2,300 research outputs found

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    NASA Tech Briefs, August 2013

    Get PDF
    Topics covered include: Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes; Conical Seat Shut-Off Valve; Impact-Actuated Digging Tool for Lunar Excavation; Flexible Mechanical Conveyors for Regolith Extraction and Transport; Remote Memory Access Protocol Target Node Intellectual Property; Soft Decision Analyzer; Distributed Prognostics and Health Management with a Wireless Network Architecture; Minimal Power Latch for Single-Slope ADCs; Bismuth Passivation Technique for High-Resolution X-Ray Detectors; High-Strength, Super-elastic Compounds; Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications; Microgravity Storage Vessels and Conveying-Line Feeders for Cohesive Regolith; CRUQS: A Miniature Fine Sun Sensor for Nanosatellites; On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids; Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen; Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities; Atomic Force Microscope Mediated Chromatography; Sample Analysis at Mars Instrument Simulator; Access Control of Web- and Java-Based Applications; Tool for Automated Retrieval of Generic Event Tracks (TARGET); Bilayer Protograph Codes for Half-Duplex Relay Channels; Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    Evaluation of the utility and performance of an autonomous surface vehicle for mobile monitoring of waterborne biochemical agents

    Get PDF
    Real-time water quality monitoring is crucial due to land utilization increases which can negatively impact aquatic ecosystems from surface water runoff. Conventional monitoring methodologies are laborious, expensive, and spatio-temporally limited. Autonomous surface vehicles (ASVs), equipped with sensors/instrumentation, serve as mobile sampling stations that reduce labor and enhance data resolution. However, ASV autopilot navigational accuracy is affected by environmental forces (wind, current, and waves) that can alter trajectories of planned paths and negatively affect spatio-temporal resolution of water quality data. This study demonstrated a commercially available solar powered ASV equipped with a multi-sensor payload ability to operate autonomously to accurately and repeatedly maintain established A-B line transects under varying environmental conditions, where lateral deviation from a planned linear route was measured and expressed as cross-track error (XTE). This work provides a framework for development of spatial/temporal resolution limitations of ASVs for real-time monitoring campaigns and future development of in-situ sampling technologies

    CANSAT: Design of a Small Autonomous Sounding Rocket Payload

    Get PDF
    CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Towards a methodology for integrated freeform manufacturing systems development with a control systems emphasis

    Get PDF
    A variety of fully integrated Freeform Fabrication (FFF) systems have been developed, a selected group for research and several for commercialization. The design methodology behind most of them is not documented, standardized, or rational. It is important to understand that the final product from any integrated system is affected not only by the unit manufacturing processes themselves, but also by the extent the individual units are assimilated into an integrated process. Thus, a scheme consisting of eight steps and the salient five elements necessary to create or retrofit an existing system to achieve an Integrated Freeform Manufacturing System (FFMS) is proposed in this thesis. Specifically, mass-change, deformation and consolidation unit manufacturing processes are emphasized, as the priority is focused on rapid prototyping (RP) technologies. To illustrate the proposed scheme, the University of Missouri-Rolla (UMR) Laser Aided Manufacturing Process (LAMP) system is presented --Abstract, page iv
    • …
    corecore