and key operations. Three potential strategies
for congestion management are presented and evaluated based
on their complexity of implementation, the value and benefits
they can offer as well as possible drawbacks and risks.

Index Terms—Electric vehicle integration, Distribution grid,
Congestion management, Smart charging

I. INTRODUCTION

Grid integration of electric vehicles, distributed generation,
and other distributed resources has been a driver for a range
of smart grid research activities. Here, the field of intelligent
electric vehicle (EV) integration is aimed at minimizing the
adverse effects of introducing electric vehicles into the power
system and maximizing the value for EV owners, the power
system, and society as a whole.

A large part of intelligent EV integration research has been
aimed at such topics as optimal charging of electric vehicles
in term of charging cost [1]–[3], enabling renewable energy
[4]–[6] as well as providing ancillary service to the power
system [1], [7]–[9]. Such studies have primarily been aimed
at system-wide power services and energy markets while not
considering the distribution network. Concurrently, studies
have been carried out that look at charging management solely
for the purpose of avoiding distribution level grid congestion
[10]–[14].

Lately, research done in [15], [16] have been striving to
coordinate these objectives, i.e., to optimize the utilization
of electric vehicles while still respecting the hard constraints
imposed by consumers’ needs and distribution operation con-
straints. In [15], a conceptual framework consisting of both
the technical grid operation and a market environment was
proposed to integrate EVs, the activities of all the actors

This work was supported in part by the iPower project.
Peter, Junjie and Kai are with the Center for Electric Technology, Technical
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including fleet operator (FO), distribution system operator
(DSO) and consumers are described and the simulation results
indicate that smart charging can maximize the EV penetration
without exceeding grid constraints. However, further research
on the coordination between FO and DSO and the interaction
between FOs and consumers are not addressed clearly. A
further development can be seen in [16], in which a complex
scheduling problem involving consumer, fleet operatoor and
DSO were analyzed. The results shows that both power and
voltage constraints due to electric vehicle charging can be
avoided while the FO and consumer can achieve the objec-
tive of minimizing charging costs and fulfilling the driving
requirements. This approach requires a somewhat complex
coordination between DSO and FO but can potentially deliver
a very good solution in terms of optimal grid utilization and
safety.

This paper aims to add to the existing research by addressing
the interactions between the various actors and conceptualize
several approaches, by which their diverse, potentially con-
flicting, objectives can be coordinated with respect to the
operational constraints of the low voltage distribution grid.
A key aspect to be considered is the relationship between the
operational planning done by the actors and the handling of
real time events which is vital for the DSO and the distribution
grid that it represents.

While this paper focuses specifically on the case of EV
integration, the coordination strategies presented, aiming at
congestion management in general, can to a large extend
be translated to a more generic demand side management
perspective.

The remainder of this paper is organized as follows: Sec-
tions II presents three key stakeholders along with their
objectives and operational tasks. In Section III a full map
of the operations identified is presented and Section IV then
expends the map in the examination of three different coor-
dination strategies. Finally, key contributions are summarized
and discussed in Section V.

II. ACTORS: OBJECTIVES AND OPERATIONAL TASKS

An overview of the actors, the grid and the main control
operations is presented in Figure 1. The figure conveys how
the actors’ operations are coupled through interactions via a)
a common physical infrastructure, b) control relations and
c) other information exchange. The coordination of these
operations needs to reflect each actor’s objectives as well
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Fig. 1. Actors (stakeholders), problem domain and main information and
control flows.

as operational constraints. In this problem formulation, we
focus on describing the following key stakeholders and their
objectives.

• Distribution System Operator (DSO),
• Fleet Operators (FO),
• Customers (controllable loads / EVs).
Other relevant influencers include the transmission system

operator (TSO), other market actors and conventional demand.
Their influence is conveyed via control signals, market prices,
and physical network utilization, respectively. They do not
have to be considered here explicitly as their role with respect
to the distribution level is encapsulated via the DSO and FO.

In the following, these key actors are described in terms
of objectives and the operations performed to satisfy these
objectives.

A. Distribution System Operator

The main purpose of the distribution grid is to enable
reliable power delivery to customers at a low-voltage level.
Grid operation by the DSO is therefore aimed at effectively
balancing two main objectives a) reliable grid operation and b)
low cost of operation. We identify the following value drivers
for a DSO:

1) Grid component investments,
2) Capacity utilization factor,
3) Component lifetime,
4) Operation cost (incl. resistive losses),
5) Instrumentation and automation efforts.
Provisioning of distribution grid transfer capacity is planned

to be sufficient in all cases, that is, capacity is provided by the
standard of annual peaks, plus safety factors for anticipated
demand increases. In practice this means that distribution
grids tend to have a relatively low utilization factor. On the
other hand, the distribution grid planners calculate with a high

‘diversity factor’: it could be safely expected that due to the
independent nature of most electricity consumption would lead
to a smoothing effect that would reduce the absolute peak. As
a result, secondary transformers in the distribution grids can
be expected to be dimensioned at lower capacity than the total
current capacity of all connected households.

The operating state of the distribution grid is limited by the
following operation constraints:

• Voltage limits (voltage quality),
• Thermal limits of cables & transformers,
• MVar bands (interface to TSO), or
• Protection settings.

In this paper the focus is on the distribution grid’s ability to
transfer active power.

1) Congestion management: The term ‘congestion’ in dis-
tribution grids refers to a situation in which the demand for
active power transfer exceeds the transfer capability of the
grid. As the electricity grid cannot physically get congested,
the term subsumes the complex mapping of the above men-
tioned grid constraints to the network active power transfer
capacity as seen for each connection point and the need for
deferring demand (or generation1). Whereas the constraints
listed above are specified in terms of limits for specific
parameters (voltage, current, reactive power, active power),
they all may influence the active power transfer capability
available at a connection point. Their mapping is non-trivial,
as it depends on properties of the physical infrastructure,
characteristics of consumption devices and built-in control
behaviours required by the respective grid code.

In general, the term ‘congestion mitigation’ can then be
associated with two types of strategies: a) to (locally) increase
the transfer capacity by means of reactive power and voltage
control and b) by coordinating the throughput via deferral or
curtailment of demand [17]. Both strategies aim at increasing
the utilization factor of the distribution grid.

Here, the term ‘congestion management’ explicitly refers to
strategies of type b), which aim at the coordination of active
power demand with respect to congested grid locations. It
can be assumed that available strategies of type a) will be
exhausted before type b) strategies are applied. Building on
the proposal in [17], the base case for congestion mitigation
will be considered active power curtailment.

2) Distribution System Operation Today: DSO tasks in
conventional system operation, are mostly focused on ‘off-
line’ tasks related to asset management and maintenance.
Distribution systems today tend to be weakly monitored as
compared to transmission grids, and controlled in a decentral-
ized fashion on the basis of preconfigured local controls (e.g.
by means of grid codes and protection settings). Supervisory
control is then reduced time-of-day controlled adaptation of
control settings, configuration management in response to
outages and maintenance related challenges.

Key Operations:
• Grid dimensioning (incl. contigency planning and load

curve estimation),

1For the remainder of this paper, the perspective of distributed generation
is implied.
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• Maintenance and outage related topology reconfiguration,
• Adjustment of transformer taps,
• Fuses and relay operation,
• Fault-analysis and repair.
3) Operations in active distribution grids: To illustrate a

future operation scenario with a higher level of automation,
it is considered how the above operations can be extended
with additional online- and data intensive operations. In order
to identify and solve congestion problems, the DSO requires
additional measurement equipment and/or technology enabling
the anticipation of load patterns and grid ‘bottlenecks’.

Key Operations for DSO congestion management in ‘ad-
vanced’ distribution grids:

• Demand forecasting
• Grid state estimation
• Online grid measurements
• Real-time intervention in case of unexpected deviations

challenging grid reliability
• Meter data collection and aggregation

economically and reliably and shows a relation between VPPs
and DSO. In this control system, several families are supplied
under one feeder and they own controllable devices, i.e,
electric vehicles, besides some conventional load, such as light,
TV etc. For these controllable devices, they are divided into
two groups according to the method controlled by the VPP,
one group is directly controlled by the VPP, which means
an extra cards or relays are installed on the user’s device,
and the VPP can turn on/off the devices; another group is
controlled by price, in which the devices are assumed to be
price-responsive. VPP starts to make an energy schedule for
its customers with the purpose of minimizing the electricity
cost and meanwhile fulfilling their requirement. This problem
can be formulated as a linear programming or dynamical
programming way [1], [2]. The congestion problem may
first happened during the scheduling making, this problem
should be solved by the coordination between DSO and VPPs.
After the charging schedule was set up, ideally, the users are
expected to totally follow the schedule. However, in general,
deviation may happen. With the purpose of avoiding the
possible congestion (happened again in real time), DSO will
monitor the system’s operation conditions dynamically and
coordinate with VPPs. The following subsection will discuss
the mechanism of solving these congestion problems.

B. Fleet Operators

The fleet operator (FO) is a commercial entity that aggre-
gates a group of EVs in order to actively integrate them into
the power market, and in so doing, utilizing their charging
flexibility to meet a financial goal. The financial goal could
be to achieve savings on the purchase of energy or make
earnings by selling ancillary service products or, possibly, a
combination of the two.

A FO follows the concept of a ’virtual Power Plant’
which was first introduced to allow market participation for
distributed energy resources.

In the current European power and energy markets, the FO
could be a retailer with either a load balance or production

balance responsibility, depending on the market/service that
the FO would address.

The value drivers for a FO are:
1) Maximize profits or minimize costs by participating in

markets.
2) Providing services (cost reductions, convenience etc.) that

will attract EV owners as customers.
Due to the participation in markets and customer services,

the FO is subject to operating constraints defined by contrac-
tual commitments:

• Market schedule (energy/h)
• Customer demand (driving needs)
• TSO driven ancillary service requirements (e.g. reserve

capacity)
How the economic value obtained through the market is

shared with the customers would be business case specific
to the FO. It is also assumed that the FO would maintain a
Service Level Agreement (SLA) with its customers that would
dictate the degree to which it may control and manipulate the
EV charging patterns to achieve goals other than customer
driving. This would represent a trade-off between energy
savings and EV driving availability that should be understood
and accepted by the customer.

The operations of the fleet operator can be divided into fleet
level operations and individual level operations as follows.
Fleet level:

• Selection of market products and services
• Contracting
• Market/service forecasting

Individual level:
• Customer SLA management
• Driving pattern prediction

C. Customers

The customers, here EV owners and drivers, are not as-
sumed to be particularly interested in grid issues. Their main
value drivers are expected to be:

1) Availability of EV for driving
2) Total cost of ownership/energy
It is assumed here, that the customer will opt for conve-

nience and delegate most of the charging control to the FO.
The customer is expected to rely on the frame conditions
expressed in the SLA for the daily charging management
for ’typical’ and predictable driving patterns. An optional
feature would be to let the customer communicate his or hers
exact driving intentions to the FO. This would strengthen the
FO ability to utilize the specific EV’s flexibility. The main
operations of the customer, besides transportation, would then
be:

• Accept, and possibly modify, the SLA with the FO.
• Inform the FO of any non-typical driving needs.

III. MAP OF OPERATIONS

The operations outlined above will in this section be mapped
graphically to enable an analysis of different coordination
strategies.
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Fig. 2. Map of base-case operations.

A. Analysis Framework
In this section a classification approach is introduced, based

on the understanding that the coordination approach is both an
automation problem and a market design problem.

A widely accepted hierarchical decomposition of process
control into four functional levels describes integrated indus-
trial automation [18]:

• Level 4: plant(s) management
• Level 3: production scheduling and control
• Level 2: plant supervisory control
• Level 1: direct process control

This level-hierarchy is associated with several characterizing
parameters, including e.g. time scale, time resolution, planning
horizon, and hierarchical dependency of objectives. No single
one of these parameters can be considered directly decisive
for forming the levels, but together they generate the need
for distinguishing qualitatively different levels of automation.
The hierarchical dependency of objectives, i.e. that one level is
higher and another is lower in ordering, is associated with the
means-ends structure of objectives: A higher-level objective is
broader in scope and more closely associated with the business
objectives of the respective process, and thus ‘higher’ in the
value chain; a lower-level objective, in contrast, is there to
support and enable other process functions.

In the present multi-actor, multi-objective setting, the sin-
gle hierarchy does not hold: different actors have different
objectives, and yet they must interact with respect to the same
process. The present means-ends perspective shall be stripped
from the automation hierarchy, to allow for a high-level map
of operations. Key elements to be captured in the new map
are:

• Key operations and their allocation to actors
• The association of operations with a time scale including

a distinction of operational and administrative functions

• The possibility to map interaction sequences between
operations

Removing the means-ends perspective, we are left with a
mostly time-driven decomposition. We consider the following
fundamental stages:

I. Offline Planning
II. Online Scheduling

III. Real-time Operation (Execution)
IV. Offline Settlement

These stages model a logical sequence: each stage is based
on a completion of the previous stage. The timing aspect is not
essential here as certain types of operation can be performed
faster with improved technology. The stages are characterized
in the following:

Settlement is about the aftermath: recordings (measure-
ments, sent commands, etc.) of executed operations are con-
solidated and (financial) responsibility is allocated. The op-
eration stage is about pure execution in real-time. Plans are
only executed, and unplanned events occur and physical as
well as automatic controls respond without deliberation. The
’online’ scheduling stage can in time be closely coupled with
operation (e.g. reactive scheduling with a 5min resolution) or
extend hours or days ahead of it. Scheduling is the stage in
which available resources are best known and the platform
for execution is to be prepared. Finally, the first stage, here
called ’planning’ has been distinguished from scheduling in
the same fashion as unit commitment is distinguished from
dispatch: Depending on the specific coordination strategy, we
distinguish operations that can be coordinated in a ad-hoc
fashion and those that provide the basis for such ad-hoc deci-
sions. Due to these clear distinctions, the framework supports
the discussion of interactions between key operation tasks for
cross-stakeholder coordination for the complete process. As
the operations can be associated with operation objectives of



5

the respective stakeholder, this map allows for an analysis of
the incorporation of the respective value drivers by a given
coordination strategy. This ’horizontal’ level means that the
operations have to be considered at the same level of abstrac-
tion. A ’vertical’ perspective would unfold more details of the
operations, eventually also revealing physical interactions [19].
The goal is to analyze the benefits and trade-offs involved in
specific coordination strategies. Value is hereby understood in
a generic sense as to contribution to a stakeholder’s objectives.
Given the Operation-Stakeholder allocation and the analysis
of value drivers, a similar framework can be employed to also
analyse value-network constellations, as exemplified in [20].
However, that type of analysis is beyond the scope of this
paper.

B. Base Case Map

To establish a firm foundation for the analysis of different
market-based coordination strategies, we identify a base case
with a minimum set of operations that will be common to
all considered congestion-coordination strategies (Figure 2).
This base-case maps out the operations DSO, FO and EV
owner would be required to execute in either of the coordinated
congestion management schemes.

The base case uses the following assumptions:
- As discussed in [15] and [19], the introduction of con-

trollable demand with significant power capacity such as that
of electric vehicles implies a significant risk for distribution
assets. To avoid potentially harmful charging configurations,
we include the concept of an ’emergency brake’ in all EV
charging post: it enables the unconditional interruption of EV
charging on request by the DSO. It could be implemented on
the basis of a ’keep-alive’ signal, the failure of which would
immediately interrupt the EV charging process

- The maps allocate all optimization and coordination intel-
ligence to the FO. It is understood that many of the operations
could be implemented using distributed algorithms e.g. in the
electric car or charging post.

- Vehicle-to-Grid (V2G) is not considered in this publica-
tion. The technology’s potential for congestion relief and its
impact on power quality are, however, relevant for conges-
tion management and should be further addressed in future
publications.

IV. COORDINATION STRATEGIES FOR CONGESTION
MANAGEMENT

Approaches to the congestion problem are outlined and then
classified and analysed using the map described in the previous
section. All three strategies represent very new approaches to
distribution grid congestion management and none of them
have been investigated in very great detail.

The strategies investigated are:
• Distribution grid capacity market
• Advance capacity allocation
• Dynamic grid tariff
For each approach a new map is drawn where operations

required specifically for the strategy in question are presented

Fig. 3. Distribution Grid Capacity Market.

in bold. Shared supporting operations beyond the main trace
of operations have been omitted for compactness.

To describe how technically and administratively demanding
it would be for a DSO or FO to implement and operate the new
procedures required by the coordination strategy the parameter
complexity is used. A second parameter value denotes the de-
gree to which the strategy would help the stakeholder achieve
its operational goal. Finally, the parameter risk describes
potential problems associated with the respective strategy in
context of a currently uncertain external environment.

A. Distribution grid capacity market

As proposed in [21], this strategy would require a new
market for trading distribution grid capacity. For this paper the
term ‘Distribution Grid Capacity Market’ is used; Also a new
role ’market operator’ is introduced which is responsible for
market operation. The FO will submit requests for their ’aggre-
gated schedule’ consisting of their scheduled consumption for
each node (aggregated capacity), in response they will receive
a price for each node, reflecting the respective congestion, and
are requested to update their charging schedules. The process
is iterated until all constraints are satisfies. The concept used
in this strategy can be found in a similar form for the power
transmission system [22].

1) Operation sequence:
• First, the FO will make an aggregated energy schedule

for EV owners based on its objectives. Afterwards, this
aggregated schedule will be sent to the market operator.

• The Market operator will generate a price for the grid ca-
pacity according to the schedules. This price is associated
with the power difference between the sum of scheduled
power and upper power limits of the grid.

• FOs would inform the market operator of their new
energy schedule under the initial price. The schedule can
be calculated based on the marginal value of a utility
function, e.g., cost function in term of the power deviation
or satisfaction degree with the ’preference difference’
(the difference between energy schedule after congestion
management and energy schedule before congestion man-
agement).

• The market operator then determines whether the distri-
bution grid is overloaded or underutilized and comes up
with a new corresponding price. After a certain number
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Fig. 4. Advance Capacity Allocation.

of iterations, the price will eventually converge and
accepted by all FOs, which establishes a binding charging
schedule.

2) Evaluation: Complexity:
With this strategy, a new market is required which means

that the corresponding platform for trading grid capacity needs
to be designed and implemented. Also, new communication
flows are needed to support the market operations. The market
itself will be rather complex to establish and operate.

A lot of complexity is transfered from DSO to the capacity
market. Here the DSO will be required to provide the measured
and estimated power information to the market operator. The
FOs will take on the task of trading capacity and rescheduling
the energy consumptions for their customers etc..

Value: With this new market, FOs will have more flexibility
to trade and utilize the grid capacity of a distribution system.
If the market and capacity information is reliable and well-
designd it will ease the operation of the DSO, enable a
comparatively high utilization factor and reliable schedules for
FOs as well. A further benefit is that no actual consumption
information is revealed to other market parties, as only a
common congestion price is established per node.

Risk: It must be guaranteed that all FOs adhere to the rules
of the market. Another risk lies in the algorithms used to
arrive at prices based on utility functions i.e. the computational
requirements and time needed for a solution to converge.

B. Advance Capacity Allocation

The simple concept behind this strategy is that the DSO
could identify and pre-allocate available capacity by defining
a conservative static capacity limit (kW) for each feeder-line
based on the capacity rating of the respective transformers and
cables and the expected conventional load curves. The EV-
equipped households attached to a certain feeder-line would
then be given a certain share of available capacity which would
be allocated to the FO representing them. To avoid inefficient
utilization of available grid capacity due to unused capacity
shares, a second step is added to the strategy where FOs can
trade their allocated capacity in an over-the-counter manner.

1) Operation sequence:

• The ’Contracting for capacity sharing’ operation would
involve letting the DSO know the mapping between grid

connected EV-equipped customers and FOs and then
determining how capacity is shared.

• During the scheduling stage, the DSO would via grid load
forecasting estimate the available capacity and communi-
cate this to the FOs as defined in the contracts established
in the planning stage. After having received its share, the
FO could then optionally engage in capacity trading with
other FOs operating on the same feeder.

• The DSO should be informed of the bilateral capacity
trading so that, in case of violations (i.e. total load ob-
served from EV charging in specific part of grid exceeds
sum of allocated shares) penalties for violations can be
appropriately placed at the responsible FO.

• Finally the strategy would involve settlement both be-
tween DSO and the individual FO and possibly an
internal settlement between the FOs that engaged in the
bilateral trade.

2) Evaluation: Complexity: Here, rather than dimension-
ing the physical characteristics of the grid depending on load
profiles and simultaneity factors, the DSO would limit the
controllable load based on the physical characteristics of the
grid. In addition to the location-based grid capacity the DSO
would also need to map each grid customers endpoint to an
associated FO. There is also some complexity in how the
FOs will trade capacity internally and how violations of grid
capacity will be dealt with in the settlement stage when trading
has been involved.

Value: This strategy represents a rather simple coordination
mechanism between FOs and DSOs. The DSO is only required
to communicate a single value (capacity) to each FO and is
then removed from the equation until the settlement stage. This
will simplify the responsibilities of the DSO considerably and
leave the detailed capacity allocation to the entities directly in
control of EV charging i.e. the FOs. There are also advantages
to the FO since it will see a guaranteed capacity, free from
stochasticity, early in the planning stage. Early information is
valuable to an FO attempting to optimize charging to meet a
variety of goals such as market services and individual driving
needs.

Risk: There is the risk that a single kW limit set-point per
grid node is too crude a mechanism to handle thermal loading
- any unexpected change in base load during operation may
void the DSO’s estimation of capacity shares which has been
handed out to the FOs during scheduling. The risk in this
approach also lies in the effectiveness and reliability of the
FO bilateral capacity trading. If the FOs can not be trusted
to handle the management and trading of capacity among
themselves, there will be the need of a more formal framework,
e.g a market, and new definitions of responsibilities, such as
the balance responsible parties seen in the energy market.

C. Dynamic Grid Tariff

In this solution, the distribution system operator generates
a time and grid-location dependent price for grid usage based
on expected nodal consumption levels.

The DSO anticipates the size and the price-responsiveness
of the load at critical grid nodes and calculates the price to
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Fig. 5. Dynamic Grid Tariff.

optimally reflect the expected congestion problem. FOs will
then see a dynamic nodal tariff and can make an optimal
schedule with respect to the e.g. spot price and dynamic grid
tariff.

The method considered here has been presented in [23].
1) Operation sequence: The key operation aspects for this

coordination strategy are outlined in Figure 5.
• In the planning stage, a distribution system operator

would create models for the price-sensitivity of relevant
demand clusters. These models would be updated on
a regular basis based on learning from smart meter
feedback.

• In the scheduling stage the forecasted demand, grid
situation and present spot market prices will be employed
to calculate appropriate branch prices for distribution grid
utilization.

• The dynamic tariff is published to subscribers. The
adapted branch prices are received by the fleet operator
and employed to compute an optimal charging plan.

• During the operation stage, the charging schedule is ex-
ecuted. In case of severe underestimation or fluctuations
of the actual demand, DSO controlled interruptions may
occur in real-time.

• For settlement the timed consumption data is collected by
the responsible DSO and the published prices will then
be employed to bill the actual grid usage individually.

2) Evaluation: Complexity: The main characteristic fea-
ture of this approach is the simplicity of the interactions and
also the simplicity of integrating simple prices in distribution
grids.

The implementation complexity is high on the side of
the DSO. This scheme cannot be established safely without
interruptability of the vehicle charging.

For the Fleet Operator–Consumer interaction, the establish-
ment of a satisfactory service quality may require a special
attention to potential bottlenecks in the system from the side
of the Fleet Operator.

Value: As compared to the base case, this model enables
an increase of the grid utilization factor. The small number of
participants at a feeder level means that random behaviour
(fluctuation consumption level) might be stronger than the
price sensitivity of the controllable demand. Even though the
increase of the utilization factor is therefore highly uncertain,
the simplicity of the approach could justify its implementation.

TABLE I
STRATEGY OVERVIEW

Actor Complexity Value Risk
Distribution Grid Capacity Market

FO High High Low
DSO High High Low

Advance Capacity Allocation
FO Medium High Low
DSO Low Medium Medium

Dynamic Grid Tariff
FO Low Low High
DSO Medium Medium High

For fleet operators and consumers, the benefits are also
indirectly associated with the increased grid utilization. A
further benefit can be seen in the flexibility this approach offers
with respect to integrating other flexible demand units, as the
price, in theory, could interpreted by any unit.

Risk: It is unclear whether a meaningful price-sensitivity
of demand can be established.

There is a risk that there is no ‘right’ price to avoid
overloading, if a sufficient number of EVs is connected to
the same feeder, there is no way for them to negotiate
capacity utilization in the given framework. Due to the re-
quired interruptability, the high chance for unplanned charging
interruptions also implies an additional risk is on the side of
the Fleet Operator / EV Owner.

V. DISCUSSION AND CONCLUSION

This paper has investigated the concept of congestion
management for distribution grids, detailing the operations
and interactions of two main stakeholders in three different
coordination strategies. The purpose of the analysis was to
highlight the cross-actor dependencies that each such strategy
entails along the operation timeline, and thus to globally assess
complexity, value and risk for each strategy.

Table I summarizes these evaluation parameters across the
strategies and stakeholders. In this table the customer is
represented by the FO.

The ‘distribution grid capacity market’ is expected to offer
high value and low risk for both FO and DSO assuming a
formalized, optimal and secure framework supplied by a well-
designed market. such a market, however, may represent the
most complex strategy to implement, which may hinder or
delay its real-life implementation.

‘Advance grid capacity’ is relatively easy to implement,
but would require over-the-counter trading to efficiently use
available grid capacity. The strategy removes complexity from
the DSO but some risk may have to be managed due to the
bilateral FO trading and the advance capacity allocation might
require more conservative estimates of the available capacity.
The FO gains high value from early information on capacity
availability.

‘Dynamic tariffs’ would also be easier to implement than
a capacity market, but may prove challenging to the fleet
operator due to added uncertainty and a possible conflict with
system-wide smart charging schemes. It could also impose
some extra risk for the DSO to rely on prices rather than hard
capacity limits when considering individual feeder lines.
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A few general observations can be summarized as:
• Grid considerations will have to co-exist with other

objectives in the charging management of EVs.
• Coordination and information exchange in earlier stages

can reduce complexity and benefit both the FO and DSO.
• There may be a trade-off between ease of strategy

implementation and optimality. A compromise may be
necessary for the first real-life implementations.

• A suitable strategy for coordination between DSOs and
FOs will improve each stakeholders ability to reach its
objectives considerably.

The analysis framework developed in this paper can be
considered sufficiently generic for analysing operations with
respect to other distributed resources.

An important mechanism included in this paper is the ‘real-
time intervention’ functionality used by the DSO. This last-
resort ability to directly and immediately reduce or disconnect
charging may be a prerequisite for the deployment of effective
coordination strategies.

In the end, it is hoped that this paper contributes to a better
understanding of the multifaceted challenge of EV charging
and helps the development of open, robust, and meaningful
strategies for low voltage grid congestion management.
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Abstract—Distributed energy resources (DERs), like electric ve-
hicles (EVs), can offer valuable services to power systems, such
as enabling renewable energy to the electricity producer and pro-
viding ancillary services to the system operator. However, these
new DERs may challenge the distribution grid due to insufficient
capacity in peak hours. This paper aims to coordinate the valu-
able services and operation constraints of three actors: the EV
owner, the Fleet operator (FO) and the Distribution system op-
erator (DSO), considering the individual EV owner’s driving re-
quirement, the charging cost of EV and thermal limits of cables and
transformers in the proposed market framework. Firstly, a the-
oretical market framework is described. Within this framework,
FOs who represent their customer’s (EV owners) interests will cen-
trally guarantee the EV owners’ driving requirements and pro-
cure the energy for their vehicles with lower cost. The congestion
problem will be solved by a coordination between DSO and FOs
through a distribution grid capacity market scheme. Then, amath-
ematical formulation of the market scheme is presented. Further,
some case studies are shown to illustrate the effectiveness of the
proposed solutions.

Index Terms—Congestion management, distribution grid, elec-
tric vehicles, optimal charging schedule.

I. INTRODUCTION

A. Aggregated Charging of EVs

O THER THAN fulfilling its basic transport function, EVs,
as smart grid assets, can provide a large number of valu-

able services, e.g., meeting the balancing requirements for en-
ergy suppliers with stochastic renewables, providing regulation
services to the system operators, and modifying the demand
curves to defer the network expansion, etc., [1]–[7]. As a re-
sult, a new business entity, namely EV fleet operator (FO) has
emerged which aims to capture the business opportunities by
providing the multiple services of EVs. Alternative names for
an EV FO are used such as EV virtual power plant, EV aggre-
gator or charging service provider. The new entities could be in-
dependent or integrated in an existing business function of the
energy supplier; however they all share a list of commonalities
as following:
1) Same mission:
• Guarantee driving needs of the EV owners;
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• Coordinate and support the valuable services and oper-
ation constraints of EV and power system operator;

• Maximize the renewable energy.
2) Similar methods:
• Implement centralized control/marketing method to
maximize business values [1]–[7];

• Optimize the charging process of EVs [6], [8]–[11].
However, the function of the distribution grid may be chal-

lenged when FOs try to achieve these objectives, because the
increasing size and number of consumption units, e.g., EVs can
cause problems in peak hours [12]–[16]. Mainly two issues are
considered in the literature when discussing the possible chal-
lenges in a distribution grid with increasing DERs, they are
voltage drops and thermal overloading of transformers and ca-
bles. Focus in this study will be on the prevention of the thermal
overloading of the transformers and cables, which is also known
as congestion management. In the following of this section, we
first give an overview on the centralized and market-based coor-
dination strategies for gird congestion management. Then, the
motivation and contribution of this study is presented.

B. Centralized Control of EVs for Grid Congestion
Management

Lately, research done in [17]–[19] have been aiming to co-
ordinate these multiple objectives centrally, i.e., to optimize the
charging cost of EVs as well as respecting the hard constraints
imposed by EV owner needs and distribution grid operation. In
[17], [18], a complex scheduling problem involving EV owners,
FO and DSO is analyzed. The results show that both the FO
and the EV owners can achieve the objectives of minimizing
charging costs and fulfilling driving requirements without vi-
olating the grid constraints. This approach requires a complex
interaction between DSO and FO, but can potentially deliver
a very good solution in terms of optimal grid utilization and
safety. A conceptual framework consisting of both a technical
grid operation strategy and a market environment is proposed
in [19] to integrate EVs into the distribution systems, the activ-
ities of all the actors including the EV owner, the FO and the
DSO are described and the results indicate that smart charging
can maximize the EV penetration without exceeding grid con-
straints.

C. Market-Based Coordination Strategies of EVs for Grid
Congestion Management

Alternatively, several ways of solving the congestion problem
have been suggested from market perspective. Our previous
study [20] has conceptualized several approaches to address the

1949-3053 © 2013 IEEE
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distribution grid congestion according to their value and bene-
fits which they can offer as well as possible drawbacks and risks
and the complexity of implementation. A short description of
the principles behind these strategies is given below:
• Distribution grid capacity market
In this method, FOs will submit power requests to DSO
for their aggregated energy/power schedule on each node
(aggregated capacity); in response they will receive a price
for each node which reflects the respective congestion, and
are requested to update their energy schedules. The process
will terminate when all constraints are satisfied. The mech-
anisms behind the market could be designed in many ways,
such as uniform price auction mechanism [21], shadow
price based mechanism [22].

• Dynamical grid tariff
In this method [23], the DSO generates a time and grid-lo-
cation dependent price for grid usage based on expected
nodal consumption levels. The DSO anticipates the size
and the price-responsiveness of the load at critical grid
nodes and calculates the price to optimally reflect the ex-
pected congestion problem. The FO will then get the dy-
namic nodal tariff and make an optimal schedule with re-
spect to the predicted spot price and dynamic grid tariff.

Besides, studies in [24], [25] investigate the coordination
methods using a common price signal and the work [24], [25]
share a lot of similarities. Mainly, both work use game theory
to formulate an EV/demand energy consumption scheduling
game. The actors are assumed to be cost-minimizing and
coupled via a common signal, i.e., a common electricity price
in [25] and total load of the distribution grid (a heavier grid
loading means a higher price) [24]. The strategies are the daily
schedule of their consumption.

D. Motivation and Contribution of This Paper

Currently the dispatch is set only based on the day-ahead
electricity market and the end-users’ need for energy services.
Traditionally, demand takes place when needed and the chal-
lenges in the distribution grid created by the EV aggregation
could be solved by expanding the grid to fit the size and pattern
of demand. As an alternative, it is assumed that the distribution
grid company can benefit more by making the consumers shift
demand consumption from one given period to another, after
identifying the long-term marginal costs of reinforcement of the
grid. Considering the new opportunity, a new scheme using both
the day-ahead electricity market and the distribution grid state
to set the dispatch should be established, which can enable the
power system balance and the distribution grid congestion man-
agement. In general, two schemes are qualitative analyzed and
proposed [12]: 1) distribution grid congestion management first,
then energy system balance or 2) vice versa. Both the merits and
demerits of these two strategies are well discussed in the report
[12].
The present study aims to investigate the coordination

strategy among DSO, FOs and EV owners based on the basic
concept in [20], [12], specifically, the conceptualized proposal
of “distribution grid congestion management first, then energy
system balance” in [12] and the distribution grid capacity
market in [20], by making them into concrete optimization

Fig. 1. The proposed distribution grid capacity market can be an integrated part
of the current power markets.

problems and by showing detailed case studies. In this study, a
framework is proposed which can minimize the charging cost
of EVs as well as respecting to the hard constraint imposed by
the EV owners and DSO. The proposed framework consists of
linear programming technology based optimal charging of EVs
and shadow price mechanism based distribution grid capacity
market.
Fig. 1 illustrate the proposal of integrating the new proposed

distribution grid capacity market into the existing power mar-
kets. It is emphasized that themarket scheme is flexible and scal-
able, in the fig, the “distribution grid capacity market scheme”
is placed in three position, which represent three different time
periods, i.e., day-ahead and intra-day period for congestion pre-
vention, real time period for congestion relief.
There are mainly two research contributions in this study.

Firstly, we recommend and test a distribution grid capacity
market set up enabling the distribution congestion prevention,
in which multiple FOs are involved. Secondly, the proposed
market framework is flexible and scalable in diverse control
schemes, such as the mechanism elaborated later specifically
for the day-ahead period can be also adopted for the control
situation in the period of intra-day and real time, the mecha-
nism designed for EVs can be also used for other appliances
which have the capability of altering their consumption pattern
with limited impact on their primary energy service, such as
theoretically controlled loads.
The remainder of the paper is organized as follows: In

Section II, a general explanation is given on the methodology
for congestion prevention, i.e., the proposed market framework.
Section III mainly presents the mathematical formulation of the
congestion issues into a subgradient method based distribution
grid capacity market set up. Then several case studies are
illustrated in Section IV to facilitate the understanding. Finally,
discussion and conclusions are made in Section V.

II. METHODOLOGY FOR CONGESTION PREVENTION: SYSTEM
ARCHITECTURE, OPERATION PRINCIPLE

As discussed in [26]–[28], each distribution grid has a dif-
ferent history, such as in some cases congestion is first expected
to emerge in the medium voltage grid, while in other grids the
low voltage grid is considered to be more critical. In this study,
a low voltage grid is used for illustration purpose, but the pro-
posed framework holds for medium voltage grid as well.
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Fig. 2. A schematic of a low voltage active distribution system.

A. System Architecture, Framework Design

Fig. 2 presents a schematic of a low voltage distribution
system, in which around 60–70 household consumers are
connected to a 10/0.4 KV transformer (a typical Danish case),
mainly connected on one feeder. In this distribution system, it is
assumed that the consumers own controllable devices, i.e., EVs,
besides some conventional loads, such as light or TV. These
EVs are divided into two groups as illustrated in Fig. 2. One
group is controlled by fleet operator-1 , another group
is controlled by fleet operator-2 . In this hierarchical
distribution system, both FOs can schedule and control their
customer’s electricity consumption directly. While on the FO
level, the coordination between FOs and DSO is made through
the distribution grid capacity market.
Within the assumed system architecture, we propose a frame-

work consisting of four fundamental stages [20] to operate and
control this system. This framework is a fully charging pro-
file management for integrating EVs into the distribution grid
smoothly.
1) Energy schedule of the FOs without congestion manage-
ment—Offline scheduling. Both and need to
predict the energy requirements (driving patterns) of their
customers (EV owners) and plan the corresponding ex-
pected charging schedule for the EVs. The methods of esti-
mating the energy requirements and setting up the charging
schedule may be different, but in general, the FOs try to
minimize the charging cost of their customers as well as
guarantee the driving requirements of the EV owners.

2) Market based approach for distribution grid congestion
prevention—Offline scheduling. The distribution grid ca-
pacity market will take effects if congestion happens. FOs
trade the power capacity of the distribution grid in this
market. During the negotiation of the market, a shadow
price will be issued by the market operator in the time slot
where congestion happens. Then this shadow price will be
sent to FOs, FOs will add up the shadow price with the pre-
dicted spot price and utilize the new price to set up a new
charging schedule. Again, the new schedule will be sent
to the DSO/Market operator, such iteration will be termi-
nated until the congestion is eliminated. After congestion
management, FOs bid the allowable power schedule to the

energy market, such as Nord Pool Spot market1 in North
Europe.

3) Online scheduling and real time control. It is valuable for
FOs to utilize the online scheduling stage and make better
charging schemes, the general objectives are to avoid en-
ergy imbalance and to optimally participate in the regu-
lating power market. Usually, more accurate information
is provided to the FOs in this stage, FOs can judge whether
they need to reschedule the charging plan based on the
utility and risk analysis. With regard to real time control,
one can assume that the EVs will charge according to the
plan; however, if grid normal technical operation is com-
promised, FO management can be overridden by the DSO
operation, such as using load shedding scheme.

4) Settlements. In this study, the settlements are carried out
with the final energy price, i.e., the sum of spot price and
shadow price (Tax, transmission, distribution fees etc., are
not included here).

B. Operation Principle and Assumptions

1) FO/EVs operation
• Aggregating EVs. From a practical perspective, it is as-
sumed that EVs need to subscribe to one FO, maybe in
the form of signing a contract that is valid for certain
time period. Such subscriptionwould possibly following
the existing geographical areas, i.e., the neighborhood
supplied by one FO, under one substation. The mobility
of EV, in such context, will also require the roaming-re-
lated agreement/standards among different FOs as well
as an standardized ICT infrastructure, in order to make
sure the FOs can access the EV information immediately
when the EVs switch FOs.

• Predicting EVs driving pattern. We assume EVs have
standardized function of being able to be plug and play.
In most cases, they will charge at home, which is sup-
plied by their signed FO. By establishing a database for
EV users, it is feasible for FOs to predict EVs driving
pattern. Besides, EV owners are encouraged to submit
their draft plan for the utilization of EVs in the next
day. In few cases, they may need to charge in some
other areas where belong to another FO, since the fully
charged battery in morning time could sustain their
daily driving requirements in most times. In such case,
a roaming technology widely used in the Telecom could
be an example for us, which means that FO and FO can
share information.

• Optimal charging schedule generation. We assume that
the charging process of EVs following a linear behavior
and FOs use a linear programming technology to model
the optimal charging problem of EV fleet and determine
the aggregated EV charging profiles. The computation
speed is quite fast for FOs.

• Interacting with DSO/Market operator. For the interac-
tions between FOs and DSO/Market operator, it is as-
sumed that ICT infrastructure can facilitate the commu-
nication.

1http://www.nordpoolspot.com/
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2) DSO/Market operator operation
• Grid state estimation. The proposed solution requires a
higher level of automation on the operation of distribu-
tion grid, such as demand forecasting, grid state estima-
tion and online grid measurements. This is not an easy
task for DSO at this moment, since little real time infor-
mation exists about the power flow in the low voltage
grid. While in the medium voltage grid, the real time
measurement is traceable in the Danish distribution sys-
tems andmany other European distribution systems. The
good news for the low voltage grid is the installation of
the smart meters, today, in Denmark, half of all house-
holds have an updated meter that can be read remotely at
least on hourly basis. With these inputs, the DSO could
study the co-variation between the DERs and traditional
load. Data mining technology can be used to separate
the information of conventional loads from EVs would
be highly necessary.

• Shadow price set up. The shadow price will be deter-
mined based on the power requirement of FOs and the
capacity of transformer/line of the distribution grid.
More details will be presented in next section.

III. METHOD DEVELOPMENT OF SMART CHARGING OF EVS
WITH GRID CONGESTION MANAGEMENT

In this section, algorithms and models for enabling the EV
charging profile management are discussed. In short, FOs pre-
dict their customers’ energy requirements and make the energy
schedule, which is shown in Section III-A. Then Section III-B
illustrates the method for grid congestion management. A set-
tlement example is given in Section III-C. It is noted that the
main work in this study is in the stage of offline scheduling,
and it is assumed that there is no schedule changes in the online
scheduling period and the EVswill charge based on the schedule
made in the offline scheduling stage.

A. Energy Schedule of the FOs Without Congestion
Management

We provide one solution as a reference for the energy
schedule setting of FOs, the solution is based on our previous
study [10], in which, an optimal charging strategy has been
proposed for EVs with the purpose of fulfilling EV owner’s
driving requirements as well as minimizing the charging cost.
The solution is briefly modified and introduced as follows:

subject to

(1)

With the above optimization problem, the FO can generate a
unique energy schedule for EV owner; the sum of the individual
EV energy schedule will be denoted as , and

where

Number of EVs under FO .

Number of time slot in the scheduling period.

Number of FOs.

Index for the number of EVs under each FO,
.

Index of time slot in the scheduling period,
.

Index for the number of FOs, .

Predicted day-ahead electricity market price
vector.

Decision variable vector.

Length of each time slot.

Power requirements of EVs of each FO in each
time slot.

Initial SOC of individual EV.

Recommended minimum SOC of the EV.

Edrive The predicted individual EV owners driving
requirement.

Charge rate in term of energy of individual EV.

Recommended maximum SOC of the EV, where
is the parameter which express the charging

behavior of the battery of the EV is a linear
process, is the capacity of the battery of
the EV.

In (1), the first constraint means that the available energy in
the battery should be greater than or equal to the energy require-
ment for the next trip. The second constraint indicates that the
available energy in the battery should be less than or equal to
the power capacity of the battery. The third constraint repre-
sents that the charging rate is less than or equal to its maximum
power rate of a charger. The physical meaning of the decision
variable vector is to make a decision to distribute/charge
the power on the certain time slots, where the charging cost can
be minimized.

B. Market Based Approach for Distribution Grid Congestion
Prevention

1) Analytical Analysis of Distribution Grid Capacity Market:
In general, the method starts with a proposed cost function
which represents the cost of the power preference difference of
a FO in each time slot, e.g.,
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To facilitate the understanding, we assume

(2)

where keep the same with above notation, denotes the
control variable, means the weighting factor which are as-
sociated with the power difference, the larger implies a
smaller difference.
The objective is to minimize the cost functions as well as

respect to the constraint from DSO:

subject to

(3)

where is the power capacity specifically for all the FOs,
for example, it can be estimated by the DSO after deducting the
conventional loads.
This problem is a convex optimization problem and relevant

research [29], [30] show that by introducing Lagrange multi-
pliers or shadow price , problem (3) can be trans-
ferred into following partial Lagrangian problem:

(4)

.
The centralized optimization problem (3) is transferred into

a decentralized one with associated shadow price in each
time slot, with the purpose of emulating the market behavior.
Following work aims to find the optimal power for each FO

and the associated shadow price on the distribution grid line.
We will assume, for simplicity, the Lagrangian function has a
unique minimizer over , which denoted as .
The dual problem (4) is then given by

(5)

This dual problem (5) will be solved by projected subgradient
method [31]–[33],

(6)

where is the subdifferential of at and
, one can find

with being the solution to the following opti-
mization problem:

(7)

Fig. 3. Flow chart of the proposed cost and schedule adjustment algorithm.

This optimization is completely separable between various FOs,
and can therefore be solved distributively. For each FO, such as

, the optimization problem becomes

(8)

Solving problem (8) for the FOs gives power that can
be used to find the subgradient:

(9)

2) Cost and Schedule Adjustment Algorithm: The following
steps illustrate the cost adjustment algorithm which are illus-
trated in Fig. 3 and can mimic the trading and negotiation
process in the distribution grid capacity market, when con-
gestion happens. The algorithms integrate the mechanisms
discussed in the above of this section.
1) FOs submit their energy schedule to the distribution grid
capacity market before submitting them to the electricity
spot market.

2) The DSO/Market operator predicts whether congestion
will happens based on the schedules of FOs, if happens,
go to the distribution grid capacity market, otherwise, the
energy schedule is approved.

3) Distribution grid capacity market operation
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Fig. 4. Spot price in one day (12, Jan, 2011), DK-West, from NordPool, which
is used as the predicted price for fleet operator.

Initialize dual variable , e.g., using
or .

loop
• With the parameter of , market operator determines
the capacity margins using (9) based on the solu-
tions of (8).

• Update the variables , until
the prices converge.

4) The new shadow price will be sent to FOs, FOs will add
up this price on top of predicted spot price, recalculate
the optimization problem (1), and get a new energy/power
schedule and send to the DSO/Market Operator.

5) Do the above calculation (step 2 and 3) again, until
, then terminate the iteration.

6) Bid final energy/power schedule to the electricity spot
market.

In above algorithm [31], denotes the step size and can
be chosen as which is a positive constant, independent
of ; with such choice, the convergence is guaranteed.

C. Settlements

In the settlement stage, the sum of the electricity spot price
and shadow price will be used as an energy price, and the cor-
responding cost for FOs are given by

(10)

IV. CASE STUDY

In this case study, a representative distribution grid is illus-
trated in Fig. 2. It is assumed that 60 households are connected
on the feeder. Sixty percent of the consumers are assumed to
have EVs which are operated by and . Specifically,

represents the capacity of the transformer/cable and this
capacity will be shared by and during the scheduling
and operation period.

Fig. 5. Top: Aggregated energy demand of and ; Bottom: Aggre-
gated energy schedule of and .

Fig. 6. A hypothetical cost function of (2), has a stepwise increase of 0.1
from 0.1 to 1.

A. Energy Schedule of the Fos Without Congestion
Management

For the EV charging schedule, the information of hourly elec-
tricity spot price of the Nordic power market is assumed to be
perfectly known by the FOs, and the price data is identical with
previous study [10], which is illustrated in Fig. 4. The artificial
driving data of the EV fleet have been generated based on the
2003AKTASurvey [34], in which 360 cars in Copenhagenwere
tracked using GPS from 14 to 100 days. Each data file includes
starting and finishing time, and the corresponding duration and
distance. The original data is transferred into 15 minutes in-
terval driving energy requirements based on the assumption of
11 kWh/100 km. The energy requirements of and are
the sum of the 18 EVs, which is illustrated in the top of Fig. 5. It
may not be easy to identify the individual EV’s driving energy
requirements, but a general trend can be concluded that most
of the driving time is located in the morning and evening pe-
riods. In , EV12 has the largest energy requirement which
is 15.45 kWh. In , it is EV4 that needs the most energy
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Fig. 7. Left: The sum of the spot price and shadow price in each iteration step. Right: The comparisons of FO’s power schedule in each step with the power
capacity.

which is 11.55 kWh. We assume that the data used for the simu-
lation which represent the EV owners’ driving requirements are
perfectly known to the FOs. The 15 minutes interval is change-
able rather than absolute. For other parameters:
• Battery capacity is set to 20 kWh
• is set to 0.2 of the battery capacity
• is set to 0.2 of the battery capacity
• is set to 0.85 of the battery capacity
• Maximum charging power is limited to 2.3 kW, this fits
with the Danish case (10 A, 230 V connection).

With this information, one obtains the aggregated charging
energy of each FO, which is shown at the bottom of Fig. 5.
It is observed that the charging period is concentrated on the
early morning time due to the lower electricity price in that time
period. We assume that the power is constant in one time slot,
which means the corresponding power in each time slot can be
obtained (Energy/ ).

B. Market Based Approach for Distribution Grid Congestion
Prevention

In this step, we will illustrate the effectiveness of utilizing
the shadow price, i.e., to facilitate the congestion manage-
ment in the proposed method. It is noted that the cost function
in this study presented by the quadratic function is assumed to
represent the cost for the energy preference loss. The accuracy
of the cost function is out of the scope of this study, the focus
is to show how the FOs establish the schedule based on the cost
function and the shadow price. Fig. 6 illustrates the cost func-
tion of (2) with various , in which is set to 30 kW.
The power capacity is set up according to the trend in

the real case; generally, the capacity is higher in the later evening
and early morning time and lower in the day and evening time.
The curve of the power capacity is shown by the surface in the
right figure of Fig. 7. The weighting factor rate is set
to 0.5 and 0.1. The value of is chosen as 0.1 in this case.
Note that the variable and are connected, an appropriate
value of the two variables can ensure smooth operation of the
proposed method, i.e., the trade-off of the speed of the conver-
gence and the accuracy of the solution. However, there is not a
strict rule for choosing the parameter values. Together with the

energy schedule of and before congestion manage-
ment, the values of power capacity and weighting factor rate,
the simulations are presented in the Fig. 7. From these two fig-
ures, it cab be seen that the congestion problems are solved after
5 steps. Note that in the beginning, the shadow price is zero, so
the blue curve represents the same price information as the one
in Fig. 4. The purpose for put this price again is to get a com-
plete view on the change of the price. Same explanation holds
for the blue power curve in the right figure.
Fig. 7 presents the dynamic process of the distribution grid

congestion management. It is noted that in each iteration step,
the negotiation process of the FOs in the distribution grid ca-
pacity market is not shown, i.e., only the final shadow price
is presented. But in order to see the effectiveness of the distri-
bution grid capacity market, Fig. 8 is presented. In this figure,
one can note the convergent process of the shadow price in
the second iteration of Fig. 7. During the time slot of 9 to 16,
the total power demands from and are same, but the
power capacity various from 70 kW to 56 kW with a stepwise
decrease of 2 kW. The result shows that the lower power ca-
pacity results in higher shadow price. Besides, the steady state
is reached quickly.

C. Day-Ahead Congestion Settlements

The charging cost of and are compared from two
time periods, one is the cost before congestion management,
and another is the cost after congestion management. Table I
presents the results which show that charging cost of each FO
increase a lot. It indicates a shortage of the distribution capacity.

V. DISCUSSION AND CONCLUSION

In this paper, two control issues are integrated in a low
voltage active distribution system consisting of three actors,
DSO/Market operator, FO and EV owner. One is the optimal
charging of EVs, another is the congestion management on
the distribution system level. Two steps are adopted to address
these two issues, linear programming is firstly used to model
the charging process of EVs and to produce an aggregated
energy schedule of FOs. If the sums of the energy schedule of
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Fig. 8. Convergence of toward the shadow price in
the second iteration of Fig. 7, the converged price in each time slot of this figure
corresponds to the circled values in the Fig. 7(-to left).

TABLE I
CHARGING COST OF FOS IN THE PERIOD OF BEFORE AND AFTER CONGESTION

MANAGEMENT

the FOs overload the distribution grid, then, a distribution grid
capacity market scheme is adopted to coordinate the energy
schedule. The proposed solution for solving the congestion
problem and managing the charging of EVs is an integration of
a direct control and a price-based coordination. It is believed
that the safety operation of the distribution grid can be highly
ensured by coordinating the relation between the three market
actors with the proposed framework. We also expect that such
coordination strategy can be used to control other smart appli-
ances, including thermostatically controlled loads such as heat
pumps. As we discussed before, the market scheme can also be
used in the real time for congestion relief.
We want to point out that voltage control is also an impor-

tant issue for distribution grid operation, although we did not
consider it in this study. In a practical way, in the planning pe-
riod, DSO considers and pre-handles it by reinforcing the grid
infrastructure based on the regulations already existed which
describe the allowed voltage safety bands in the distribution
grid. In the normal operation period, in the substation level,
transformer has a tap change which can be used to regulate
the voltage. Such as in Denmark, in general, 60 KV/10 KV
transformer is an OLTC (On-load tap-changers). In the future,
system operator could set up some grid codes for DERs, re-
quiring the DERs to have their own embedded voltage control,
which could solve the problem preventively. In the context of
this study, voltage control can also be implemented by market
scheme. This approach would be to establish a market where
voltage stabilizing services can be bought or sold. Technically,
it is feasible. However, it is not easy to identify and validate
the committed power from the DERs, which will bring many
challenges. Besides, the AC power flow calculation will also
introduce time-consuming problem to this method. In a simple

market way, due to the increasing penetration of distributed gen-
eration, DSO can solve this problem by a contract-based solu-
tion, such as DSO can sign some contracts with FOs to get the
required services.
It is noted that market approach has been well discussed and

considered as one of the best approach for resource allocation,
meanwhile, we also see some practical point deserve discussion
for utilizing this approach for congestion management, mainly
from three perspectives: 1) Stakeholder’s acceptance on using
price coordination: Although using price coordination approach
would possibly enable an optimal resource allocation, but the
uncertain in terms of end-user involvement, clear business
models for FOs and DSOs, and the necessity for the regulatory
support makes using price as a coordination tool for serving
grid services a challenging task. 2) Size of the market and the
associated market power issues: To ensure enough competition
and fairness of the capacity market, one prerequisite is the
number of market participants, i.e., FOs. If there are few FOs
in the distribution area, issue e.g., market power will become
a major challenge from the market perspective. 3) The infor-
mation communicating between various stakeholders and the
supporting ICT infrastructure: FOs need to communicate well
with EVs in order to make an optimal charging schedule, these
information include driving pattern, state of charge, some other
preferences of EV owners. The time-stringent is not an essential
issue here, however, EV owners cooperation are much wanted.
For the interaction between FOs and distribution grid capacity
market operator, real time communication is a challenge, but
we can set up a reasonable time range and also try to limiting
the market iteration with certain rules. This kind of setup will
require advanced ICT infrastructure.
To sum up, the proposed method is flexible and scalable and

can technically be enhanced to provide a complete set up for the
congestion prevention in the scheduling period and congestion
relief in real time, by taking into account the discussion above.
Additional, the practical points discussed above imply the eco-
nomic feasibility should also be analyzed in future.
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Abstract—The operation of the distribution network will
change in the near future due to increasing size and number of
distributed energy resources (DER) and demand side resources
(DSR). An active distribution network is proposed to address
the challenges. The normal operation of an active distribution
network requires coordination of different values and operation
constraints of various involved actors. This paper proposes a
multilevel coordination strategy for congestion management of
distribution network. Firstly, the scheme of an active distribution
network is described. Then, the coordination strategies between
various actors, i.e., distribution system operator (DSO), fleet
operators (FO), and EV owners are discussed. Further, a mathe-
matical formulation of the chosen coordination strategies between
DSO and FOs are presented and some case studies are shown
to illustrate the effectiveness of the proposed solutions. Finally,
we give the argument and proposal of using multi-agent based
platform to demonstrate the multilevel coordination solution.

Index Terms—Congestion management, Distribution grid,
Multilevel coordination, Multiagent systems based platform

I. INTRODUCTION

Denmark was a pioneer in wind power which provides a
large amount of electricity to Danish consumers, at the end
of 2012 [1], the total installed wind capacity in the Danish
power gird was 4,162 MW which share 30% of the domestic
electricity usage. Wind energy in Denmark is expected to grow
due to the political strategy of 50% wind power in the 2020
Danish power system [2]. The total installed wind power in
Denmark is connected at the distribution system level, which
bring challenges to Energinet (TSO of Denmark). Energinet
has limited or no access to the information about the state at
the low grid voltage level. In order to address the challenges,
several actions [3] have been implemented or planned, such
as

• Coordinate the power flows among different systems by
electrical interconnections, mostly high voltage direct
current to the TSOs in the Sweden, Norway, Germany,
and soon the Netherland.

• Balance the power system by the deregulated power mar-
ket with the collaborations of power Balance Responsible
Parties (BRP). The BRPs make the power and energy bids
into the market, consists of conventional power and wind
power.

• Implement a tool that provides real time estimation of the
amount of injections from wind energy.

• Manage the flexible demand, like electric vehicles, heat
pumps.

With the expected development towards a power system
depentent on intermittent renewable energy sources, the need
for some of the ancillary services is likely to increase, espe-
cially for balancing purposes. Both EVs and heat pumps are
believed to play important roles in balancing the system. In
order to aggregate the flexibilities of demand and capturing
the business opportunities of providing the service to the
system operator, a new business entity, namely fleet operator
(FO) has recently emerged [4], [5]. Alternative names for an
FO are virtual power plant (VPP), aggregator or charging
service provider. However, the operation of the distribution
grid may be challenged due to the increasing size and number
of consumption units which can cause problems in peak
hours. Besides, there exists facts that the closer the renewable
production installed to the consumer premises and the con-
sumer’s awareness of consumption. As a result, the DSO have
started to recognize the necessity for electricity distribution
and operation evolving from the usual passive unidirectional
flow network to an active distribution network [6].

In this paper, we consider a particular case combining
EV charging cost minimization and distribution grid capacity
management (active power transfer capacity). Previous studies
[7]–[9] has shown that EVs can provide valuable services
to the system operator, for example, during strong wind
conditions, where the total wind power production capability
becomes highly utilized, the need of maintaining balance be-
tween production and consumption might increase and can be
provided by utilizing the controllable flexibilities of EVs. As a
consequence the distribution system might become overloaded.
Besides, the spot electricity price might become cheap when
the wind power penetration is high. This will also further
increase the consumption on the distribution grid side. In order
to address the challenge, our study aims to answer how the
values and operation constraints among the DSO, FOs and EVs
can be coordinated within a market based platform sitting in
an active distribution network.

The remainder of the paper is organized as follows: In
section II, a general introduction regarding the operation of
distribution network today and an active distribution network
is given. Besides, the scheme of an active distribution network



is also presented. Section III mainly presents the coordination
strategies between DSO and FOs, FOs and EV owners. Then a
framework for design and method development for multilevel
coordination is illustrated in section IV. A case study is given
in section V to demonstrate the proposed method. Further, the
proposal of using Multi-Agent Based Platform to demonstrate
the multilevel active distribution systems are made in section
VI. Finally, discussion and conclusions are made in section
VII.

II. MULTI ACTOR SETTING, MULTILEVEL COORDINATION
IN AN ACTIVE DISTRIBUTION NETWORK

A. Distribution network operation

1) Distribution Network Operation Today: DSO tasks in
conventional system operation [10], are mostly focused on
‘off-line’ tasks related to asset management and maintenance
during normal system conditions. The primary objective under
emergency conditions is to organize restoration of the network
as quickly as possible. Distribution systems today tend to be
weakly monitored as compared to transmission grids, and con-
trolled in a decentralized fashion on the basis of preconfigured
local controls (e.g. by means of grid codes and protection
settings).

The key operations of the DSO are:
• Grid dimensioning (incl. contigency planning and load

curve estimation)
• Maintenance and outage related topology reconfiguration
• Adjustment of transformer taps
• Fuses and relay operation
• Fault-analysis and repair
• Logging events and standard management report
• Managing trouble call information and inform customers.
2) Operation in an active distribution network: To illustrate

a future operation scenario with a higher level of automation,
it is considered how the above operations can be extended
with additional online- and data intensive acquisition. In
order to identify and solve congestion problems, the DSO
requires additional measurement equipment and/or technology
enabling identification and anticipation of load patterns and
grid ‘bottlenecks’.

Key Operations for DSO congestion management in an
active distribution network would be:

• Demand forecasting
• Grid state estimation
• Online grid measurements
• Real-time intervention in case of unexpected deviations

challenging grid reliability
• Meter data collection and aggregation

B. The scheme of an active distribution network with multi-
actors, multilevel coordination

Fig. 1 shows the scheme of an active distribution network,
in which four types of actors are loaded on different levels.
In general, each of the actors is associated with a kind of
operations, namely, the DSO is responsible for the reliability

FO1

Fleet Operation

Electricity 

Spot Market

Grid  

Measurements

DSO

Distribution Operation

Conventional 

load

FOn

Fleet Operation

Market Based 

Platform for 

Distribution Grid 

Congestion 

Management

Information 

flow

Control 

relation

Physical 

connection

Regulation 

Market

Fig. 1. Actors (stakeholders), problem domain and main information and
control flows within an active distribution network.

of the distribution network, FOs are responsible for making
the energy schedules, biding it into traditional market such as
day-ahead spot market and regulation market and providing
the electricity for end users, EV owners are taking care of
the charging of their EVs by subscribing to an FO or making
the charging decision by themselves. By introducing a market
based platform on the distribution grid level, the DSO will
coordinate their requirements with market operator who then
interact with FOs. About the control/coordination relations
between FOs and EVs, this could be implemented either in
direct control or indirect control method. Further discussion
regarding the multilevel coordinations will be presented in next
section.

III. COORDINATION METHOD AMONG THE VARIOUS
LEVELS OF THE ACTIVE DISTRIBUTION SYSTEMS

A. Coordination method between DSO and FOs

Generally, the market based platform will be used to coordi-
nate the requirements and values of DSO and FOs. The mech-
anism behind the market could be designed in many ways,
such as various potential tariff regimes [11] [12], uniform price
auction mechanism [13], shadow price based mechanism [14].
We briefly introduce three types of mechanisms in the below:

1) Dynamical grid tariff: In this method [12], the DSO
generates a time and grid-location dependent price for grid
usage based on expected nodal consumption levels. The DSO
anticipates the size and the price-responsiveness of the load
at critical grid nodes and calculates the price to optimally
reflect the expected congestion problem. The FO will then get
the dynamic nodal tariff and make an optimal schedule with
respect to the predicted spot price and dynamic grid tariff.

2) Uniform price auction mechanism : The uniform price
auction [13] can be designed as either single-sided auctions
or two sided auctions. This will fully depends on the scale of
the market, i.e., whether it is used by single DSO or multi
DSOs supposing there are several FOs. It is noted that the
uniform price auction mechanism is usually combined with



optimal power flow calculation, which mean either market
operator/DSO will implement a lot of calculations.

3) Shadow price based mechanism: In this method [14],
FOs will submit power requests to DSO for their aggregated
energy/power schedule on each node (aggregated capacity) be-
fore submitting the energy schedule to the day-ahead market;
in response they will receive a price for each node which
reflects the respective congestion, and are requested to update
their energy schedules. The process will terminate when all
constraints are satisfied.

B. Coordination method between FOs and EV owners
Research in [15], [16] give a comprehensive review on

the control strategies for flexibility aggregation. Three control
architectures are examined and compared in [15], namely cen-
tralized load control, hierarchical load control via aggregators
and distributed control. The control method is also discussed
in [15], in which direct control and indirect control in the form
of price signal are described. Direct control means that FO can
direct schedule and control the charging of EVs [17]. Indirect
control implies that FO coordinate the charging of EVs by
either two way [18], [19] or one side price signals [20]. EV
owner determine the charging profile of EVs by themselves. A
short comparison between direct control and indirect control
is given in Fig. 2.
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· Price incentive
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· High certainty 

· Better optimal results

· Privacy improved

· Less communication cost

· Sophisticated hardware

·  High communication 

cost

·  Lower certainty

·  Demand Price elasticity is 

required

Fig. 2. Comparison between direct control and indirect control strategy

IV. FRAMEWORK DESIGN AND METHOD DEVELOPMENT
FOR MULTILEVEL COORDINATION

Within the assumed system architecture, we propose a
framework consisting of four fundamental stages [21], i.e.,
offline scheduling, online scheduling, real time control and
settlement, to operate and control this system. These principles
are in line with the system control function required at the
control center of power system operation [10], i.e., instan-
taneous operation, operation planning and operation report-
ing. This framework is a fully charging profile management
considering charging cost minimization and distribution grid
capacity management. During the framework, shadow price
based mechanism designed for the market and direct control
between FOs and EV charging are used.

A. Framework design and method development for multilevel
coordination

1) Energy schedule of the FOs without congestion
management-Offline scheduling
All the FOs need to predict the energy requirements
(driving patterns) of their customers (EV owners) and
plan the corresponding expected charging schedule for the
EVs. The methods of estimating the energy requirements
and setting up the charging schedule may be different,
but in general, the FOs try to minimize the charging
cost of their customers as well as guarantee the driving
requirements of the EV owners.

2) Market based approach for distribution grid congestion
management-Offline scheduling
The market based platform will be used if congestion
happens and the shadow price based mechanism is chosen
for the market operation. FOs trade the power capacity of
the distribution grid in this market. During the negotiation
of the market, a shadow price will be issued by the market
operator in the time slot where congestion happens. Then
this shadow price will be sent to FOs, FOs will send back
a new schedule to the Market operator, such iteration will
be terminated until the congestion is eliminated.

3) Online scheduling and Real time control
It is valuable for FOs to utilize the online scheduling stage
and make better charging schemes, especially regarding
the participation in the regulating power market. Besides,
if more accurate information is provided to the FOs, FOs
can judge whether they need to reschedule the charging
plan during this stage. With regard to real time control,
one can assume that the EVs will charge according to
the plan; however, if grid normal technical operation is
compromised, FO management can be overridden by the
DSO operation, such as using load shedding scheme.

4) Settlements The settlements need to be designed well
considering both the spot price and shadow prices. Be-
sides, tax, transmission and distribution fees etc., should
be taken into account.

B. Market based approach for distribution grid congestion
management

In this subsection, we mainly focus on introducing the
shadow price, where it comes from, how it can be utilized
in the study.

1) Analytical analysis of shadow price based market op-
eration: In general, the method starts with a proposed cost
function which represents the cost of the power preference
difference of a FO in each time slot, e.g.,

µk = ζk(P̃k,i).

To facilitate the understanding, we assume

µk = Ck,i(P̃k,i − PE
k,i)

2, (1)

where k, i denote the index for the number of FOs and time
slot in the scheduling period, k = 1, ..., NB , i = 1, ..., NT



PE
k,i means the schedule planned by FOs, P̃k,i denotes the

control variable, Ck,i means the weighting factor which are
associated with the power difference, the larger Ck,i implies
a smaller difference.

The objective is to minimize the cost functions as well as
respect to the constraint from DSO:

minimize

NB∑

k=1

NT∑

i=1

Ck,i(P̃k,i − PE
k,i)

2

subject to
NB∑

k=1

P̃k,i ≤ PCap(i), i = 1, ..., NT , (2)

where PCap(i) is the power capacity specifically for all the
FOs, for example, it can be estimated by the DSO after
deducting the conventional loads.

This problem is a convex optimization problem and rele-
vant research [22], [23] show that by introducing Lagrange
multipliers or shadow price Λ(i) ∈ RNT , problem (2) can be
transferred into following partial Lagrangian problem:

L =

NB∑

k=1

NT∑

i=1

Ck,i(P̃k,i−PE
k,i)

2+

NT∑

i=1

Λ(i)(

NB∑

k=1

P̃k,i−PCap(i))

(3)
.

The centralized optimization problem (2) is transferred into
a decentralized one with associated shadow price Λ(i) in
each time slot, with the purpose of emulating the market
behavior. In our previous study [24], a strict mathematical
proof is presented for the justification of the shadow price
based mechanism.

2) Cost and schedule adjustment algorithm within the mar-
ket based platform: The following steps illustrate the interac-
tions among DSO, FOs, and market operator, cost adjustment
algorithm and can mimic the trading and negotiation process
in the market operation, when congestion happens.

(1) FOs submit their energy schedule to the DSO before
submitting them to the electricity spot market.

(2) The DSO predicts whether congestion will happens
based on the schedules of FOs, if happens, FOs need to
go to the capacity market, otherwise, the energy schedule is
approved.

(3) Capacity market operation
• FOs send their power schedule PE

k,i to market operator.
• Market operator determines the shadow price Λ(i) and

sends the price to FOs.
• FOs update their power schedule according to the shadow

price and send it again to market operator.
• Such iteration will be terminated according to certain

criteria, e.g., price convergence.
Intuitively, Fig. 3 illustrate the operation sequence.

V. NUMERICAL EXAMPLES

In this step, we will illustrate the effectiveness of utiliz-
ing the shadow price, i.e., Λ(i) to facilitate the congestion

FOs modify and send 

the energy schedule to 

the market operator

After serveral interations, 

the process will converge

Market 

operator

Fleet 

operators

FOs submit their 

energy schedule to 

market operator. 
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Market operator will 

issue a new price.

 market operator initial a 
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utilization of the grid
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finally publish a price

Fig. 3. Convergence of Λ(i), i = 9, 10, ..., 16 toward the shadow price.

management in the proposed method. It is noted that the cost
function in this study presented by the quadratic function is
assumed to represent the cost for the energy preference loss.
The accuracy of the cost function is out of the scope of this
study, the focus is to show how the FOs establish the schedule
based on the cost function and the shadow price.

The weighting factor rate C1,i, C2,i is set to 0.5 and 0.1.
The value of αω is chosen as 0.1 in this case. Note that the
variable Ck,i and αω are connected, an appropriate value of
the two variables can ensure smooth operation of the proposed
method, i.e., the trade-off of the speed of the convergence and
the accuracy of the solution. However, there is not a strict rule
for choosing the parameter values. The power capacity Pcap(i)
is set up according to the trend in the real case; generally, the
capacity is higher in the later evening and early morning time
and lower in the day and evening time. Fig. 4 is presented
to note the convergent process of the shadow price. During
the time slot of 9 to 16 (15 minutes based time slot in a 24
hours time window), there exists congestion in the network,
the total power demands from FO1 and FO2 are same in
these time slot, (i.e., 39.1 kw from FO1 and 41.4 kw from
FO2), but the capacity reserved for these time slot is 70kW.
The result shows that the steady state is reached quickly. Note
that each FO will obtain the final power schedule after the
market operation. Because of page limitation, FO1’s example
is shown here, as presented in Fig. 5. From Fig. 5, one can
see that the newly obtained power, i.e., the green curve is
quite close to the blue curve, this is because FO1 have higher
weighting factor rate, which further imply that FO2 will need
to reduce a little more power comparing to FO1.

VI. GRID CONGESTION MANAGEMENT WITHIN A
MULTI-AGENT SYSTEMS BASED PLATFORM

In the discussions above, it is observed that some general
design principles are used such as decomposition, abstraction
and scalability. These principles match the inherent capabilities
of software agents and multiagent systems. In fact, multiagent
system have been widely considered for control of power sys-
tems [25], starting from a low level control of devices to higher
level of planning and optimization. A detailed explanation
for the application of the three principles mentioned above



Fig. 4. Convergence of Λ(i), i = 9, 10, ..., 16 toward the shadow price.

Fig. 5. Convergence of Λ(i), i = 9, 10, ..., 16 toward the shadow price.

is presented below:
• Decomposition: The electricity supply for the ender users

is provided by several FOs. The congestion problems in
a distribution network can be decomposed into subprob-
lems, which the different DSO may face challenges on
different levels of their grid. Some DSO might foresee
problems on the medium voltage grid, while others may
encounter potential problems with capacity in the low
voltage transformers.

• Abstraction: Abstraction can be used to define a simpli-
fied model of the system that emphasizes some of the
details or and suppresses others and to organize network
operation. In this study, for example, FOs can be used
to abstract the requirements and operations constraint of
EV owners. In addition, the radial distribution grid can
be abstracted in the form of Fig. 1 when emphasizing the
active power transfer capacity management.

• Scalability: Multiagent systems have mature mechanism
for implementation of cooperative and competitive mech-
anisms. These mechanism can be used in the interaction
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Fig. 6. Multiagent system based realization of the proposed scheme of an
active power distribution network

of the market operator and the FOs. We will consider
some competitive mechanisms between FOs in a future
study because the above case studies mainly illustrate
how the FOs can cooperate to mitigate the grid congestion
problems.

According to the arguments above, we propose a multi-
agent system architecture for the realization of the coordi-
nation of an active distribution network with multi-actors, as
presented in Fig. 6. In which, all the agents will be built on
JACK which is an agent-oriented development environment
built on top of and fully integrated with the Java programming
language [26]. JACK offers the environment and facilities
message sending/receiving. Matlab based functions enables
a declarative implementation of the decision module. Fig.
7 shows the skeleton of the agents in the JACK platform,
in which three agents are presented, i.e., FO agent, DSO
agent, Marketoperator agent. The envelope box represents the
event that will be transferred between the agent. The rounded
rectangle box means the plan that each agent has which will
be used to handle the events. Basically, this skeleton illustrates
the interactions between three agents intuitively.

VII. CONCLUSION

This paper primarily propose a framework for coordinating
the values and operation constraints of various actors in an
active distribution network. Multilevel coordination strategies
are used in this study, i.e., price based platform is used to solve
the congestion problems between DSO and FOs and direct
control method are adopted to control the charging of EVs by
FOs. We further give an argument that multi-agent based plat-
form is suitable for the demonstration of the active distribution
network with multi-actor setting, multilevel coordinations. A
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scheme of the multi-agent system is presented. It is believed
that we are able to show the interactions between different
agents in an easier way by using multi-agent technology. Also,
it is easier for software development. More than this, we want
to show the scalability of expanding the system into a level
where agents sit in different place, this could demonstrate more
realistic case.
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Abstract—Flexibility resources on the demand side are an-
ticipated to become a valuable asset for balancing renewable
energy fluctuation as well as for reducing investment needs in
distribution grids. To harvest this flexibility for distribution grids,
flexibility services need to be defined that can be integrated with
distribution grid operation and that provide a benefit that can be
traded off against other grid investments. Two key challenges are
here that the identification of useful services is still ongoing and
that the transaction cost for the individually small contributions
from the demand side could be prohibitive. This paper introduces
a flexibility clearinghouse (FLECH) concept and isolates FLECH
key functionality: to facilitate flexibility services in distribution
grids by streamlining the relevant business interactions while
keeping technical specifications open.

I. INTRODUCTION

Procuring system services from small distributed energy
resources (DER), including flexible demand, has become a
focus of research and field trials in recent years. The capability
of managing DER via aggregators, to participate in bulk power
markets as well as to provide system (ancillary) services has
achieved much progress. Yet the provision of such services at
distribution level has not seen the same development, either be-
cause they are simply uneconomic or possibly because market-
based approaches are not easily introduced to distribution
system operations.

A. Demand Response and Distribution Grid Planning and
Operation

Two new drivers for increased grid demand are: 1) the
development of renewables, in particular solar photovoltaic
installations, and 2) the introduction of controllable and likely
price responsive power consuming/producing units, including
heat pumps and electric vehicles. These new units may cause
grid issues such as voltage violations, reverse power flows,
or thermal overloading. Such grid issues force distribution
system operators (DSOs) to consider costly reinforcements
while the effective grid utilization may actually be decreasing
due to reduced diversity amongst the price responsive loads.
Distribution grid planning and operation are conventionally
focussed on planning and maintenance and are only slowly
adopting “smart” approaches involving automation. The smart
grid is suggested to enable better infrastructure utilization and
the accommodation of additional generation and demand. One
modern approach to increasing the effective hosting capacity

of distribution grids is to improve situational awareness for
grid operators and planners through better feedback about the
operating state [1].

Another approach is a better utilisation of demand side
flexibility through new demand response programs, or ‘flex-
ibility services’ [2]. Aggregating and controlling DER for
commercial purposes is a field for new actors where techno-
logical and business innovation are essential for development.
This development will either be facilitated or hampered by
regulatory choices. The need for a regulatory framework for
commercial flexibility services at the distribution level has
been recognized, e.g. by the standardization mandate M490
and with the introduction of the traffic light concept [3], and
is under development.

The introduction of new flexibility services at distribution
level is thus a current and relevant concern, while, clearly,
both the service definitions and the potential market-based
coordination of such services are still largely open problems.

B. Congestion Management in Distribution Grids

At transmission level, congestion constraints are a common
tool for reflecting transmission limitations toward market
mechanisms, e.g. when interconnecting market areas. Conges-
tion occurs when scheduled energy flows exceed the available
transmission capacity [4]; congestion management is then
the allocation of transfer capacity according to economic
principles. Based on this definition, congestion can also be
defined for distribution networks [5] as a coordination strategy
reflecting operational constraints on market terms. A study in
[5] analyzed three kinds of market mechanisms for alleviating
congestion. In [6]–[8], prices are used to coordinate between
DSO, aggregators and DER owners to achieve an optimal
allocation, and in [9] different grid tariffs are discussed.

A simplification common in the distribution congestion
literature [5]–[9] is to focus on ‘bottleneck’ constraints on a
summation of power flows. This constraint can be interpreted
as transformer current limit - for which there exists a business
case on deferring grid investments. However, a DSO’s actual
decision drivers and investment alternatives are often more
varied and complex than the ones considered here, and regu-
latory requirements often inhibit the application of congestion
constraints in distribution grids.

1



To achieve an incremental adoption and a better match
of flexibility services with DSO regulations and procedures,
DSOs should be enabled to request flexibility services adapted
to actual practices of distribution system planners and to needs
of flexibility service providers.

This paper introduces a concept which respects the practical
requirements of a technically advancing DSO while opening
the efficiency potential of market-based congestion manage-
ment: the Flexibility Clearinghouse (FLECH). Following three
key design principles, 1) to minimize transaction cost for
DSO flexibility services; 2) to allow for further technical
specifications of DSO services; and 3) to focus on business
transactions and do not interfere with with distribution op-
erations, this concept has been developed and implemented
within the Danish research and innovation project iPower:
www.iPower-net.dk.

II. FLEXIBILITY SERVICES FOR DISTRIBUTION
OPERATION

This Section defines the concept of a Flexibility Service,
provides examples, and a framework for analysis.

A. Definition of a Flexiblity Service
Many DER units have the capability of altering their

generation/consumption pattern with limited impact on their
primary energy service. This capability is further referred
to as DER flexibility. Flexibility can be provided to a DSO
through a new dedicated ancillary services market to which
entities representing DER, here Aggregators, can submit bids.
The products on this market are called flexibility services and
include a detailed specification of the service procurement,
activation, delivery, validation and settlement. These services
include two generic types: (A) fully scheduled services which
oblige the aggregator to behave as contracted without DSO
intervention, and as well as (B) reserve services which entail
a reserve or availability combined with a need-based activation
by the DSO.

B. DSO Flexibility Service Examples
An analysis of relevant issues in the distribution system,

reported in [2], identifies four key needs that could be fulfilled
by flexibility services: response to foreseen and unexpected
overloading, fast response to resolve N-1 situations, support in
case of voltage limit violations (power quality), and support
with respect to reactive power exchange with the transmission
grid.

The same report, [2], suggests seven potential flexibility
services to support the above needs. This paper will focus
on those five services which offer flexibility via active power
management:

1) PowerCut Planned: Used for handling predictable peak
load for periodically daily issues in advance.

2) PowerCut Urgent: Used for handling peak loads on an
event basis.

3) Power Reserve: Used when the system is operating in
the reserve band of the feeder, and a fault in the system
would require the utilization of the reserve band.

4) PowerCap: Activated upon request to ensure that the
capacity limits specified by the DSO are not violated.

5) PowerMax: Same function as PowerCap, but activated
through a planned schedule.

These services address the first two needs mentioned above,
i.e. response to overloading and to N-1 situations. Notably,
they include both fully scheduled products, i.e. (1) and (5),
as well as reserve products, (2)-(4). As stipulated in [2],
these service definitions are expected to be among the first
ones accepted by DSOs. However, they do not constitute an
exhaustive list of potential services.

C. A Framework for Analyzing Flexibility Services

In [5] an analysis framework of four stages for has been
introduced: 1) Offline Planning, 2) Online Scheduling, 3) Real-
time Operation, 4) Offline Settlement.

The framework is suited to identify alignement of technical
and market functions across all participating actors. Key
operations for each stage are listed in Table I.

TABLE I
STAGES OF SERVICE PROVISION AND ASSOCIATED FUNCTIONS

Stage Market function Technical function

Offline Planning Contract specification
and cost allocation

Grid planning and ser-
vice specification

Online Scheduling Contracting and re-
source allocation

Scheduling and reser-
vation

Real-time Operation Contractual fulfillment Plan execution and ac-
tivation/response

Offline Settlement Financial settlement Service validation

The stages and the separation of market and technical oper-
ations define a framework suited for the analysis of flexibility
services and isolation of FLECH functionality.

III. THE FLEXIBILITY CLEARINGHOUSE CONCEPT

As described in [2], the FLECH is meant to facilitate DSOs
to announce services and aggregators to bid upon. Here, the
stakeholder setting and FLECH core functions are identified.

A. Stakeholder Roles and Need for a Flexiblity Clearinghouse

Demand for system services from DER units exist all the
way down to the low voltage grid. We identify associated in-
terests with respect to the following conventional stakeholders:

• Transmission System Operator (TSO)
• Distribution System Operators (DSOs)
• Balance Responsible Parties (BRP)

New stakeholders in the context of DER services include:
• DER owners
• Aggregators
All stakeholders have interests of their own that require

alignment to enable successful delivery of flexibility of flex-
ibility services to a DSO. The DER owner is interested in
offering flexibility which does not negatively influence the
primary function of the unit. This flexibility will be defined
in contracts between the DER owner and an Aggregator.

2
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Fig. 1. Schematic overview of the considered actors and their roles in relation
to the FLECH.

Depending on the capabilities of a particular DER unit, it may
be able to offer system services to more than one interested
party. For example, a controlled decrease in consumption could
either be part of a frequency control service offered to a TSO,
or it may be offered to a DSO for peak shaving. In any case,
the invocation of the service would impact both grid domains,
and the interests of TSO and DSO could conflict. In the present
electricity market regulation, larger DER units interact with
a TSO through a BRP. The business model of a BRP adds
another set of interests which do not automatically align with
the requirements of grid operation.

Two present ways of addressing flexiblity services are grid
codes and bilateral contracts. Grid codes are primarily suited
to define absolute limits of operation. They have to be rigid
as their scope is universal to all grid connected devices.
The creation and updating of grid codes is a slow process
which is not very innovation friendly and does not imply any
remuneration. Individually negotiated bilateral contracts, on
the other hand, imply a high transaction cost, which makes
them unsuitable for services with small economic margins.

This setting illustrates the need for a service-independent
and open platform for the arbitration of interests between the
stakeholders involved in delivering a power system service
from flexible DER units. The scope of this platform should
be limited to providing an infrastructure on top of which the
business logic of present and future services can be defined.

B. Functions of FLECH

A clearinghouse is a safeguard for a marketplace, ensuring
the secure fulfilment of a business transaction. FLECH pro-
vides the platform for such transactions with respect to smart

services in the interest of a distribution system operator.
The FLECH concept is realized as a service-oriented plat-

form that facilitates the business process of specifying, con-
tracting, delivery and settlement of DER flexibility services.
It requires involvement of a software provider. For operation,
a new neutral stakeholder, similar to the role of a market
operator for the bulk electricity markets, should be introduced.

The capability of FLECH will evolve with the develop-
ment of distribution level markets. Initially, market clear-
ing can be performed by the DSO. The FLECH function-
ality would mainly consist of bookkeeping and communi-
cation/broadcasting functions. In the future, when market
mechanisms are more stable and services well-defined, market
clearing would be implemented on the FLECH platform.
Another optional functionality is a coordination role in the
scheduling phase. None of the specified services in [2] require
such functionality as it is allocated to DSO and Aggregators
internally. For future congestion management strategies, such
as reported in [5], online coordination of several aggregators
would theoretically be more economically efficient.

During operation, two alternative service types – reserve
and scheduled – need to be distinguished. To avoid technical
real-time requirements for FLECH, the activation of reserve
services should be sent directly to the respective aggregator,
while FLECH assumes a pure bookkeeping role.

Finally, FLECH supports service validation and settlement.
As all records of activations are available, FLECH can match
bids and fulfillment and calculate the final settlement.

IV. FLECH INTERACTIONS

The FLECH functionality outlined above aims to facilitate
interactions between DSO and flexiblity service providers; this
section identifies the required interactions and isolates the
common message exchange requirements.

A. Flexibility Service Mapping

The framework introduced in Section II-C is used to
map out the FLECH interactions for the candidate flexiblity
services summarized in Section II-B. Here, two services,
PowerCut Urgent and PowerMax, are chosen as representative
cases and their mapping is summarized in Tables II and III.

TABLE II
POWERCUT URGENT

Stage Market function Technical function

Offline Planning Specification and an-
nouncement of reserve
contract

DSO: identify location
and volume of reserve
need

Online Scheduling (optional: call for short
term bids to activation
market)

DSO: Anticipate ’ur-
gent’ activation need
time

Real-time Operation – DSO: Activation
signal; DER respond
within 15min

Offline Settlement Payment per activa-
tion. Failure to de-
liver 4 times termi-
nates contract.

Recording and valida-
tion of activation sig-
nal and response

3
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TABLE III
POWERMAX

Stage Market function Technical function

Offline Planning Announce service re-
quest

Identify activation
location, periods and
volume

Online Scheduling (optional coordination) (DER and Aggregator:
prediction)

Real-time Operation – DSO: monitoring
only; Aggregator
coordinates DER

Offline Settlement Payment defined in the
contract. Failure to de-
liver 4 times termi-
nates contract

Recording and valida-
tion of activation sig-
nal and response

The following conclusions can be drawn from the analysis:
At the planning stage, tender announcement and reserve
agreements with a long lead-time are arranged, e.g. 2 - 6
months before activation. The scheduling phase is optional, yet
valuable in a competitive setting: due to short lead time (e.g
1 - 24h ahead) bid prices would improve due to reduced uncer-
tainty. At the operation stage, the services can be differentiated
into reserve and scheduled services. For scheduled services a
simple notification of activation will be performed. For reserve

services, the DSO will send an activation signal directly to
the aggregator. FLECH must be notified if the activation
is executed. The notifications are used for settlement. With
regards to offline settlement, FLECH will be the responsible
for coordinating validation, consolidating the judgment from
different actors.

B. Generic FLECH Messages

The FLECH key interfaces are to DSO and Aggregator.
The sequence diagram in Figure 2 summarizes the essential
message flow, grouped by stage. Focussing on the transac-
tional, administrative, aspects of service provision, the key
interactions are common to all services considered, with two
exeptions: the scheduling stage would depend on the respective
service and market clearing model, and in the operation stage,
separate sequences are defined for scheduled and reserve
services. The adoption of new services to the a first FLECH
design will therefore come at a small incremental cost.

V. CASE STUDY

This case study illustrates the application of the PowerMax
service by a DSO in case of an anticipated low voltage
transformer overload. Consider the following scenario:

(A) 70 household consumers are connected to a 10/0.4kV
transformer T1, each with connection capacity of approxi-
mately 7kW ; an electric vehicle (EV) with up to 3.7kW charg-
ing capacity, [10], is associated with 14 of the households.

(B) Aggregators managing controllable consumption in this
grid area are two EV fleet operators, FO1 and FO2. FO1
operates 5 EVs and FO2 9 EVs, corresponding to 18.5kW
and 33.3kW charging capacity, respectively.

(C) Based on historical data and specific load models, the
DSO anticipates that the 175kW limit (corresponding to 70%
of the maximum 250kW ) of transformer T1, may be exceeded
by 37.8kW on weekdays between 4:30pm and 8:00pm during
the months of December, January and February, mainly caused
by additional EV charging loads; the corresponding load
profile is illustrated in Figure 3.

(D) The DSO has the option to reinforce the transformer
or to acquire a flexibility service. An economical evaluation
suggests that flexibility services could postpone reinforcement
and thus are an attractive option. Due to the characteristics of
EV loads, the PowerMax service is chosen as most viable.

To prepare the FLECH tender, the DSO identifies its needs:
having 14 EVs with flexible consumption in the area charging
at maximum rate, the peak load of the EVs is 51.8kW –
under current Danish regulations, the only capacity limit is the
physical connection capacity. The DSO thus needs to reduce,
for the given time window, this maximum capacity limit to
14kW , i.e. the total capacity of the two aggregators should
be reduced by 37.8kW . With PowerMax, the DSO therefore
requests a reduction against documented connection capacity
of the aggregators in the area. Apart from announcing the
quantity to be reduced, the DSO includes a ‘recommended’
rate in order to initiate price discovery.
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Fig. 3. Expected load profiles for days with anticipated feeder overload.
Top: Expected profile before PowerMax tender. Bottom: Expected profile after
PowerMax tender.

In this scenario, FLECH facilitates the tender and trans-
actions associated with the service provision. The individual
steps are related to Figure 2. At the planning stage, the DSO
submits the following service tender to FLECH:
PowerMax:

CAPACITY REDUCTION [AREA T1]: 37.8kW

TIME 4:30pm TO 8:00pm ON weekdays

PERIOD 01 Dec 2014 TO 28 Feb 2015

RECOMMENDED RATE 500 EUR/kW

This tender is then announced by FLECH to all aggregators
registered for T1. The aggregators bid into the FLECH:
AggID [BidID]: reduction FROM capacity AT rate flex?

FO1[FO1B1]: 12.3kW FROM 14.8kW AT 500 EUR/kW FULL

FO2[FO2B1]: 12.3kW FROM 14.8kW AT 700 EUR/kW FULL

FO2[FO2B2]: 15.4kW FROM 18.5kW 1000 EUR/kW FLEX

Note that FO1 did not bid with all of its resources, effectively
only using 4 out of 5 cars, and that the second bid by FO2
is FLEX bid, i.e. it does not need to be accepted entirely.
After gate closure their bids are forwarded to the DSO which
evaluates the offers and decides to accept the following bids:
BidID: FO1B1, FO2B1, FO2B2*90% AT 1000 EUR/kW

This leads to an effective capacity reduction of 38.5kW
which fulfills the required 37.8kW . The prices of this case
study are completely fictitious and not anchored in real costs.

As the PowerMax service includes a schedule, aggregators
determine their commitment internally and no interaction is
required at the online scheduling stage. At the operation stage
FLECH collects the activation notifications which are passed
on to the DSO to verify the performance. At the settlement
stage, the Metering Responsible submits metering data to
FLECH and FLECH validates the performance. The settlement
transaction is facilitated by FLECH.

VI. CONCLUSION

This paper presented a clearinghouse concept for facilitating
ancillary services at the DSO level. With the emergence of
new players in DSO ancillary service markets, it is foreseen
that such a mechanism will be needed to minimize transaction
costs. In contrast to other contributions on distribution conges-
tion mitigation, the FLECH adapts to the actual DSO needs
and is not tied to a specific aggregator architecture

Two representative flexibility services have been chosen
to identify the FLECH requirements. By separating market
and technical aspects of the services, it is possible to isolate
the need for a pure market facilitator, which either facilitates
bilateral contracts or operates a market-clearing facility.

The role of FLECH and its interactions with stakeholders of
the distribution flexibility service market have been described.
A case study has been presented showing how FLECH is
envisioned to work in a concrete scenario.

Several important aspects of flexiblity services have been
out of the scope of this paper and will be addressed in future
work: (A) A flexiblity service requires the formulation of a
‘baseline’. This baseline at transmission level is based on the
energy markets, but there is no such formal baseline at the
distribution level for DER. (B) The activation of flexibility
services may potentially cause an imbalance cost. It is not clear
to which actor this cost should be allocated. (C) The aggregator
is assumed to be an independent entitiy representing the DER
towards FLECH and the DSO. This assumption is currently
not backed up by regulation, partly because of the imbalance
issue noted in point (B).
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Abstract

Distributed energy resources, like electric vehicles (EVs) are widely regarded as valuable assets in the smart grid in addition to their
primary transport function. However, connecting EVs to the distribution network and recharging the EV battery without any control
may overload the transformers and cables in peak hours when EVs’s penetration is relatively high. In this study, a distributed control
strategy for integrating EVs into the distribution network is proposed to coordinate the self interests and operational constraints
of two actors: the EV owner and the Distribution system operator (DSO), facilitated by the introduction of fleet operator (FO)
and grid capacity market operator (CMO). The control strategy includes control system design and distributed control algorithm
development which is based on general equilibrium market mechanisms. In order to fully demonstrate the coordination behavior
inside the proposed strategy, we build a multi-agent system (MAS) which is based on the co-simulation environment of JACK and
Matlab. A use case of the MAS and the results of running the system are presented to intuitively illustrate the effectiveness of the
proposed solutions.

Keywords: Congestion management, Distribution grid, Electric vehicles, Multi-agent system, Resource allocation.

1. Introduction

EV is widely advocated as a mean of personal transport and
urban delivery, since it can contribute to the reduction of CO2
emission, especially when the recharging electricity is gener-
ated by renewable resources. However, for the electric utilities,
the issue is how to integrate the EVs smoothly into the grid, i.e.,
manage the simultaneous charging of a large scale of EVs, with-
out overloading the grid. Several studies (Heydt, 1983; Lopes
et al., 2011; Clement-Nyns et al., 2010; Green II et al., 2011)
have shown that uncontrolled charging (alternatively is called
dumb charging) of EVs will challenge the capacity of the dis-
tribution grid. To address this challenges, the time-of-use tariffs
or multiple tariffs charging scheme are used in the early stage
to relieve the congestions in the peak hours (Shao et al., 2010).
But using tariffs solely are not adequate to eliminate the con-
gestion, since they would shift peak load to its neighbouring
period (Ma et al., 2013; Karfopoulos and Hatziargyriou, 2013).

Recently, much research has been aiming to coordinate the
objectives and the constraints centrally, e.g., to optimize the
charging cost of EVs as well as respecting the hard constraints
imposed by EV owner needs and distribution grid operation. In
(Sundstrom and Binding, 2012), a complex scheduling problem
involving the EV owners, the fleet operator (FO) and the DSO is
analyzed. The approach requires a complex interaction between
the DSO and the FO, on each interaction, the FO will get a spe-
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cific grid constraint from the DSO and add it into the EV charg-
ing cost minimization problem. The results show that both the
FO and the EV owners can achieve the objectives of minimiz-
ing charging costs and fulfilling driving requirements without
violating the grid constraints. Lopes et al. (Lopes et al., 2009)
proposed a conceptual framework consisting of both a technical
grid operation strategy and a market environment to integrate
EVs into the distribution systems. The FO is proposed to man-
age the EVs and the FOs will prepare the buy/sell bids into the
electricity market. Having this defined, a prior interaction with
the DSO must exist to prevent the occurrence of congestion and
voltage problem in the distribution network. The smart charg-
ing algorithm is mainly designed for the operation of the DSO
which can maximize the density of the EV deployment into the
grid. It is also assumed that the grid has enough capacity to
provide all the power required by EVs. With this assumption,
the centrally smart charging approach is effective.

Although these proposed solutions are shown to work effi-
ciently for a limited number of EVs, centralized management
requires the acquisition and processing of an enormous of in-
formation for a large penetration of EVs, such as: 1) the battery
model of EVs, initial state of charge (SOC) and desired SOC
of EVs; 2) driving pattern of EVs; 3) grid constraint informa-
tion from DSO; 4) electricity market information, which would
substantially request significant computational resources, com-
munication overheads and communication infrastructure cost.
Research in (Lyon et al., 2012) indicates that the benefits for the
centralized charging management might not be justified for the
communication infrastructure cost. Alternatively, several ways
of solving the congestion problem in the distribution grid have
been suggested from market perspective. In (Andersen et al.,
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2012), the paper conceptualizes several approaches, i.e., dis-
tribution grid capacity market, dynamic grid tariff (O’Connell
et al., 2011), to address the distribution grid congestion. The
conceptualized strategies for congestion management are eval-
uated in terms of their complexity of implementation, the value
and benefits they can offer as well as possible drawbacks and
risks. Further on, the work in (Hu et al., 2013) analyzed the
shadow price based grid capacity market scheme, in which, FOs
centrally schedule and control the charging of EVs, they negoti-
ate with the market operator (distribution grid capacity market)
on the limited capacity of the distribution grid if it is needed.
The focus of the study (Hu et al., 2013) is the mathematical
proof of the proposed market scheme. Some numerical case
studies are shown to illustrate the effectiveness of the proposed
solution.

To implement and assess both control strategies of smart
charging of EVs, especially market based coordination method,
a multi-agent system (MAS) based technology is very suitable
(Jennings and Bussmann, 2003), which can be justified by the
following reasons:

• The increase in complexity and size of the whole EV
charging network bring up the need for distributed intelli-
gence and local solution, which fall into the scope of MAS
based technology.

• The information flow, optimizations and the negotiations
happened in the smart charging network of EVs can be
well demonstrated and integrated into a MAS.

• The system can be pre-tested and pre-analyzed by using a
MAS before going to real implementation.

In addition to these general arguments, MAS has been widely
proposed in the context of power systems, such as power sys-
tem restoration (Nagata and Sasaki, 2002), power system op-
eration and control (Rehtanz, 2003). More recently, the multi-
agent concept is proposed for distribution system operation and
control (Nordman and Lehtonen, 2005; Issicaba et al.; Pipat-
tanasomporn et al., 2009; Ren et al., 2013), especially, con-
sidering the capacity management with a large population of
electric vehicles (Karfopoulos and Hatziargyriou, 2013; Mi-
randa et al., 2011) and the capacity management with more gen-
eral loads (Greunsven et al., 2012). The authors (Karfopoulos
and Hatziargyriou, 2013) proposed a distributed, multi-agent
EV charging control method based on Nash certainty equiv-
alence principle that considers distribution network impacts.
Four types of agents are included in the study, EV aggregator
agent, regional aggregation agent, microgrid aggregation agent
and cluster of vehicles controller agent, and vehicle controller
agents. In the non-cooperative, dynamic game, all the vehicles
controller agents decide the strategy that minimizes his own ob-
jective functions. The up-level agents coordinate vehicles con-
troller agents’ charging behaviour by altering the price signal.
The price signal is a reflection of congestion conditions. The re-
sults indicated that the proposed approach allocates EV energy
requirements efficiently during off-peak hours which achieves
effectively valley filling and also leads to maximization of load

factor and minimization of energy losses. The authors in (Mi-
randa et al., 2011) used the MAS to design a distributed, modu-
lar, coordinated and collaborative intelligent charging network
with the objective of pro-actively scheduling the charging of
up to fifty EVs as well as eliminating the grid overloading is-
sue. The study mainly considered how the electricity is dis-
tributed to the multiple charging point agent under one local
power manager agent and this is done by an auction mecha-
nism. Each charging point agent makes a bid for the energy in
the next 15 minutes until it get the desired state of charge of
the battery, then the local power manager agent sorts out the
orders to determine which EV can be charged during the time
slot. In (Greunsven et al., 2012), an active distribution network
(ADN) is presented with its actors and their objectives. The
multi-agent technology is proposed for the normal operation of
the ADN, in which the auctioneer agent (placed at the MV/LV
transformer) communicates with the device agent by sending
the price signal and receiving the bid curve. Further on, capac-
ity management is investigated by transforming the bid curves
of the device agents.

This paper is an extension of the concepts described in (Hu
et al., 2013). The extension mainly utilize the MAS technology
to assess the proposed market scheme with the purpose of illus-
trating and tracking the coordination behaviors. Moreover, the
extension considers demonstrating EVs’ flexibility (through the
presence of response weighting factor to the shadow price) in
the developed MAS system. There are several highlights in this
study compared to previous studies (Karfopoulos and Hatziar-
gyriou, 2013; Miranda et al., 2011; Greunsven et al., 2012).

• The developed MAS offers a modeling environment that
enables study of important characteristics of the proposed
distribution grid capacity market which is not presently
available. By implementing and assessing the market
based strategy, it is shown that grid congestion problem
can be eliminated in few steps.

• The developed MAS explicitly presents the relevant
agents, the plan, and the event inside a market frame. The
modelling approach can be an example for other similar
problems.

• The developed MAS demonstrates a simulation platform
which is based on the integration of JACK and Matlab.
The platform can well integrate the advanced optimization
and control and the interactions which can vary from sim-
ple information passing to rich social interactions such as
coordination, negotiation.

The remainder of the paper is organized as follows: In sec-
tion II, an introduction is given on the assumptions and control
system architecture. Section III mainly presents the mathemat-
ical principles behind the methods of smart charging of EVs
and distribution grid congestion management. In section IV,
MAS based realization of congestion management scheme is
presented. Case studies are illustrated in section V to facili-
tate the understanding. Finally, discussion and conclusions are
presented in section VI.
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2. Control system architecture

2.1. Main actors in the control system

Typically, the challenges in the distribution grid caused
by the increasing electricity consumption from EVs and heat
pumps (Søndergren, 2011) are solved by expanding the grid to
fit the size and the pattern of demand. As an alternative, in-
spired by the congestion management method at the transmis-
sion system level, it is then defined in this study that the capac-
ity of the distribution network (scared resources) is allocated
according to economic principles without upgrading the grid.

Fig.1.(a) presents a sketch of a typical situation in a distribu-
tion network where the substation supports the electricity to the
households connected to it. In this distribution network, it is
assumed that the consumers own controllable appliances, i.e.,
EVs, besides some conventional loads. These EVs have con-
tracts with the FOs who are the new entities in a smart grid en-
vironment. FO has been widely proposed to provide the charge
services to EVs and it is further assumed that the FO is also
responsible for managing the EV charging infrastructures, i.e.,
the EV supply equipment (EVSE) (Bessa and Matos, 2012; San
Román et al., 2011). As illustrated in Fig.1.(b), EVSE supports
the smart charging functions. The decision can be made on the
EV level or on the FOs level. The IEC 15118 is the most recom-
mended communication standard and demonstrated in details in
(Kabisch et al., 2010; Schmutzler and Wietfeld, 2010) by show-
ing the sequence diagram of a charging pro-cess between the
EVSE and the EVs. For the communication between the EVSE
and the FOs, it is recommended that IEC 61850 can fulfil the
functions. We use EVi as an agent to represent the EV owner’s
operation on EVs and it will communicate with the FOs. In
this study, it is assumed that the DSO will coordinate with the
FOs to alter the EV’s charging profile to prevent/eliminate the
overloading problem. The coordination between the DSO and
the FOs is facilitated by the grid capacity market operator. In
the following section, some market based coordination methods
will be discussed for the interaction between the DSO and the
FOs.

2.2. Coordination relationships between the actors in the con-
trol system

2.2.1. Allocating the available power of DSO among the FOs
by standard price-oriented market protocols

As discussed in (Akkermans et al., 2004; Wellman, 1993;
Cheng and Wellman, 1998), market-based control method is
very efficient and applicable for handling the resource alloca-
tion problem. The authors (Akkermans et al., 2004) discussed
the theoretical foundations of distributed large-scale control
problem by unifying the microeconomics and control engineer-
ing in an agent-based framework. One of the main results of
this study is that computational economies with dynamic pric-
ing mechanisms are able to handle scarce resources for con-
trol adaptively in ways that are optimal locally as well as glob-
ally. It is further recommended in the study (Akkermans et al.,
2004) that standard price-oriented market protocol, e.g., Well-
man’s WALRAs algorithm (Wellman, 1993; Cheng and Well-
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Figure 1: A illustration of distribution network with EVs.

man, 1998) is suitable for implementing the agent-based mi-
croeconomic control. The algorithm presumes an auctioneer
agent which announce the market clearing price p and the con-
trol agents will submit their demand γα based on the price,
then the auctioneer agent updates the price until the equilibrium
value is found. The market-based approach has bee supported
to be used in the power distribution system, such as the discus-
sion in joint research center European Forum 1 or in the research
(Nordentoft, 2013; Schlosser, 2010; Lorenz et al., 2009).

2.2.2. Coordination method between FOs and EV owners

The control method between the FO and the EVs developed
in (Sundstrom and Binding, 2012; Lopes et al., 2009; Hu et al.,
2013) belongs to centralized control strategy, while the one de-
veloped in (Ma et al., 2013; Karfopoulos and Hatziargyriou,
2013) goes for distributed control. Studies in (Karfopoulos
and Hatziargyriou, 2013; Richardson et al., 2012) compared the
centralized control and distributed control method when utiliz-
ing them to make an optimal plan which can optimally delivery
energy to EVs as well as avoiding grid congestions. They out-
lined the advantages and disadvantages of both strategies.

1European commission Joint research centre, Scientific support to capacity
markets and the integration of renewables, Brussels (BE) - 22/07/13
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2.3. Distribution grid congestion management with EV inte-
gration

Shadow price protocols are proposed for the coordination be-
tween the DSO and the FOs agent in (Hu et al., 2013), in which
the shadow price used as a market clearing price is updated in
each bidding round by the grid capacity market operator (served
for the DSO). The bids is coming from FOs which represent
the EVs and directly schedule and control the charging of EVs.
In this study, we modify the coordination method between the
FOs and the EVs by distributing the charging decision to the
EV agent. A response weighting factor to the shadow price is
introduced to the individual EV agent. With this presence, the
EV agent can show their willingness to charge or not during the
higher price time slot.

In the following section, a distributed method is proposed for
integrating the EVs into the power distribution systems. Fig. 2
shows the steps of the proposed methods:

1. The EV owner selects charging requirements and EV
controller generate the charging schedule, e.g., based on
charging least cost strategy, dumb charging strategy etc.

2. The EV owner sends the charging schedule to the FO
which they have been subscribed.

3. The FOs aggregate the charging schedule from their con-
tracted EV owners and submit the aggregated charging
schedule to the DSO.

4. The DSO verifies the charging schedule of FOs by running
load flow calculation and sends the results to all the FOs.

5. The FOs submits the charging schedule to the Market op-
erator if there exists congestions; otherwise, the FOs could
bid the energy schedule to the energy spot market and the
procedure stops in this step.

6. The Market operator sends the shadow price to the FOs
and the FOs resubmits the charging schedule to the Market
operator until the shadow price is converged.

7. The FOs sends the shadow price to all the EV controllers.
8. Repeat the step 1 to step 7 until the congestion is totally

eliminated in the planning period.
9. Bid final energy/power schedule to the electricity spot

market.

The key concept is that the FOs/EVs’ energy schedules are co-
ordinated by the DSO/Market operator before they are sent to
the energy market.

2.4. Further discussion on the proposed method
With the purpose of further illustrating the proposed distri-

bution grid capacity market, we give some basic introduction to
the congestion management method and the markets, i.e., Spot
market and Regulating power market, operated at the transmis-
sion system level. Three very different methods of managing
the congestion of the transmission system in the deregulated en-
vironment, have been presented in (Christie et al., 2000). The
three methods are the optimal power flow model used in the
United Kingdom, Australia, New Zealand, and some part of the
United States, the price area based model used in the Nord-
Pool market area in Nordic countries and the transaction based
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Figure 2: Scheme of the proposed solutions

model used in the United states. In Spot market, the Power Bal-
ance Responsible parties (PBRs) make the power and energy
bids into the market, consists of conventional power and wind
power. With the trading, they can balance the power systems
in the deregulated environment. As electricity production and
consumption always have to be in equilibrium, deviations in
the operating hours are left for the transmission system oper-
ator (TSO) to balance which is done via the regulating power
market. Note that the dispatch currently is set only based on the
spot market and the operational state of the distribution grid is
not considered. In short, the proposed solution of this study can
enable the distribution congestion management before the op-
eration of the dispatch. And the capacity market we proposed
only takes place when it is required, i.e., in the situation of pos-
sible congestions predicted by the DSO.

Besides, we have made some assumptions that FOs fully co-
operate in the grid capacity market to avoid the congestion is-
sue. This assumption is made based on the discussions in (Mc-
Calley et al., 2003; Raiffa, 1982), in which, three types of ne-
gotiations have been characterized as either strident antagonist,
cooperative antagonist or fully cooperative. The first one means
the agents are complete distrust each other. The latter means
the agent are entirely self-interested but ones that recognize and
abide by whatever rules exist. The third type means the agents
perform no strategic posturing and think of themselves as a co-
hesive entity with intension to arrive the best decision for the
entity, although they have different needs, values, etc. By be-
ing fully cooperative in our context, FOs will honestly submit
the bids based on their marginal cost functions and the impar-
tial market operator will update the market clearing price only
reflecting the constrained resources (distribution grid capacity).

Lastly, in this shadow price mechanism based method, FO,
EV owner needs to pay the higher shadow price if they charge
the EVs in the time slot where congestion happens and DSO
seems cost nothing to eliminate the grid congestion. However,
in the real practices, it is the DSO’s responsibility to upgrade
the network to address the challenges. It is therefore assumed
that the shadow price can be modified when sending to the FOs
or the FOs may get compensation from the DSO. In addition to
this, DSO need to support the operation of the market operator
and can investigate the saving on the information and commu-
nication infrastructures in the distribution grid.
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3. Problem formulation and control algorithms develop-
ment for EV charging schedule generation and grid con-
gestion management

In this section, we firstly introduce the newly defined method
for the EV charging schedule generation, then summarize the
key elements of the mathematical formula part of our previ-
ous work (Hu et al., 2013), i.e., the algorithm for shadow price
based coordination.

3.1. EV charging schedule generation

Linear programming is used and modified to model the
charging process of EVs (Hu et al., 2013, 2011). The objec-
tive is to minimize the charging cost as well as fulfilling the
driving requirement of the EV owner. The scheduling period
is divided into NT time slot and the time slot could be hourly
based or fifteen/ten minutes based depending on the modeling
requirements. The objective function is defined as the prod-
uct of virtual price (predicted electricity price and the weighted
shadow price, in which the shadow price reflect the congestion
cost of the distribution grid) and a decision variable P j,i, where
j = 1, 2, ...,NE

k is the index for the number of EVs under one
FO, NE

k denotes the number of EVs under FO k. i = 1, 2, ...,NT

is the index for the time slot in the scheduling period. The phys-
ical meaning of the decision variable P j,i is to make a decision
to distributed/charge the power on the certain time slots, where
the charging cost can be minimized. Predicted electricity price
is assumed to be known in each time slot. With the defined ob-
jective function and the constraints such as: 1) the available en-
ergy in the battery should be greater than or equal to the energy
requirement for the next trip/time slot. 2) the available energy
in the battery should be less than or equal to the power capacity
of the battery. 3) The charging rate should less than or equal to
its maximum power rate of the charger, the mathematical model
of the solution is presented as follows:

minimize
NT∑

i=1

(Φ j,i + ξi ∗ Λ(i))P j,it, j = 1, ...,NE
k

subject to


S OC0, j +
NT∑
i=1

P j,it j,i ≥ S OCMin, j +
NT−1∑
i=0

Edrive,i+1

S OC0, j +
NT∑
i=1

P j,it j,i ≤ w ∗ Ecap, j +
NT+1∑
i=2

Edrive,i−1

0 ≤ P j,it j,i ≤ Emax, j, i = 1, ...,NT

(1)

where Φ j,i means predicted day-ahead electricity market price
vector, Λ(i) represents the shadow price, ξi denotes the respond-
ing weighting factor the shadow price, t means length of each
time slot. S OC0, j denotes the initial SOC of individual EV.
S OCMin, j denotes the recommended minimum SOC of the EV.
Edrive means the predicted individual EV owners driving re-
quirement. Emax, j denotes the charge rate in term of energy of
individual EV. w ∗ Ecap, j means the recommended maximum
SOC of the EV, where w is the parameter which express the

charging behavior of the battery of the EV is a linear process,
Ecap, j is the capacity of the battery of the EV.

With the above optimization problem, each EV agent can
generate a unique energy schedule; the sum of the individual
EV energy schedule in one FO will be denoted as PE

k,i, and

PE
k,i =

NE
k∑

j=1

P j,i, k = 1, ...,NB, i = 1, ...,NT ,

where NB represents the number of the FOs, k denotes the index
for the number of FOs, k = 1, ...,NB.

This is the key computation method that is used in this study
for step 1 which is described in section 2.3. Then in step 2, 3,
there is no issue needed to be clarified. In step 4, Distribution
system operator pre-access and analyse the distribution network
by running the load flow calculation in the simulink where a
10kV distribution network is modeled. The math behind step 5,
6, 7 will be explained in the following subsection.

3.2. Price based approach for distribution grid congestion
management

To describe the price coordination method, we start with a
proposed cost function which represents the cost of the power
preference difference of a FO in each time slot, e.g.,

µk = ζk(P̃k,i).

To facilitate the understanding, we assume

µk = Ck,i(P̃k,i − PE
k,i)

2, (2)

where i, k, PE
k,i keep the same with above notation, P̃k,i denotes

the control variable, Ck,i means the weighting factor which are
associated with the power difference, the larger Ck,i implies a
smaller difference. The objective is to minimize the cost func-
tions of all the FOs as well as respect to the constraint from the
DSO:

minimize
NB∑

k=1

NT∑

i=1

Ck,i(P̃k,i − PE
k,i)

2

subject to

NB∑

k=1

P̃k,i ≤ PCap(i), i = 1, ...,NT , (3)

where PCap(i) is the power capacity specifically for all the FOs,
for example, it can be estimated by the DSO after deducting
the conventional loads. This problem is a convex optimization
problem and relevant research (Boyd and Vandenberghe, 2004;
Boyd et al., 2007) show that by introducing Lagrange multipli-
ers or shadow price Λ(i) ∈ RNT , problem (3) can be transferred
into following partial Lagrangian problem:

L =

NB∑

k=1

NT∑

i=1

Ck,i(P̃k,i−PE
k,i)

2 +

NT∑

i=1

Λ(i)(
NB∑

k=1

P̃k,i−PCap(i))(4)

The centralized optimization problem (3) is transferred into
a decentralized one with associated shadow price Λ(i) in each
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time slot, with the purpose of emulating the market behavior.
In the starting point, the shadow price is assumed to be zero,
then the optimal solution for equation (4) are PE

k,i. This explains
the step 5 that FOs first directly submit their power schedule
to the market operator and market operator will determine the
shadow price. Since the market operator’s interest is in alliance
with the DSO, i.e., eliminating the grid congestion, as further
explained in study (Hu et al., 2013) and (Boyd et al., 2003), the
shadow price can be updated according to Λ(i)ω+1 = Λ(i)ω +

αω.(
∑NB

k=1 P∗k,i(Λ
∗) − PCap(i)) until the price converges, where

P∗k,i(Λ
∗) is the optimal solution of equation (4) with the given

Λ∗, i.e., the newly Λ(i)ω+1, ω is the convergence steps needed,
αω ∈ R denotes the step size and can be chosen as αω = αwhich
is a positive constant, independent of k; with such choice, the
convergence is guaranteed. This explains the step 6.

In step 7, FOs sends the shadow price to all the EV controller.
Then EV controller restarts the step 1, the only difference is that
a shadow price is added on the top of the predicted spot energy
prices, and the modification compared to the study (Hu et al.,
2013) lies on the response weighting factor γ to the shadow
price. The EV owner can show their will by setting up this re-
sponse weighting factors. For example, if γ is zero, it represents
that the EV owner is fully insensitive to the shadow price and
will keep the original power schedule; otherwise, a new power
schedule will be generated and submitted to the FOs. By re-
peating the steps, the proposed solution can ensure the safety of
the grid in the planning period.

4. Multi-agent model for control system demonstration

4.1. Multiagent system architecture
In order to demonstrate the operation of the control systems,

a multi-agent system is utilized and developed in this study. Fig.
3 depicts the MAS system architecture, in which, all the agents
are built in JACK which is an agent-oriented development envi-
ronment built on top of and fully integrated with the Java pro-
gramming language (Howden et al., 2001). JACK offers the
environment and facilities message sending/receiving. Matlab
based functions enables a declarative implementation of the de-
cision module. Simulink is used to model the distribution grid
and functioned for power flow calculation. The java applica-
tion programming interface matlabcontrol 2 is used for JACK
to interact with Matlab.

4.2. Introduction on the features of JACK
The agents used in the JACK are modeled according to the

theoretical Belief Desire Intention (BDI) model of artificial
intelligence (Wooldridge, 2008). Within the environment, a
JACK agent is a software component that can exhibit reason-
ing behaviour under both pro-active (goal directed) and reactive
(event driven) stimuli. As key components of JACK, the JACK
agent language introduces five main class-level constructs:

• Agent: which models the main reasoning entities in JACK.

2https://code.google.com/p/matlabcontrol/

FOi agent

DSO agent
EV agent-n

Market 
operator 

agent
Multi Agents 

coordination layer
JACK

MULTIAGENTS SYSTEM

FOi

optimization slover 
for market 

participation
Matlab based

EVi
Schedule 

generation
Matlab based

Conventional 
load

EVn

Market 
operation

Matlab based

Grid Simulation
Smulink

Optimization tools  
Matlab

Figure 3: A MultiAgent system architecture.

• Event: which models occurrences and messages that these
agents must be able to respond to.

• Plan: which models procedural descriptions of what an
agent does to handle a given event. An agent’s plans are
analogous to functions.

• Capability: which aggregates functional components
(events, plans, beliefsets and other capabilities) for agents
to make use of.

• Beliefset: which models an agent’s knowledge about the
world.

In this study, we mainly use the three class levels: the agent
class, the event class, and the plan class.

4.3. Use case and the MAS implementation

4.3.1. Agent class and its instantiation
Considering the features of JACK and the requirements of

our desired systems, we use agent class in the design views
which make the instantiation of an agent class flexible. Be-
sides, each agent has several plans which are used to handle the
events.

EV agent: An EV agent class is responsible for generating
the charging schedule of individual EVs. They communicate
with the subscribed FOs.

FO agent: A FO agent class is responsible for aggregating
the charging schedule of their contracted EV agents and mod-
ifying the power schedule when negotiating with the market
operator agent. In short, the FO agent communicates with EV
agents, the DSO agent and the market operator agent.

DSO agent: A DSO agent is responsible for the grid safety
by performing load flow calculation after obtaining the power
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Figure 4: The diagram of JACK implementation.

schedules of FOs. The DSO agent communicates with the FOs
agent and the market operator agent.

Market operator agent: A market operator agent is respon-
sible for the making of the shadow price. The market operator
agent communicates with the DSO agent and the FOs agent.

4.3.2. A multiagents system built on JACK
Fig. 4 shows the whole design diagram for the desired multi-

agent systems in the JACK, which is built according to the pro-
posed solutions in this study, i.e., the eight steps presented in the
above. We will explain this diagram according to the sequence
of the steps and divide it into three parts. Besides, the content
inside each box of this diagram (mainly the content inside the
plans of each agent) will be explained.

• The interaction between the EV agent and the FO agent.

In the implementation, we define that the FO provides the
calculation center to the EV agents to facilitate the com-
putation, although it is assumed that EV agent makes the
charging schedule by himself/herself. With this set up, the
programming time can be saved significantly.

Event SelfPostInformation: Posted by the EV agent, the
purpose is to trigger the plan EVSelfInformation.

Plan EVSelfInformation: The EV agent read the infor-
mation including initial SOC, the driving requirement of
the EVs in the scheduling period, the bus information 3

3Buses of the modelled distribution system in the Simulink, in which several
load buses are defined for connecting the EVs.

and the response weighting factor to the shadow price. Af-
ter obtaining the personal information, the EV agent sends
an event named AskingPowerCalculation to the FO agent,
and the event will be handled by the plan FOCalculation-
Center.

Plan FOCalculationCenter: An Matlab based program
will be called and be used to generate the charging power
schedule. The power schedule will be sent back again to
the EV agent by using the event ChargingSchedule.

Plan EVChargingSchedulePreparing: Send the power
schedule and the corresponding bus information to the
FOs agent by event named EVSendChargingSchedule, this
event will be handled by the plan FOPowerScheduleAg-
gregation.

Plan FOPowerScheduleAggregation: All the contracted
EV’s power schedule will be summed according to which
bus they are connected.

• The interaction between the FO agent and the DSO agent

Event SendPowerSchedule: Each FO agent sends the ag-
gregated power schedule to the DSO agent by this event.
The event will be handled by the DSO agent with the plan
VerifyGridCongestion.

Plan VerifyGridCongestion: The DSO agent will call the
grid model built in the simulink with the newly power
schedule of the FOs and the conventional loads and do the
power flow calculation. The DSO agent can fetch the value
from the simulink and compare it with the capacity of the
distribution grid, such as the transformers. Then the DSO
agent will send the result to all the FO agents through the
event named NotifyCongestion. The event will be handled
by the plan ReponseCongestion.

Plan ReponseCongestion: All the FO agents get the result
and check whether congestion exists. If it is congested, all
the FO agents will resort to the market operator agent to
negotiate the power capacity. Otherwise, the FO agents
are allowed to bid the energy schedule into the energy spot
market.

• The interaction between the FO agent and the Market op-
erator agent

Event FOPowerSchedule: FO agent sends the power
schedule to the market operator agent by this event and
the event will be handle by the market operator agent with
the plan MarketOperation.

Plan MarketOperation: In the plan, the market operator
agent calls the matlab based price determination program
and check whether the price is converged every iteration.
If the price is not converged, the market operator agent
will send the updated shadow price to the FO agent by the
event ShadowPricetoFO. Accordingly, this event will be
handled by the agent with the plan FOScheduleAD.

Plan FOScheduleAD: In the plan, the FO agent will
reschedule the power based on the predefined cost func-
tions and the updated shadow price and resend the power
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Figure 5: A 10kV distribution network.

schedule to the market operator agent by the some event
FOPowerSchedule. If the price is converged, the market
operator agent will send the final shadow price to the FO
agent by the event FinalShadowPrice. The event will be
handled by the FO agent with the plan PriceCenterToEV.

Plan PriceCenterToEV: In the plan, the FO agent does
not sends the shadow price to the EV agent directly, be-
cause the calculation center is place on the FO agent level.
Instead, it sends a normal message which stimulate the
event SelfPostInformation again.

Note that when the price is converged, a complete se-
quence of the operation needed for grid congestion has
been went through. However, the newly acceptable power
schedule of the FOs might deviate the original plan. There-
fore, we leave the chance to the FOs and the EV owners to
make a new schedule based on the information of the first
round. This explain the fact of sending the final shadow
price to the FO agent by using the event FinalShadow-
Price. In order to run the complete sequence again, the EV
agents need a signal to stimulate the corresponding plans
and this is achieved by the event SelfPostInformation sent
out by the market operator agent using the plan PriceCen-
terToEV.

5. Simulation and demonstration results

5.1. Case study specification

A 10kV radial network is considered in this case study, the
one-line diagram/topology of the network is shown in Fig. 5.
The network is modified from Østergaard and Nielsen (2008);
Han (2012), which can represent the typical features of a Dan-
ish distribution systems. The network consists of two voltage

level, 11 buses, 9 distribution lines, 7 load buses and the net-
work is modeled in the Simulink. 1400 households is connected
in this distribution systems, and 20% of the households is as-
sumed to have EVs. Considering the similarities of the driv-
ing patterns of the EV users and simulation requirements of
the multiagent systems, we divide the 280 EVs into 14 groups
which is represented by 14 EV agents. Three FOs is assumed
to provide services to these 14 EV agents. FO1 is responsible
for EV agents EV1 to EV5. EV6 to EV9 is assigned to FO2.
The rest of the EV agents subscribe to FO3. If all the EVs is
connected to the grid at the same time, this will bring 644kW
additional load to the network (Maximum individual EV charg-
ing rate is limited to 2.3 kW, this fits with the Danish case (10 A,
230 V connection)). In our case study, we set up the available
power capacity for all the EVs is 600kW (available capacity of
the primary transformer for EVs ). The weighting factor rate
C1,i,C2,i,C3,i is set to 0.5, 0.1, and 0.2. The value of αω is cho-
sen as 0.1 in this case.

Figure 6: EV energy driving requirement per EV agent per FO.

For the EV charging schedule, the information of hourly
electricity spot price of the Nordic power market 4 is assumed
to be perfectly known by the EVs, and the price data is identical
with previous study (Hu et al., 2013). The artificial driving data
of the 14 EV agents have been generated based on the 2003
AKTA Survey [31], in which 360 cars in Copenhagen were
tracked using GPS from 14 to 100 days. Each data file includes
starting and finishing time, and the corresponding duration and
distance. The original data is transferred into 15 minutes in-
terval driving energy requirements based on the assumption of
11 kWh/100 km. The 15 minutes interval is changeable rather
than absolute. The energy driving requirement of EV1 to EV14
is illustrated in Fig. 6. It is seen from Fig. 6 that most EVs have
a regular pattern, i.e., they leave home in the morning time and
come back in the evening time, while some EVs have higher
energy driving requirement, such as EV agent EV13 which is

4http://www.nordpoolspot.com/
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shown by the green curve of the bottom figure. For other pa-
rameters:

• Battery capacity of all the EV agents are set to 20 kWh.

• Initial SOC of all the EV agents are set to 0.2 of the battery
capacity.

• Minimum SOC of all the EV agents are set to 0.2 of the
battery capacity.

• Maximum SOC of all the EV agents are set to 0.85 of the
battery capacity, the minimum and maximum SOC set up
is to ensure that the EV charging process is linear.

• EV agents’s responding weighting factor to the shadow
price is assumed to be (0.01, 0.01, 0.01, 0, 0, 0.01, 0.01, 0,
0, 0.01, 0.01, 0.01, 0, 0), correspondingly.

5.2. Simulation results in MATLAB

In this simulation part, we compared the result of two cases
where the DSO both use the price-oriented market protocols
to interact with the FOs, however, the coordination methods
between the FOs and the EVs are different. In the first case, we
assume that three FOs centrally schedule and control the EV
charging which is the scenario in work (Hu et al., 2013), while
in the second case, it is assumed that three FOs only aggregate
the charging schedules which are made by the EV controllers,
this is the scenario in this study. As illustrated in Fig. 7, the
congestion problems are solved after 5 steps in the first case
while only 2 steps in the second case. The difference is because
that the EVs in the first case are always responding the shadow
price and trying to avoid the charging on the higher price period,
as a result, the EVs will be scheduled to charge at other lower
price period where congestion might happens as well. While in
the second case, only some EVs are assumed to responds to the
shadow price which means that only part of the charging plan is
rescheduled to other lower price period and thereby reduce the
possibility of causing a new congestion period. Note that in the
beginning, the shadow price is zero, so the blue curves in the
left part of Fig. 7 represent the spot electricity price. For the
rest of the price curves, the spikes represents the shadow prices.

5.3. Demonstration result of the MAS

When setting up the demonstration of the MultiAgent sys-
tem, the Simulink part is not included in this case study because
the capacity limit is only considered for the transformer. Con-
sidering the two assumptions: 1) there is no power losses in the
distribution network or we do not consider it. 2) the overhead
line and underground cable are capable of handling the increas-
ing loads, the power information below the transformer can be
simply obtained by summing up the power schedule of the FOs
instead of fetching it from the Simulink. For the rest of the
system, it goes the same as we presented in Fig. 4. In JACK,
there are a number of tools available to assist a detailed trace of
the system execution which range from graphical tracing tools
to logging tools. In this study, we run the program with the
interaction diagram. As we have one DSO agent, one market

operator agent, three FO agents, and fourteen EVs agents, the
interaction diagram which shows the communication message
among them is quite large. It is not wise to show the whole
interaction diagram in this paper, instead, we only show part
of the interaction diagram where the message sequence hap-
pens between the DSO agent, the market operator agent named
CMO, the FO agent FO1, and one EV agent EV1, this is shown
in Fig. 8. The sequence diagram starts from agent EV1 (holds
for other 13 EV agents) with a request of schedule calculation.
Then the schedule information is aggregated by the FO agent
and is sent to the DSO agent. The rectangular box marked with
iteration represents the interactions between the market oper-
ator agent and the FO1 agent. It well emulates the negotia-
tion behavior inside a capacity market. When the shadow price
is converged, the shadow price is sent to the EV agent. With
the new schedule, it is confirmed by the DSO agent that there
will be no congestion for the grid in the planning phase, which
means the programming stops.

DSO CMO FO1 EV1

Schedule calculation()

Schedule

Schedule, bus

Checking Congestion()

Checking result

power schedule

Shadow price

IterationIteration Five iterations

Shadow price

Schedule calculation()

Schedule

Schedule, bus

Checking Congestion()

Checking result

No congestionNo congestion Programming stop

Figure 8: Sequence diagram between the chosen agents.
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(a) The sum of the spot price and shadow price in each iteration step. (b) The comparisons of FO’s power schedule in each step with the power ca-
pacity.

(c) The sum of the spot price and shadow price in each iteration step. (d) The comparisons of FO’s power schedule in each step with the power ca-
pacity.

Figure 7: Top: Case study for centralized control between FOs and EVs. Bottom: Case study for decentralized control between FOs and EVs.

6. Discussion and conclusion

A multi-agent system is developed to demonstrate the dis-
tributed implementation of the grid congestion management
scheme of distribution network with a large scale of EVs. It
is learned from the experience that the distribution grid con-
gestion can be eliminated according to economical principles,
and a MAS based distributed implementation is of higher ad-
vantage. In this study, we develop and utilize an integrated en-
vironment consisting of JACK agent software and Matlab to
analyze the cyberphysical aspects of the environment. This
is because JACK is good for demonstrating the coordination
schemes among the actors, and Matlab is good for technical
computation of optimization problem. For a general case, var-
ious simulation platform can be utilized in a distribution grid
congestion demonstration. For example, besides JACK, JADE
is also widely used for multiagent simulation. We choose JACK
because of its capability and support for the explicit modelling

of the typical MAS entities such as agent, plan, event and ca-
pabilities. Moreover, in JCK it is easier to design and analysis
interactions and dependencies among such entities. In term of
solving an optimization problem, GAMS also has good perfor-
mance, however, Matlab is more widely used in the academi-
cally field. Last but not least, grid modeling tool is also an im-
portant part, the currently existing grid modeling tools include
Simulink, MatPower, PowerFactory, ARISTO, NEPLAN etc.
The scope of these listings is not to give a comparison about
the various platforms, instead, we want to emphasize that the
relevant tools can be integrated with the MAS settings.

Besides EVs, some other new loads such as heat pumps and
the increasing electrification of the loads in the home will also
bring challenges to the distribution grid. We believe that this
multiagent framework can be used to address the similar chal-
lenges. Since the FOs (You, 2010) (Alternative names for an FO
are used such as virtual power plant, aggregator) is also widely
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proposed for aggregating other distributed energy resources. As
expected, the FOs will represent the DERs and interact with
the market operator and the DSO similarly with the one in this
study.
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Abstract. The integration of electric vehicles in future power systems will 

change their normal operations. The system operators will need to manage this 

new energy resource, considering the charge necessities as well as the discharge 

energy opportunities. Congestion situations can occur in some equipment’s 

(lines and power transformers), mainly in peak periods.  This paper proposes a 

hierarchical management structure considering the distribution system operator 

and a new entity called electric vehicles fleet operator. To simulate this collabo-

rative (all players contribute to the operation system stability) but also competi-

tive environment (each player will try to increase its profits or reduce its costs), 

a multi-agent platform was developed to demonstrate the interactions between 

the entities.  

Keywords: Congestion Management, Electric Vehicles, Fleet Operators, Multi-

agent Systems, Smart Grids 

1 Introduction 

Several policies were issued in recent years to improve the energy consumption ef-

ficiency, to change the energy mix and to reduce the greenhouse gas emissions. The 

incentives provided to distribution generation (DG) have been a success and in sever-

al countries, DG represents more than 20% in the electricity generation mix. The wind 

generators and solar photovoltaic panels are the technologies with higher growing. 

However, technologies such a micro-hydro generation or combined heat and power 

(CHP) represent important energy resources in several countries.  

Despite the high penetration of DG technologies the governments in European 

countries defined ambitious goals for a near future. According the European energy 

roadmap 2050 [1] “The EU is committed to reducing greenhouse gas emissions to 80-

95% below 1990 levels by 2050 in the context of necessary reductions by developed 

countries as a group”. In some countries, the goals are even more challenging. For 

example in Denmark, in 2020 the Danish government intends a reduction of 12% of 

energy consumption (in comparison with consumption in 2006) and also supplies 

50% of the electricity consumption using wind generation [2]. In 2035 the Danish 

government intends to have all the power systems based on renewable resources and 



 

 

in 2050 intends to have all the economy, including the power systems, the heating 

systems and also the transportation, based in renewable resources [3]. 

To achieve these objectives it is necessary more investment in DG but also in in-

frastructures (transmission and distribution networks) and in new management meth-

odologies in order to assure the reliability in power systems operation. The use of 

storage units like batteries, pumped-hydro plants, compressed air energy storage or 

other technology is crucial for the future power systems based in renewable and in-

termittent resources.  

In another point of view, to guarantee the greenhouse gas (GHG) emissions reduc-

tion it is necessary the decarbonisation of all activities, besides the power industries. 

The power industries were responsible for around 30% of GHG in EU-27 in 2011. 

The second sector with more GHG emissions in 2011 were the transports with a share 

of 20.3% [4]. To assure the GHG emissions reduction in transports and also in heat-

ing/cooling it is necessary the use of electricity in these sectors. The use of electric 

vehicles will be essential to assure the GHG emission reduction goals. In the end of 

2012 had been sold more than 180 000 electric vehicles (EVs) in worldwide and are 

expected a total of 20 million on the road in 2020 [5]. 

The integration of these vehicles in the electric system will increase significantly 

the global power demand [1]. In this sense it is necessary develop new energy re-

sources management strategies mainly in distribution level avoiding congestions in 

the network. EVs can be managed as a distributed energy resources providing a flexi-

ble storage system in low voltage distribution network [6]. EVs can be used as reserve 

providing different kind of ancillary services helping the system operators maintain-

ing the system stability [7]. EVs are very flexible being potentially capable of enhanc-

ing the efficiency of other DERs. However, uncontrolled charging of EV can create 

new load peaks during the day, increasing power losses, the voltage deviations and 

the network congestion [8].  

EV fleet operator (FO) is a new entity aiming to capture the business opportunities 

by providing the multiple services of EVs. EV FO could be independent or integrated 

in an existing business function of the energy supplier. EV FO intends to guarantee 

driving needs of the EV owners, coordinate and support the valuable services and 

operation constraints of EV and power system operator, maximize the renewable 

energy use, implement centralized control/marketing method to maximize business 

values, optimize the EVs charging and discharging processes [9]. 

In the present paper a multi-agent platform implemented to simulate the interac-

tions between the EV FOs and the distribution system operator (DSO) and between 

the EV FOs and the EVs owners is presented. The main goal is the negotiation be-

tween the agents in order to avoid the congestion of the distribution network lines and 

mainly the HV/MV power transformer. Each EV FO has the capability to manage the 

EVs charge and discharge considering the energy prices and the EVs requirements 

(schedule trips, batteries technical limits, etc). The problem considers the network 

technical constraints namely the bus voltage magnitude and the lines thermal limits. 

This paper is organized as follows: after this introductory section, section 2 pre-

sents a description about the fleet operators functioning, section 3 presents the con-

gestion negotiation method, section 4 describes the implemented multi-agents plat-



 

 

form and the negotiation mechanism. The main conclusions of the paper are provided 

in section 5. 

2 Fleet Operators 

Fleet Operators (FO) can have different definitions according the context. In this 

specific case the FO can be described as the entities responsible for the electric vehi-

cles (EVs) and plug-in hybrid electric vehicles (PHEV) charge and discharge coordi-

nation [10]. The use of electric vehicles with gridable capability, normally called 

vehicle to grid (V2G) has been discussed in several papers [6], [11], [12] considering 

different management methodologies. The main conclusion of the EVs integration in 

distribution network studies and analysis is that the electric vehicles charge and dis-

charge should be coordinated in order to avoid critical situations mainly during the 

peak periods. In fact the peak consumption can increase significantly if the all EVs 

charge at the same time. On the other hand, EVs can provide some interesting support 

to the distribution network operation functioning as small batteries capable to dis-

charge energy to the network when the system operator has need.      

Aggregators like virtual power plants or fleet operators will be crucial in a near fu-

ture in order to coordinate the EVs charge and discharge process. The main goal is try 

to schedule the EVs charge during the off-peak periods and, when required, discharge 

energy in order to support the system operator in the distribution network manage-

ment. Virtual Power Plants are players with the capability to manage several distrib-

uted energy resources technologies like distributed generation units, demand response 

programs, storage systems and electric vehicles [13], [14]. FOs is more focus in the 

EVs coordination considering the constraints imposed by the DSO, taking into ac-

count the network limitations and also the market opportunities in order to take ad-

vantages in the energy negotiation. In some situations FOs can also manage the loads 

consumption. In Fig. 1, the proposed architecture considering two FOs is presented. 
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Fig. 1. A schematic of a low voltage active distribution system [9]  



 

 

Fig. 1 presents a schematic of a low voltage distribution system, considering the 

connection of electric vehicles and the consumers. In this distribution system, it is 

assumed that the consumers own controllable devices, i.e., EVs, besides some con-

ventional loads, such as light or TV. These EVs are divided into two groups as illus-

trated in Fig. 1. One group is controlled by fleet operator-1 (FO1), another group is 

controlled by fleet operator-2 (FO2). In this hierarchical distribution system, both FOs 

can schedule and control their customer’s electricity consumption directly. While on 

the FO level, the coordination between FOs and DSO is made through the distribution 

grid capacity market. The capacity market is managed by the DSO allowing the use of 

distribution network in a competitive environment mainly in the peak periods. FOs 

can also negotiate energy in electricity markets and in bilateral negotiations with other 

agents [9]. 

The coordination between DSO and FOs is crucial to manage the distribution net-

work use avoiding congestion situations [15], [16]. The congestion situations can 

occur in the lines but also in the power transformer. In the proposed methodology 

both type of congestions are considered. An AC Power flow is included in the FOs 

scheduling in order to avoid the congestion in the distribution network. However the 

use of power transformer should be managed by the DSO using a negotiation mecha-

nism in order to allocate the power transformer to different FOs.     

Each FO will do its EVs charge/discharge scheduling taking into account the net-

work constraints. The scheduling is implemented as a mixed-integer non-linear prob-

lem (MINLP) trying to minimize the costs (1). The energy cost depends of the exter-

nal suppliers as well as by the HV/MV power transformer capacity use. Each FO can 

use the energy stored in the EVs batteries avoiding congestion problems. The power 

losses in the distribution network are also considered in the problem. Expression (1) 

represents the implemented objective function. 
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In expression (1), the variables  ,Ch EV t
P  and  ,Dch EV t

P  represent the charge and 

discharge power of electric vehicles and the parameter  ,Dch EV t
c  the energy dis-

charge cost. The loads are characterized by the consumption forecast  ,Load l t
P  

and by the non-supplied demand  ,NSD l t
P . This parameter will be important to 

avoid the congestion situations in extreme situations, considering the cost 

 ,NSD l t
c .  ,NSD l t

c  can represent the cost with a demand response event or a pe-

nalization to load curtailment without any coordination or contract. The parame-



 

 

ter  Cong t
c  represents the HV/MV power transformer congestion cost. This pa-

rameter is different in each negotiation iteration. In the first iteration  Cong t
c is 

zero, representing the situation without congestion. 

The problem constraints considers the first Kirchhoff law relating to the active (2) 

and reactive (3) power balance considering that the energy is supplied by external 

suppliers SP and the distribution network technical limits regarding to the lines ther-

mal limits (4) and the bus voltage magnitude limits (5) The implemented AC power 

flow model is based in [17]. In expressions (2) to (5), the parameters i and j represent 

the bus i and j. Additionally, the problem considers the maximum power limit im-

posed by DSO regarding the HV/MV power transformer capacity use. The EVs con-

straints relating to the batteries energy capacity limits (6), the batteries internal energy 

balance (7) and the charge (8) and discharge (9) rates are also considered [18].  
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 Lines thermal limits 
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 Bus voltage magnitude limits 
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 Energy stored limits in EVs batteries in each period t 

   ( , )_ , _ ,Stored EV tSt Min EV t St Max EV t
E E E   (6) 

 

 Energy balance in EVs batteries in each period t 
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d EV
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 Charge and discharge rates in each period t 

 ( , ) _ ,Ch EV t Ch Max EV t
P P   (8) 

 ( , ) _ ,Dch EV t Dch Max EV t
P P   (9) 

 

3 HV/MV Power Transformer use negotiation 

The distribution networks have normally the capacity to accommodate all the con-

nected loads considering the consumption evolution for next couple of years. Howev-

er, a large penetration of EVs will bring some challenges to the distribution system 

operators or utilities. The challenges usually include peak power issue, grid conges-

tion problem, power losses, voltage drop et al. Much research has been performed to 

study the intelligent EV load control and their effect on the grid, which can be dated 

back to the early 1980s [19]. In  [19] the author argued that load management should 

be deployed to alleviate peak loading, which is measured in term of load factor im-

provement. Even low penetration levels of EVs can create new peak loads exceeding 

the natural peak if sufficient attention is not paid to distribute the charging load 

throughout the off-peak period [20]. A penetration level of 20% is found to be the 

upper limit which could be managed by distributing the charging load. Basically, 

those studies mainly investigated the impacts by adding the new EV loading profile to 

the already existing load profile and seeing the overall effect and then proposed the 

load shifting strategy. 

Figure 2 presents a much advanced control strategy to prevent the grid congestions. 

In the first step, each fleet operator performs the EVs charge and discharge scheduling 

considering the inexistence of any congestion in HV/MV power transformer. Howev-

er, a congestion situation inside the distribution network can be avoided due to the 

inclusion an AC power flow in the optimization problem constraints. Each FO sends 

the initial schedule to the distribution system operator in order to validate the initial 

proposals. If the limit of power transformer is not achieved, the DSO approves the 

proposals and each FO can communicate the decision to the electric vehicles owners.  
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Fig. 2. Negotiation process  

If the amount of required energy was higher than the power transformer capacity, 

the DSO will determine the congestion cost and send this information to the FO. Each 

FO will re-dispatch the EVs charge and discharge considering the new congestion 

price. The process finishes when the congestion ceases to exist. 

4 Multi-agent Simulation Platform 

A multi-agent system is used to implement the negotiation process. The platform is 

implemented using the JACK platform. JACK is an agent-oriented development envi-

ronment built on top of Java programming language [21].  

To simulate the derived problem, four different agents were developed namely: 

 EV agent: An EV agent class is responsible for generating the charging 

schedule of individual EVs. They communicate with the subscribed FOs. 

 FO agent: A FO agent class is responsible for EVs management and to the ne-

gotiation with the DSO. In short, the FO agent communicates with EV agents, 

the DSO agent and the market operator agent. 
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Fig. 3. Multi-Agent application in JACK  

 DSO agent: A DSO agent is responsible for the grid safety by performing load 

flow calculation after obtaining the power schedules of FOs. The DSO agent 

communicates with the FOs agent and the market operator agent. 

 Market operator agent: A market operator agent is responsible for making of 

the shadow price. The market operator agent communicates with the DSO 

agent and the FOs agent. 



 

 

Fig. 3 shows the whole design diagram for the desired multi-agent systems in the 

JACK, which is built according to the proposed solutions in this study. The diagram is 

explained according to the sequence of the steps and is divided into three parts. Be-

sides, the content inside each box of this diagram (mainly the content inside the plans 

of each agent) will be explained. 

The interaction between agents can be explained as following:  

 The interaction between the EV agent and the FO agent. 

o Event SelfPostInformation: Posted by the EV agent, the purpose is to 

trigger the plan EVSelfInformation.  

o Plan EVSelfInformation: The EV agent read the information including 

initial SOC, the driving requirement of the EVs in the scheduling period, 

and the bus information. After obtaining the personal information, the EV 

agent sends an event named SendEVInformation to the FO agent, and the 

event will be handled by the plan FO_InformationCenter. 

o Plan FO_InformationCenter: The EV information will be collected 

here and prepared for schedule generation. 

o Plan FOPowerScheduleGeneration: An Matlab based program will be 

called and be used to generate the charging power schedule. The power 

schedule will be sent to the DSO agent by using the event Charg-

ingSchedule. 

 

 The interaction between the FO agent and the DSO agent 

o Event SendPowerSchedule: Each FO agent sends the aggregated power 

schedule to the DSO agent by this event. The event will be handled by 

the DSO agent with the plan VerifyGridCongestion.  

o Plan VerifyGridCongestion: The DSO agent will call the grid model 

built in Matlab with the newly power schedule of the FOs and the con-

ventional loads and do the power flow calculation. The DSO agent can 

fetch the value from the matlab and compare it with the capacity of the 

distribution grid, such as the transformers. Then the DSO agent will send 

the result to all the FO agents through the event named NotifyCongestion. 

The event will be handled by the plan ReponseCongestion. 

o Plan ReponseCongestion: All the FO agents get the result and check 

whether congestion exists. If it is congested, all the FO agents will resort 

to the market operator agent to negotiate the power capacity. Otherwise, 

the FO agents are allowed to bid the energy schedule into the energy spot 

market. 

 

 The interaction between the FO agent and the Market operator agent 

o Event FOPowerSchedule: FO agent sends the power schedule to the 

market operator agent by this event and the event will be handled by the 

market operator agent with the plan MarketOperation. 

o Plan MarketOperation: In the plan, the market operator agent calls the 

matlab based price determination program and check whether the price is 

converged each iteration. If the price is not converged, the market opera-



 

 

tor agent will send the updated shadow price to the FO agent by the event 

ShadowPricetoFO. Accordingly, this event will be handled by the agent 

with the plan FOScheduleAD. 

o Plan FOScheduleAD: In the plan, the FO agent will reschedule the pow-

er and resend the power schedule to the market operator agent by the 

some event FOPowerSchedule. If the price converged, the market opera-

tor agent will send the final shadow price to the FO agent by the event 

FinalShadowPrice. The event will be handled by the FO agent with the 

plan PriceCenterToEV. 

o Plan PriceCenterToEV: In the plan, the FO agent uses the shadow price 

to recalculate the power schedule. 

 

Note that when the price is converged, a complete sequence of the operation 

needed for grid congestion has been went through. However, the newly acceptable 

power schedule of the FOs may deviate from the original plan. Therefore, we leave 

the chance to the FOs and the EV owners to make a new schedule based on the infor-

mation of the first round. This explains the fact of sending the final shadow price to 

the FO agent by using the event FinalShadow-Price. 

5 Conclusions 

The growing integration of electric vehicles in power systems introduces new chal-

lenges in the distribution networks. In many situations some congestion problems can 

occur in different points of distribution networks. The most critical ones will be the 

lines thermal limits and also in the HV/MV power transformers. In this paper a hier-

archical management structure is presented including the distribution system operator 

(DSO) and the electric vehicles fleet operator (EV FO). The negotiation between EV 

FO and DSO is discussed considering a market base negotiation in congestion situa-

tions. The implemented negotiation architecture in multi-agent platform JACK is 

explained considering also the electricity market operator agent and the electric vehi-

cles owners’ agent. 
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Appendix B

Supplementary background
and methods

This section includes some details that facilitate the reading in the main contents
of this thesis.

B.1 Battery modeling-Continuous

In a steady state battery equivalent circuit, by some deductions [8, 20, 28, 70],
the battery current is obtained as:

I2(soc, P2) =
Uoc(soc)−

√
Uoc(soc)2 − 4.Rint(soc).P2

2Rint(soc)
(B.1)

where P2 is the terminal power. In order to study the optimization charging
schedule for electric vehicle battery, two approaches are considered subsequently.
One considers the electric vehicle battery as a pack [25,26,100], another considers
the battery as aggregated cells and usually a battery cell is investigated firstly
[20, 28]. If the dynamics of the state of charge of the battery is calculated by
adding kWh into the available capacity, it usually starts with the calculation of
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internal power of the battery Pint which is obtained as:

Pint(soc, P2) =

{ −η.I2(soc, P2)Uoc(soc) P2 ≥ 0
− 1
η .I2(soc, P2)Uoc(soc) P2 < 0

(B.2)

The efficiency is a function of the battery current

η = 1 +
∂η

∂c
.
|I2(soc, P2)|

Qmax
(B.3)

where ∂η
∂c is a constant reflecting the decrease in efficiency with increasing cur-

rent, Qmax is the battery capacity. Usually, linear and nonlinear approximation
are used to characterize the relation between the internal power Pint and ex-
ternal power P2. Using linear approximation, the internal power is assumed to
be equal to the external power. In this case all internal losses in the battery
are neglected. Using nonlinear approximation, such the study in [25] used a
second-order Taylor series expansion to derive the relation. The studies [8, 25]
have shown that the difference between the two charging schedules is minor and
indicates that the linear approximation is sufficient and the benefit of using a
nonlinear approximation does not justify the increase in computation time.

And if the dynamic of the state of charge of the battery is characterize by the
calculation of the dynamics of the electric charge, it models the battery charging
with a first-order system which is described as:

xk+1 = xk + ∆t.
I2(xk, k)

Qmax
(B.4)

where xk is an actual state of charge of the cell at the step k, Qmax is the battery
capacity, I2 can be calculated the same way as in the equation B.3.

Note if the battery cell is modeled, the parameter of the variables will be scaled
down, e.g., divided by the numbers of the cells in a battery pack. For example,
in order to calculate the external power P2 in the cell based model, it can be
obtained by the following equation:

P2 =
PBT
ns

(B.5)

where ns is the number of the cells, and

PBT (k) =

{
−ηk.uk.Pmax k ∈ Kplug

Pdr k ∈ Kdriv
(B.6)

where ηk denotes the efficiency parameter, Pmax means the maximum charge
power when the EV is connected to the grid, µk is the control variable. Now, the
problem is formulated to find the optimal control strategy u∗ = {u∗0, u∗1, ..., u∗N−1},
the details are presented in the following section 3.2.2.2 or in the study [20,28].
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B.2 Price control for regulating electric vehi-
cles’ charging behavior

In this case study, a 10kV distribution network [101] is considered where the
number of electric vehicles is assumed to be 630 consisting 20% of the customer
numbers. Normally, the distribution of the parameters α, β, γ, δ reflects the
user’s preferences, which can be obtained through survey or data feedback. In
our case, the total considered time slots are 14, i.e., the scheduling period is from
16 : 00 in the afternoon to 6 : 00 in the next day’s morning. The parameters
distribution α, β, γ, δ is assumed independent, and the probability function of α
is set as fα(t) = {5/39, 6/39, 7/39, 2/39, 3/39, 2/39, 1/39, 1/39, 1/39, 1/39, 1/39,
2/39, 3/39, 4/39}. β, γ, δ are assumed to be uniformly distributed within [1, 20],
[1, 14] and [0.01, 3] respectively. To better reflect the reality, among 630 EVs,
each 20% are supposed to be charged from 4 kWh, 6 kWh, 8 kWh, 10 kWh and
12 kWh to 24 kWh respectively. So the total of initial load requested from users
in the scheduling period will be X0 = 630 ∗ 20% ∗ [(24 − 4) + (24 − 6) + (24 −
8) + (24− 10) + (24− 12)]
kWh = 10.08 MWh. The initial requested load will be calculated by Lt =
X0 ∗ fα(t). The price information p0 = [0.3876, 0.3951, 0.4734, 0.5338, 0.4943,
0.4101, 0.3774, 0.3642, 0.3563, 0.3514, 0.3502, 0.3498, 0.3514, 0.3627]DKK/kWh
used in A.6 is used in this case.

From the assumed value of fα(t), the probability reaches max during the time
slot 18 : 00−19 : 00, so we increase the price in this time slot to 0.9468 or 1.4202,
i.e., two or three times of the original price 0.4734. The results are shown in
Fig. B.1 (b) and (c), respectively. For comparison, the dynamic price which is
a function of the initial load Lt is also studied (Fig. B.1(d)). The relationship
is set as follows:

p(t) = 0.28 ∗ Lt + 0.2 (B.7)

Following this equation, the average price will be 0.4 DKK/kWh which is
consistent with the electricity market price.

As can be seen from Fig. B.1 (a)-(c), when the price increases at t = 3(18 :
00− 19 : 00), the loads will be shifted mainly to the time slot t = 4 and flatten
the demand curve. Fig. B.1 shows that the peak of the load curve will be
suppressed due to the high electricity prices resulted from equation B.2.
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Figure B.1: Load profiles with price control, red curve means requested load
and blue curve represents load with price control. (a) p(t) = p0. (b) p(t) =
p0,∀t 6= 3, p(3) = 0.9468. (c) p(t) = p0,∀t 6= 3, p(3) = 1.4202. (d) p(t) = F (Lt)

B.3 Congestion management principles in trans-
mission systems

A

15$/MWh

B

30$/MWh

100MW 100MW

100MW

A

15$/MWh

B

30$/MWh

100MW 100MW

50MW

200MW 0MW 150MW 50MW

(a) No congestion (a) With 50MW transfer limit

Figure B.2: Two zone system.

In transmission systems, congestion management is to control the system so that
transfer limits (including thermal limits, voltage limits, and stability limits) are
observed and not violated. In the deregulated power system, the challenge of
congestion management for the system operator is to create a set of rules that
must be robust and should be fair as well. Robust is required because there will
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be many aggressive entities seeking to exploit congestion to create market power
and increased profits for themselves at the expense of market inefficiency. As
illustrated in Fig. B.2, if there is no transfer limits between zones, all 200 MW
of the load will be bought from generator A at $15/MWh, resulting a cost of
$3000/h. If there is a 50MW transfer limit, then 150MWh will be bought from
A at $15/MWh and the remaining 50MWh must be bought from generator
B at $30/MWh, a total cost of $3750/h. Congestion has created a market
inefficiency of 25% of the optimal costs, even without strategic behavior by the
generators. Congestion has created unlimited market power for generator B if
the demand at zone B is zero price elasticity. Fairness is required because the
transmission line will probably used by many participants, as shown in Fig. B.3.
If congestion happens, the tariff generated should be clear to all participants
why the tariff has occurred. With a market approach, the form of congestion
management is dependent on the energy market (electricity spot market for
congestion prevention, regulating power market for buyback mechanisms).

GENCO K

GENCO E

GENCO z

GENCO HDISTCO N

DISTCO L

DISTCO Y

DISTCO M

Line limit

i j

Zone A Zone B

Figure B.3: Transmission congestion illustration: the transmission line between
zone A and zone B will be congested due to the capacity limit.

Three forms of congestion managements have been developed for the deregulated
power systems [102]. One form is a centralized optimization based approach,
either explicitly with some form of optimal power flow program, or implicitly,
depending on system operators to control congestion, found in various imple-
mentations in the United Kingdom, part of the United States, and in Australia
and New Zealand. The second form is based on the use of price signals derived
from ex ante market resolution to deter congestion before real time operation,
used in the Nordpool market area. Inevitably some congestion may still arise
and must be corrected in real time by purchasing of generation and consumption
modifications from the system operator regulating markets, also known as buy-
back. The third form seeks to control congestion by allowing and disallowing
bilateral transmission, based on the effect of the transaction on the transmission
system, found in part of United States. Strengths and weakness of the three
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techniques are further discussed in the study [102]. The techniques discussed
above can be divided into deterrent techniques, which attempt to schedule gen-
eration prior to operation in such a way as to avoid congestion, and corrective
techniques, which control generation at the point of real time operation to pre-
vent congestion.

Before thinking the application of the techniques. However, a question would
naturally arise on the similarities and differences between transmission system
and distribution network congestion as well as the solution to eliminate the
congestions on both systems, here are our analysis:

• The complexity level is different.

Congestion occurs when the scheduled energy exceeds the available trans-
mission capacity in either the day-ahead or the hour-ahead market. If
congestion happens, the system operator will call for scheduling adjust-
ment to eliminate the congestion according to the bids and offers received
from producers and customers. In the transmission system level, this is
possible due to the limited producers and customers. In practical, the sys-
tem operator select the accepted bids and offers and set prices to clear the
market. The decisions must maximize the economics welfare generated by
the system while satisfying the security considerations. However, this is
nearly impossible to achieve in the distribution network, since thousands
of families together cause the congestions, it is quite complex and difficult
to find a suitable economical principle which allocates the power capacity.

• The problem source and solution is different.

Fig. B.3 and B.4 illustrate an example of congestion happened in the
distribution network and transmission lines. In the distribution system,
the overloading happens in the transformer level, it is caused by the load
below the transformer. Therefore, the solution is to decrease the peak
load or shift the peak load. Note that distributed generation such as
solar power is not considered. In the transmission system, the overloading
usually happens on the transmission lines, as illustrated in the Fig. B.3,
there is a congestion on the line from bus i to bus j. To eliminate the
congestion, the GENCO and DISTCO in zone A and B can be divided
into two groups. The first group represents the agents whose decremental
adjustments could mitigate the congestion; the second group represents
the agents whose incremental adjustment could mitigate the congestion.
From this simple comparison, it seems that congestion management in
the distribution level is unidirectional, e.g., reduce the load consumption
under transformers

• The congestion effect/cost is different.
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Congestion in the transmission system level can lead various marginal sys-
tem price, which means the optimal resource can not utilized when the
congestion exists. The congestion in the distribution network level usu-
ally effects the assets’ life and because it seldom happens currently. Also
because the grid is over capacity when building new lines and the typical
approach is to plan the future capacity expansion when the capacity is
fully used.

B21B22

L1L2

Line2

B1

B2

Transformer
60 kV/11 kV

External 
grid

Line3 Line1

T1

Potential overloading Level.

L3

B3

Figure B.4: Distribution congestion illustration: the transformer and the trans-
mission line 2 will be challenged due to the increasing load below it.

B.4 Contract net protocols and auction approach

General equilibrium market mechanisms use global prices, and the price is usu-
ally coordinated by a centralized mediator. Contract net protocols [103], how-
ever, defines that individual nodes are not designated a priori as managers or
contractors, these are only roles, and any node can take on either role dynam-
ically during the course of problem solving. In his article [103], Smith defined
that a manager is responsible for monitoring the execution of a task and pro-
cessing the results of its execution. A contractor is responsible for the actual
execution of the task. Although this is an effective way for reach an consensus
when facing the conflicting resources, it is not suitable for the present problems
from the system operator’s perspective.

Auction can be designed as either single-sided auctions such as the case in the
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regulation market or two sided auctions such as the case in the spot market.
In the single-sided auction, offers are ranked in increasing order and accepted
beginning with the least expensive and continuing until the demand is satisfied.
The uniform price is then set equal to either the last accepted offer (LAO) or
the first rejected offer (FRO). In two-sided auctions, offers and bids are ranked
as above, and an equal quantity of each is accepted, beginning with the highest
bids and lowest offers, until supply or demand is exhausted or the offer price
exceeds the bid price. It is noted that the uniform price auction mechanism is
usually combined with optimal power flow calculation [104], which mean either
DSO/Market operator will implement a lot of calculations for distribution grid
congestion management when using the uniform price auction mechanism.

B.5 Decomposition methods and subgradient method

This subsection provides a tutorial on the method of combining the subgradient
method with dual decomposition techniques, as they are the mathematical tech-
niques which support the development of the market based control. We firstly
introduce the definition of subgradient. Subgradient, alternatively named sub-
derivative, subdifferential generalizes the derivative to functions which are not
differentiable. Let f : I → R be a real-valued convex function defined on an
open interval of the real line. Such a function need not be differentiable at
all points. For example, the absolute function f(x) = |x| is nondifferentiable
when x = 0. However, as seen in the figure B.5, for any x0 in the domain
of the function one can draw a line which goes through the point (x0, f(x0))
and which is everywhere either touching or below the graph of f . The slope of
such a line is called a subderivative (because the line is under the graph of f)
and that a subgradient of f at x0 is any vector g that satisfied the inequality
f(x)− f(x0) ≥ gT (x− x0) for all x. When f is differentiable, the only possible
choice for gT is ∆f(x), and the subgradient method then reduces to the gradient
method. The set of all subgradients at x0 is called the subdifferential of f at x0,
denoted ∂f(x). So the condition that a subgradient of f at x0 can be written
gT ∈ ∂f(x)

To introduce the subgradient method, we start with an unconstrained case,
where the goal is to minimize f : Rn → R, which is convex. The subgradient
method uses the simple iteration

x(k+1) = x(k) − αkg(k). (B.8)

Where x(k) is the kth iterate, g(k) is any subgradient of f at x(k), and αk is the
kth step size. Thus, at each iteration of the subgradient method, we take a step
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Xo

Figure B.5: A convex function (blue) and ”subtangent lines” (red) at x0.

in the direction of a negative subgradient. Further discussions such as step size
rules, convergence results are presented in [105]

As discussed in [105, 106], subgradient methods are often applied to large-scale
problems with decomposition techniques. Such decomposition methods often
allow a simple distributed method for a problem. The original primary moti-
vation for decomposition methods was to solve very large problems that were
beyond the reach of standard techniques, possibly using multiple processors.
It is still a good reason to use decomposition method for some problems. But
other reasons are emerging as equally (or more) important such as decomposition
methods yield decentralized solution methods in many cases. Two decomposi-
tion methods are presented in [105, 106], i.e., primal decomposition and dual
decomposition. We will briefly introduce the dual decomposition method since
the dual variables (shadow prices or prices) are manipulated to solve the global
problem. To introduce the dual decomposition method, we considers a simple
example where the two subproblems are coupled via constraints that involve
both sets of variables

minimizef1(x1) + f2(x2)
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subject to
x1 ∈ ζ1, x2 ∈ ζ2, h1(x1) + h2(x2) ≤ 0 (B.9)

where ζ1 and ζ2 are the feasible sets of the subproblems, presumably described
by linear equalities and convex inequalities. The functions h1 : Rn → Rp and
h2 : Rn → Rp have components that are convex. The subproblems are coupled
via the p constraint that involve both x1 and x2. By using dual decomposition,
the problem B.9 is transformed into a partial Lagrangian problem,

L(x1, x2, λ) = f1(x1) + f2(x2) + λT (h1(x1) + h2(x2))

= (f1(x1) + λTh1(x1)) + (f2(x2) + λTh2(x2))

which is separable, therefore, the problem can be minimized over x1 and x2
separately, given the dual variable λ, to find g(λ) = g1(λ) + g2(λ). The g1(λ) is
found by solving the subproblem

minimizef1(x1) + λTh1(x1))

subject to
x1 ∈ ζ1 (B.10)

and the g2(λ) is found by solving the subproblem

minimizef1(x2) + λTh1(x2))

subject to
x2 ∈ ζ2 (B.11)

To find a subgradient of g, the master problem objective is to get solution x1
and x2, respectively. A subgradient of −g is then h1(x1)+h2(x2). It is proposed
in [105,106] that a simple algorithm based on subgradient method can be used
to update λ.

Repeat

Solve the subproblems:

Solve (B.10) to find an optimal x1.

Solve (B.11) to find an optimal x2.

Update dual variables (prices) until the prices converge:

λ = (λ+ αk(h1(x1) + h2(x2)))+
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B.6 Market based control-Negotiation types

It is discussed in [107, 108] that the negotiations can be characterized as either
strident antagonist or cooperative antagonist. The former is characterized by
completely distrustful and malevolent (towards one another) parties, as would
be the case when authorities negotiate with kidnappers or airline hijackers. The
latter is characterized by entirely self-interested and disputing parties but ones
that recognize and abide by whatever rules exist. A third type of negotiation
is called fully cooperative, where the parties have different needs, values, and
opinions, but they share information, expect total honesty, perform no strategic
posturing, and think of themselves as a cohesive entity with intention to arrive
at the best decision for the entity, as would be the case for a happily married
couple. We are interested here in the two different levels of cooperative ne-
gotiations, since they better typify the various types of power system decision
problems. For example, a negotiation involving all smart appliances about the
use of a certain amount of electricity at a smart home is a good example of fully
cooperative negotiation, since the fundamental aim is to optimize the operation
of the electricity at residential level. On a higher level, two commercial aggre-
gators negotiating on a common transmission line could be a good example of
cooperative antagonists.

B.7 Alternating direction method of multipliers
(ADMM)

The alternating direction method of multipliers are used here to devise the price
mechanism which can be used to solve the grid congestions. We firstly divide
a distribution network into several sub-networks, each network is associated
with inputs such as the local renewable energy, and the power transfer line and
outputs such as the load, the power transfer line. We start the problem analysis
by formulating it into an optimal power flow (OPF) based problem. Typically,
the OPF can be solved centrally. However, in the distribution network, it might
be infeasible considering the number of small units, the fluctuating generation
and load profiles. Instead, we turn our solution to the distributed techniques,
i.e., the ADMM solution [109]. The proposed method is illustrated by the
following pseud code:

Step 1: DSO designs the sub-network systems and specifies an operator for each
sub-network.

Step 2: Price coordination
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Figure B.6: A illustrative distribution network.

Parameters initialization.

Iterations:

(1) EV fleet operator calculates the power and phase schedules of EVs and passes
it to the sub-network operator (e.g., a function of DSO).

(2) DSO line operator calculates the power and phase schedule of the transfer
lines and passes it to the sub-network operator.

(3) DSO sub network operator computes the new average power imbalances and
phase residual, updates its dual variables which reflects the imbalances, normally,
it is called shadow price. The shadow price will be broadcasted to the associated
actors.

(4) Termination condition checking, if the net power imbalance and phase in-
consistence across all sub networks of the system is less than a small value, then
it is balanced, otherwise, go to number one in step 2.

We simulate the proposed method in a distribution network. Fig. B.6 depicts
the relevant loads and lines inside the network. Several EV fleet operators are
regarded as the aggregated load and numbered as load 1, 2, 3, 4. Five sub-
networks are defined. We consider the power line’s power constraints as well
the voltage limitations.
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