31 research outputs found

    A review and open issues of multifarious image steganography techniques in spatial domain

    Get PDF
    Nowadays, information hiding is becoming a helpful technique and fetch more attention due fast growth of using internet, it is applied for sending secret information by using different techniques. Steganography is one of major important technique in information hiding. Steganography is science of concealing the secure information within a carrier object to provide the secure communication though the internet, so that no one can recognize and detect it’s except the sender & receiver. In steganography, many various carrier formats can be used such as an image, video, protocol, audio. The digital image is most popular used as a carrier file due its frequency on internet. There are many techniques variable for image steganography, each has own strong and weak points. In this study, we conducted a review of image steganography in spatial domain to explore the term image steganography by reviewing, collecting, synthesizing and analyze the challenges of different studies which related to this area published from 2014 to 2017. The aims of this review is provides an overview of image steganography and comparison between approved studies are discussed according to the pixel selection, payload capacity and embedding algorithm to open important research issues in the future works and obtain a robust method

    An Effective Bit Plane X-ORing Algorithm for Irretrievable Image Steganography

    Get PDF
    The technical data of concealing secret info in side verbal exchange is known as Steganography; as a result the attending of skulking info is cloaked. it is the method of concealment noesis in same or a distinct media to limit awareness via the intruders. This paper introduces new system whereby irreversible steganography is employed to hide an image inside the equal medium in order that the key info is cloaked. The key image is usually referred to as payload and therefore the supplier is usually referred to as cover image. X-OR operation is employed amongst mid-level bit planes of supplier image and excessive level bit planes of knowledge image to come up with new low level bit planes of the stego photograph. recovery method involves the X-ORing of low stage bit planes and middle degree bit planes of the stego shot. targeted on the result of the recovery, ulterior data shot is generated. A RGB color image is employed as carrier and therefore the info photograph could be a grayscale image of dimensions but or adequate the dimensions of the carrier snapshot. The planned procedure extensively will increase the embedding capability without drastically reducing the PSNR valu

    Developing a Secure Image Steganographic System Using TPVD Adaptive LSB Matching Revisited Algorithm for Maximizing the Embedding Rate, Journal of Telecommunications and Information Technology, 2011, nr 2

    Get PDF
    Steganography is the approach for hiding any secret message in a variety of multimedia carriers like images, audio or video files. Whenever we are hiding a data, it is very important to make it invisible, so that it could be protected. A number of steganographic algorithms have been proposed based on this property of a steganographic system. This paper concentrates on integrating Tri way pixel value differencing approach and LSB matching revisited. The secret data embedded in images were images, text and audio signals so far. The proposed scheme has also come with the executable file as secret data. Also, the experimentation results show that, the important properties of a steganographic system such as imperceptibility, capacity of the carrier image and also resistance against the various steganalytic tools have also been achieved with this stego-system

    A comparative study of steganography using watermarking and modifications pixels versus least significant bit

    Get PDF
    This article presents a steganography proposal based on embedding data expressed in base 10 by directly replacing the pixel values from images red, green blue (RGB) with a novel compression technique based on watermarks. The method considers a manipulation of the object to be embedded through a data compression triple process via LZ77 and base 64, watermark from low-quality images, embedded via discrete wavelet transformation-singular value decomposition (DWT-SVD), message embedded by watermark is recovered with data loss calculated, the watermark image and lost data is compressed again using LZ77 and base 64 to generate the final message. The final message is embedded in portable network graphic (PNG) images taken from the Microsoft common objects in context (COCO), ImageNet and uncompressed color image database (UCID) datasets, through a filtering process pixel of the images, where the selected pixels expressed in base 10, and the final message data is embedded by replacing units’ position of each pixel. In experimentation results an average of 40 dB in peak signal noise to ratio (PSNR) and 0.98 in the similarity structural index metric (SSIM) evaluation were obtained, and evasion steganalysis rates of up to 93% for stego-images, the data embedded average is 3.2 bpp

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    corecore