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THESIS ABSTRACT 

 

Name: Azzat Ahmed Ali Al-Sadi 

Title: TOWARDS ENHANCED STEGANOGRAPHIC METHOD FOR SECURE          

DATA TRANSMISSION OVER THE INTERNET 

Major Field: Computer Networks 

Date of Degree: May, 2012 

Transferring data over the Internet has become a norm in our daily activities. 

Consequently, the need for more effective and robust security mechanisms to protect 

confidential data has substantially increased. Steganography is one of the widely used 

methods to hide secret data into other multimedia data (such as images, text, audio or 

video). Although a lot of research has been done to design good steganographic 

approaches, this field is still attracting the attention of many researchers due to the rapid 

spread of digital media and the fast growing sophistication in hacking methods.  

In this work, we studied several existing methods for information hiding in digital 

images. Then, a new steganographic system was proposed to enhance the capacity, 

invisibility and security of the resulting stego images. The proposed system depends on 

three functions: modulus overlapping, chaotic block rotation and fuzzy-edge detection. 

The modulus overlapping is mainly to increase the embedding capacity by utilizing each 

pixel in the image individually. The chaotic function is to improve the security further by 

adding another level of challenge that makes the detection and extraction of embedded 

data much harder for any unauthorized person. Finally, the fuzzy-edge detection is to 

enhance the invisibility of the stego-image by dealing with the edge ambiguity problem. 
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We developed a prototype for the proposed system and several experimental tests were 

conducted to evaluate and compare its effectiveness with several other related methods. 

We also explored how robust these methods are to resist a number of well-known 

steganalytic attacks.  

The results showed that the proposed system increased the embedding capacity and 

security while preserving a satisfactory quality with more than 30dB weighted peak signal 

to noise ratio. For instance, the average capacity has increased by almost a factor of 2 

more than the original PVD (with a slight degradation in the image quality). We have also 

found that the security of the proposed system is excellent against the histogram attacks 

comparing to almost all surveyed methods. Using chaotic rotation in the proposed system 

significantly reduced the unusual steps in the pixel-pair difference histogram.  
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الرسالت هلخّص  

 

 حوذ علي السعذيأعزث  :الاسن

 الإًخرًجهي عبر آًحو إسلوب اسخيجاًوجرافي هحسّي لٌقل البياًاث بشكل : الرسالت عٌواى

  الحاسوب شبكاث :الخخصص

 (م2012  هايو) - هـ 1433 جوادى الآخرة:  الخخرج حأريخ

الإٔرشٔد في الآؤح الأخيشج فى شرى ِياديٓ اٌحياج اصدادخ أهّيح عرّاد عٍى شثىح ِع صيادج الا

( Steganographyاٌّحافظح عٍى سشيح اٌثيأاخ أثٕاء ٔمٍها عٍى ذٍه اٌشثىح. ويعذ ِجاي الاسريجأىجشافي )

حيث يمىَ ترضّيٓ اٌثيأاخ اٌّشاد اٌحفاظ عٍى سشيرها في وسظ آخش   رٌه؛ ٌرحميكأحذ اٌّجالاخ اٌحيىيح 

ُّشسًِ لثً عٍّيح ٔمٍها ثُ يمىَ تاسرشجاعها عٕذ  )وشساٌح ٔصيح، أو صىسج، أو ِمطع صىخ أو فيذيى( عٕذ اٌ

سرم ُّ ج ً. وسغُ أْ هٕان طشق عذيذج لإخفاء اٌثيأاخ في اٌصىس، لا يضاي هزا اٌّجاي تحاجح ٌطشق ِثرىشثِ اٌ

 .ِع ذضايذ اساٌية اٌمشصٕح وفعاٌح ٌلإخفاء

وذطىيش ٔظاَ  لرشاحاذُ و دساسح عذج طشق ِخرٍفح لإخفاء اٌثيأاخ في اٌصىس، ذُ اٌشساٌح هزج في

اٌثيأاخ دوْ ذأثيش  هزجٌ حّايحاٌ صيادج ِعوّيح أوثش ِٓ اٌثيأاخ  ذضّيٓصيادج اٌمذسج عٍى  ٌىإيهذف  خفاءإ

مرشح في هزج اٌشساٌح  يعرّذوٍِحىظ عٍى جىدج اٌصىس اٌّسرخذِح في عٍّيح الإخفاء.  ُّ  حثلاث عٍىإٌظاَ اٌ

 ُّ عاًِ اٌ ُّ  Chaotic block) ح(، اٌرذويش اٌعشىائي ٌٍىرModulus overlappingٍ) رذاخًأساٌية: اٌ

rotation)، اٌضثاتي إٌّطك سرخذاَاوأسٍىب ذحذيذ اٌحىاف ٌٍصىسج ت (Fuzzy-edge detection .)

 عٕاصش ِٓ)تىسً(  عٕصش وً في ّخفيحاٌ اٌثيأاخ وّيح صيادج إٌى الأساط في الأوي الأسٍىب يهذف حيث

يهذف الأسٍىب اٌثاٌث  ّاتيٕ، اٌصىسج في اٌّخفيح اٌثيأاخ ّايحح صيادجالأسٍىب اٌثأي إٌى  يهذفو ،اٌصىسج

 اٌرجاسب ِٓ اٌعذيذ إجشاءتهزج اٌشساٌح  فيوّا لّٕا  .فيها اٌثيأاخ إخفاء تعذ اٌصىسج جىدج عٍى اٌحفاظ ٌىإ

ُّ  الإخفاء ٔظاَ ٌرمييُ ماسٔره مرشحاٌ ُِ  طشق ِخرٍفح. ِع و
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CHAPTER 1 

INTRODUCTION 

Nowadays, the Internet is playing a major role in developed and developing 

societies. Hence, enormous amount of confidential information is being transmitted over 

the Internet. Since this information is vital to government, business, industry and even 

individuals; continuous technological improvements to secure this information is 

crucially needed. Steganography is one of the extremely important areas of information 

security. Unlike cryptography which changes the message to make it unreadable by an 

adversary (a third party) without knowing the key, steganography hides the presence of 

secret information. It uses a cover (carrier) medium to exchange secret information in 

undetectable way over a public communication channel. Both cryptography and 

steganography complement each other; thus, a message can be encrypted then embedded 

into a different medium. Steganography can be applied to different types of media 

including text, audio, image, video, etc. However, digital images are popularly used as 

cover media due to the simplicity of computation and the extensive use of images over 

the Internet with many different file types (such as bmp, gif and jpg). Figure 1 illustrates 

the principal components of a steganographic system. At the sender, the secret message is 

embedded into a cover object to generate a stego object (a.k.a. the cover containing the 

secret message). On the other side of the communication channel, the receiver extracts 
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the secret message from the stego object. While the stego object is transmitted over an 

unsecure channel, such as the Internet, it can be captured and analyzed by an 

unauthorized person to reveal the embedded message; which is known as steganalysis. A 

good steganographic approach should be capable of embedding more data in the cover 

object without creating visible artifacts that can be used by the steganalyst. A key can be 

used optionally during embedding and hence will be needed during extraction. 

 

 

 

 

 

 

 

Figure 1. The principal components of a steganographic system. 

Several steganographic approaches have been proposed in the literature. Most of 

these approaches embed more bits in edge pixels of the image. For instance, the Pixel-

Value Differencing (PVD) [1] makes use of edges in the image to embed considerably 

large secret data without great quality loss. PVD utilizes a pixel-pair difference technique 

to categorize the smoothness properties of each pixel pair and adapts the number of 

embedded bits accordingly.  
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1.1. Motivation 

Regardless of the amount of work that has been published to extend the idea of 

PVD, there is no comprehensive study that provides a detailed comparison between these 

methods. Furthermore, due to the crisp range boundaries, almost all PVD-related methods 

have a clear impact in the image histogram which makes them more fragile against some 

attacks. Moreover, the PVD-related methods use the pixel-pair difference to identify the 

image edges. However, other edge detection techniques such as those employing fuzzy 

logic can provide finer details about edges [2].  

1.2. Problem Description 

Although PVD has the potential to hide a large amount of secret data, it has some 

drawbacks. First of all, only two pixels are considered each time, therefore it cannot 

sufficiently capture edges in different directions [3]. Second, the falling-off-boundary 

procedure, applied when the resulting gray value of the pixel exceeds 255, has a 

significant problem; even with Wu and Tasi‟s solutions to detect and avoid these pixels in 

the embedding and the recovery processes. Third, most of the image areas are smooth; 

consequently, the secret bits will be embedded in ranges with small difference values [4]. 

Fourth, each pixel in the pixel-pair has its own characteristics; therefore it may hide 

different amounts of data from its neighbor. Fifth, the two-pixel block is non-

overlapping, and it will lower the embedding capacity [3]. Sixth, PVD uses the pixel-pair 

difference technique to detect edges which is not the best technique for edge detection. 

However, new techniques such as fuzzy edge detection takes into account the ambiguity 
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of edges in the image.  Furthermore, PVD has unusual steps on the pixel-pair difference 

histogram which makes it vulnerable to security attacks [5]. 

1.3. Thesis Objectives 

The aim of this work is to study and compare several existing approaches for 

information hiding in digital images. A number of comparison factors will be considered 

in this study including embedding capacity, visibility, and resistance to steganalytic 

methods. Then, a new information hiding system is proposed to take advantage of the 

recent development in chaotic theory and soft computing for edge detection to increase 

the amount of embedded data while maintaining security. The research objectives can be 

summarized as follows.  

1) Study and benchmark existing techniques for information hiding in digital images 

that are based on pixel-value differencing (PVD).  

2) Apply a number of steganalytic methods on various PVD-related methods to 

assess their robustness to these attacks.  

3) Evaluate different edge-detection techniques and investigate how they can help in 

increasing the payload capacity of the steganographic embedding process. 

4) Propose and assess a steganographic approach based on fuzzy inference systems. 
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1.4. Thesis Organization 

The remaining chapters of this thesis are organized as follows. Chapter 2 provides a 

background and a literature review of the information hiding and the steganalysis 

methods. Chapter 3 studies in depth the PVD-related methods including their design 

methodologies. It also introduces the steganographic approaches which make use of the 

edge detection mechanisms. Chapter 4 presents and discusses the proposed 

steganographic system. Chapter 5 describes the experimental results, whereas Chapter 6 

concludes this work.  
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CHAPTER 2 

BACKGROUND AND LITRATURE REVIEW 

2.1. Background 

Steganography comes from the Greek word „steganos‟ (στεγανός) meaning covered 

and „graphei‟ (γραυή) meaning writing or drawing; thus steganography means covered or 

hidden writing. The basic idea of steganography is to hide the presence of secret data 

rather than enciphering it [6] [7]. Although steganographic approaches have been in use 

for a long time since the ancient days, it was only known by this name at the end of the 

15
th 

century. One of the earliest examples of steganography was dated back to around 440 

B.C. when Histiaeus used to shave the head of his most trusted slave and tattooed his 

scalp with a message. Once the slave‟s hair had grown, the message disappeared and the 

slave was sent to the receiver with the hidden message [8]. The slave‟s hair was used as a 

cover for the message. Invisible ink was also used in both world wars. Some of the 

invisible inks were created using juice or milk [9]. 

With the rapid development and popularity of the Internet technology, secure 

communication between the sender and the receiver has become a significant challenge. 

Steganography, or concealing secret data into other media, plays an important role in 

creating covert channels and in protecting confidential data against unauthorized access 

and tampering; particularly in such open access environments. The object containing the 

secret message is called stego object. 
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There are many steganographic approaches which can be classified into the 

following types [10]:  

 Technical Steganography: This type of steganography uses scientific methods to 

hide the secret message, such as invisible ink, microfilm and microdots that were 

used in both world wars. 

 Linguistic Steganography: This type of steganography makes use of the written 

natural language such as dots and kashida in the Arabic language to hide a secret 

message. 

 Digital Steganography: Digital steganography uses the computer technology to 

hide a secret message in a digital medium. It uses several multimedia covers such as 

image, audio and video.  

Because of the extensive use of digital images in social networking services over 

the Internet such as Facebook and Netlog, digital steganography techniques are the most 

popular. In the following parts, we will study several existing approaches for digital 

image steganography. 

2.1.1. Information Hiding and Data Confidentiality  

Recently, Information hiding has become one of the important fields of the security 

because of the increasing number of Internet attacks which target invaluable information. 

Information hiding is mainly divided into two parts watermarking and steganography. 

Watermarking embeds a small amount of data into a cover object to protect the author‟s 

rights. This embedded data could be visible or invisible to the human eyes. Watermarking 



8 
 

 

aims to prevent the embedded data from being removed by attackers [11] [12]. On the 

other hand, steganography hides large amounts of secret data into the cover object. It 

aims to protect the confidentiality of the embedded data.  

With quick development in network technology, attacks have advanced rapidly. 

Therefore, the demand on transferring information securely has increased. This has led to 

develop new steganographic techniques to protect transmitted information over computer 

networks. However, steganography can be misused such as in the case of transferring 

secret information by the Internet worms [13]. Steganography uses several covert 

channels to transfer the information. It hides the secret data into network protocols, 

computer programs, text files and images. Because of the extensive use of images in the 

social networks, most of the steganographic techniques hide the secret data into digital 

images. This type of steganography is called digital image steganography. Digital image 

steganography can be divided into two types depending on its domain: 

 Spatial Domain Steganography: Methods in this category modify the Least 

Significant Bits (LSB) of the cover-image pixels in the spatial domain. Although 

this type of steganography has several drawbacks such as its vulnerability to 

attacks, it is very common due to its simplicity. Several spatial steganography 

methods have been proposed. The LSB replacement is the most widely used. It 

directly replaces the least significant bits of the cover image with the secret 

message bits. This method can embed large secrets in the cover image, but it also 

introduces a clear distortion in the image histogram as more data is embedded. 

LSB matching is another technique of spatial domain steganography [14] [15]. It 
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adds or subtracts 1 from the least significant bits of the cover image pixel when its 

value does not match the secret bits. In [16], the authors proposed a hybrid 

steganography approach using an optimal LSB substitution and genetic algorithm. 

Their method not only improves the quality of the stego image but it also protects 

the secret data. However, the computational requirements are high. Another 

method is proposed in [17]. This method improves the stego-image quality by 

decreasing the errors between the stego and the cover. Furthermore it reduces the 

computational overhead. In [18], the authors use the absolute difference of the 

neighboring pixels to determine whether the pixel can embed secret data without 

affecting the image quality or not. If the absolute difference of the neighboring 

pixels is greater than a predefined threshold, this pixel will not be changed. 

Another example of spatial domain steganography is the pixel value differencing 

technique [1]. It embeds the secret data into a pair of pixels. We will discuss this 

method in detail in Chapter 3.  

 Frequency Domain Steganography: This type of steganography transforms the 

image into the frequency domain before the secret data is embedded. It protects the 

secret data by spreading it across the entire image. There are several mechanisms 

to transform the image into the frequency domain such as using the Z transform 

[19], wavelet transform and discrete cosine transform (DCT) [20]. Many methods 

have been proposed to develop this type of steganography; among them are F5 and 

OutGuess [21] [22]. 
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In [21], F5 steganographic method is developed to convert the image into the 

frequency domain using the DCT transform. Then, it embeds the secret bits into the 

DCT coefficients by subtracting 1 from these coefficients if necessary. The F5 

technique successfully resists some attacks including visual and statistical attacks. 

The OutGuess method consists of two stages. In the first stage, it embeds the secret 

message into the LSB of randomly selected DCT coefficients while skipping 0‟s 

and 1‟s. In the second stage, the histogram of the stego image is corrected to be 

similar to the cover image histogram as possible. The OutGuess method also resists 

some common attacks including the chi-square attack [22]. 

2.1.2. Security Attacks 

Information hiding methods may suffer from several attacks. The art and science of 

analyzing an object to determine whether it has embedded data (stego-object) or not 

(cover-object) is known as steganalysis. The discrimination between a stego-object and a 

cover-object can be with or without the knowledge of the steganographic algorithm that 

was used for embedding the secret message [23]. Since steganography is such a secure 

form of communication and since it can easily be misused, steganalysis can be a useful 

tool under such conditions. Steganalysis has been used legally by governments to prevent 

terrorist attacks and catch people engaging in illegal activities. 

Steganalysis methods can be classified into two general categories: method-specific 

methods and universal methods [24][25]. The first category targets a specific 

steganographic approach and attempts to attack that approach. The second category, the 

universal methods, which is also sometimes known as blind methods, is more general and 
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can be applied to one or more steganographic approaches. In this category, features that 

are common to different steganographic approaches are first extracted and a classification 

model is built. The classifier is then used to detect stego-objects. Furthermore, 

steganalysis can be divided into two types according to the ability of the steganalysis 

method to reveal or estimate the secret message. Passive attacks can detect the presence 

of a secret message in the stego-object, and/or can identify which embedding algorithm is 

used. On the other hand, active attacks can estimate some extra properties such as the size 

of the embedded message, and/or extract a possibly approximate version of the secret 

message from the stego-object. Among the most popular statistical attacks is histogram 

attack where a graphical representation of the distribution of colors or grayscales in an 

image (a.k.a. histogram) is used to visualize the changes made due to embedding. It has 

been applied to detect embedding by methods based on least-significant bits (LSB) (e.g. 

LSB replacement and LSB matching) [4], [26], [27]. Although, visual artifacts are 

generally not noticeable by human eyes in the stego-image, changes in the histogram can 

be easily observed [28]. We will use the histogram attack later in the experimental part to 

evaluate the security of a set of common steganographic methods considered in this 

study.   
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2.2. Literature Review 

There has been a growing interest in digital image steganography and many 

methods have been developed [29]. A good steganographic method is one that has high 

embedding capacity (payload) without visible artifacts. It should also resist steganalysis 

methods. In our study, we will focus on a family of methods used in spatial domain and 

attempt to make use of edge pixels to hide more data. Based on how these methods detect 

edges, we can divide them into two main categories. The first category detects edges 

using a group of pixels then it embeds the secret data in this group. The second category 

uses a traditional edge detection mechanism to detect edges in the whole image. Then, it 

embeds the secret data based on the edge information. In this section, we will conduct an 

intensive literature review of these two categories, including the most common attacks on 

them. 

A) Group of pixels edge based methods 

One of the well-known relatively recent approaches of this type is Pixel-Value 

Differencing (PVD) [1]. This approach was proposed by Wu and Tasi to hide a secret 

message into 256 gray-valued images. To preserve good quality of the stego-image, their 

approach utilizes the edge bits for embedding more data. PVD uses the difference of each 

pair of pixels to determine the number of bits that can be embedded into this pixel-pair. A 

small difference value indicates that the block is in a smooth area, and a large value 

indicates that it is in an edge area. The larger the difference, the more data can be 

embedded.  
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Although, PVD can embed more data in edges, it does not utilize the smooth areas 

sufficiently. Moreover, two pixels cannot capture the different directions of edges. PVD 

detects only the vertical edges. However, edges can also exist in horizontal, vertical and 

diagonal directions; but won‟t be detected. Additionally, the two-pixel blocks are non-

overlapping which results in lowering the embedding capacity. Furthermore, PVD has a 

clear impact on the image histogram that exposes it to histogram-based attacks. In [5], the 

authors presented an analysis of the changes in the histogram of the pixel difference due 

to embedding of secret data into a cover image using PVD. Moreover, PVD was 

successfully attacked by generating a substitute image which is created from the pixel-

pair difference vector of the stego-image. Then, apply the chi-square steganalysis on the 

substitute image to detect the presence of the embedded data [30]. 

In [5], another approach based on PVD is proposed to increase the immunity of 

PVD to the histogram steganalysis. Instead of the fixed ranges of the original PVD, 

variable ranges for different blocks are introduced. The authors generated new variable 

ranges using a pseudo-random parameter. By varying the value of the pseudo-random 

parameter appropriately, the steps on the histogram of the pixel-pair difference can 

greatly disappear. But, Sabeti et al. [31] attacked this approach using a universal detector 

based on neural networks.  
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To improve the stego-image quality and eliminate the PVD histogram steps, Wang 

et al. [32] proposed the PVD with modulus function approach. This approach modified 

the remainder of the pixel-pair calculations instead of using the difference value. They 

also overcome the falling-off boundary when the pixel exceeds the value of 255 after data 

has been embedded by using readjusting conditions. This method increased the PSNR 

(Peak Signal to Noise Ratio) more than the original PVD method in most of the 

considered cases.  Despite its security against LSB attacks such as RS attack [33], the 

embedding process can still cause a number of artifacts, such as abnormal increases and 

fluctuations in the PVD histogram, which has been used as a clue to reveal the existence 

of hidden data [34] [35]. An attack on the modulus PVD is proposed in [35], using three 

steganalytic measures and a support-vector machine. In order to enhance the security of 

the modulus PVD, a turnover policy with a novel adjusting process is proposed in [36] to 

prevent abnormal increases in the histogram values and remove fluctuations at the border 

of the various ranges in the PVD histogram. However, the modulus PVD does not tackle 

the PVD capacity problem. 

To further enhance the PVD capacity, Wu et al. [37] used a combination of the 

PVD and LSB replacement methods to embed more data into the smooth areas. This 

approach is based on the idea of using PVD when the difference between the pixel-pair is 

large (edge area), and using LSB with three bits per pixel and readjusting equations 

whenever the difference is small (smooth area). Although, this PVD+LSB with 

readjusting equations can hide more secrets than the original PVD, it has many 

characteristics similar to the simple LSB. Cheng et al. [4] attacked PVD+LSB using a 
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similar method to Fridrich et al.‟s steganalysis method [33]; yet this method failed to 

detect the original PVD. This is because most of image areas are smooth and 

consequently the majority of the cover image pixels will be altered using the LSB 

replacement method. PVD+LSB with readjusting equations was also successfully 

attacked in [30] using the chi-square method. 

Yang et al. [4] enhances the image quality of the PVD+LSB by using a selective 

strategy instead of using the 3-bit LSB with readjusting equations whenever the pixel-pair 

difference of the stego image belongs to a smooth area. Furthermore, they applied the 

well-known modified LSB substitution method [38] [39] to PVD+LSB with readjust 

instead of using the simple LSB. However, PVD and its modified version PVD+LSB still 

use only two pixels in each block to detect the edges, which does not give enough 

information about the surrounding area. Consequently this may lower the embedding 

capacity. 

To eliminate the drawback of using two pixels for detecting edges, Chang and 

Tseng [40] hide secret data using the concept of two-sided-match vector quantization 

(SMVQ) [41]. SMVQ utilizes information from two neighbouring pixels (the upper and 

the left pixels) to detect edges. Despite that the two-sided match can detect more edges 

than the PVD, it distinguishes only the horizontal and vertical edges, whereas edges can 

also present diagonally. To improve the edge detection accuracy, and also to increase the 

embedding capacity, a Tri-way PVD (TPVD) method was proposed in [42] [43]. This 

method embeds the secret bits in both horizontal and vertical edges of the cover images 

in addition to only one diagonal edge. However, the variable amount of embedded data in 
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different directions by the TPVD method causes considerable distortion in the stego 

image. Furthermore, the fixed ranges create clear steps on the histogram of the pixel-pair 

difference. Utilizing this distortion and the branch conditions of the Tri-way, Zaker and 

Hamzeh [44] successfully attacked the TPVD method. The idea of their steganalysis was 

to find the characteristics of the cover image pixel-pairs differences from the stego image. 

They used the suspected image as a cover image to embed particular amounts of 

additional secret bits with the same procedure of TPVD. After that, the histogram of the 

pixel-pair differences was used to compare the characteristics of the suspected image 

before and after embedding the secret bits. They used the length of unusual steps at the 

boundary of ranges to detect the existence of any secret message. This steganalysis not 

only detects the stego image, but it can also estimate the size of the secret message. 

 Using a four-pixel block, Yang and Weng [3] proposed a Multi-Pixel Differencing 

(MPD) approach. The smallest gray value in a four-pixel block is used to create three 

groups of pixel pairs. Therefore, instead of hiding data using the difference between two 

pixels, as in PVD, Yang and Weng‟s approach can give the differences of the three 

groups; hence it will increase the size of hidden data. However, the MPD approach relies 

only on the difference between block pixels. The difference does not hide many bits in 

the smooth area as we discussed before. Jung et al. [45] suggested adding a threshold 

level to discriminate between the edge and smooth areas. This threshold level will also be 

used as a secret key. They embedded data with LSB method whenever the difference of 

the pixel-pair is less than the threshold level; otherwise they used the MPD method. 
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Moreover, for minimizing the distance between the pixel pair for each sub-block in the 

edge area, a method is used for rearranging the new pixel values. 

Despite the different techniques for selecting a group of pixels and the way of 

identifying edges, all previous methods embed the secret data in a pixel-pair. However, 

each pixel in a pixel pair can have different values and characteristics, therefore it may 

hide different amount of data from its neighbor. To utilize the characteristics of each 

pixel, Chang et al. [46] proposed a steganographic approach that hides the secret data in 

each pixel individually, instead of hiding it in a pixel-pair. They hide the secret bits into 

the least-significant bits of the second pixel in each block of two pixels. Then this method 

uses the second pixel of the first block as the first pixel of the second block. Although, 

this approach improves the PVD capacity, it leaves many pixels without embedding.  

B) Traditional edge-based methods 

The second steganographic type in our literature survey detects the edge 

information in the whole image before embedding the secret data. To detect edges, this 

type uses one of the traditional edge detection methods. Edge-detection methods calculate 

the edge strength by the amount of change in the gradient values of the image pixels. 

Since edges can be represented in different directions, a good edge detecting approach is 

able to consider all edge directions. Several edge detection approaches have been 

proposed. Some of them use the first-order or the second-order derivatives. These 

approaches are called classical edge detectors [47] [48]. Other approaches use soft-

computing such as fuzzy logic to identify edges [49].  
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The classical edge-detection methods utilize the principle of matching image 

segments with the specific edge patterns to identify the edge location and direction. The 

edge is recognized by convolving the image signal with a set of directional derivative 

marks. Some examples of classical edge detectors are Roberts, Sobel, Prewitt, Canny and 

Laplacian edge detectors. These algorithms are simple and easy to apply on images [50]. 

On the other hand, fuzzy edge detection methods consider the image to be fuzzy. This 

consideration solves the problem when edge detection becomes difficult because of the 

vague or blurred characteristics of the edges. Consequently, fuzzy systems add more 

improvement to the edge detection field. There are many fuzzy edge detection 

approaches. One such approach is based on the intuitionistic fuzzy distance which is 

proposed in [51] [52]. In our work, we will refer to this method as Fuzzy Template Based 

(FTB) edge detector to differentiate it from other edge detection methods.  

Utilizing one of the edge detection methods, the traditional edge-based 

steganographic method first generates the edge image; an image containing information 

about all edges in the image. Then, either the steganographic method embeds the edge 

information into the stego image or uses the same cover at the receiver side to reproduce 

the same edge information. 
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In [53] [54], the authors generate the edge image using a hybrid edge detection 

method. Then, they embed the secret data into the cover image without paying attention 

to the edge information. However, at the receiver side, the original cover image is needed 

to regenerate the same edge information before extracting the secret data. Because the 

cover image is needed at the receiver side, this approach is either restricted to some 

predefined cover images or the cover image should be securely transmitted to the 

recipient every time. Alternatively, the authors of [55] [56] embed the edge information 

into the stego image. Therefore, there is no need for the original cover at the receiver 

side.  

More details about the PVD-related methods and the traditional edge based 

steganographic approaches are discussed in the next chapter.   
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CHAPTER 3 

EXISTING STEGANOGRAPHIC SPATIAL METHODS 

 

In this chapter, we will review and discuss in more details several spatial domain 

steganographic methods to identify their strengths and weaknesses. These methods are 

based on two approaches for distinguishing smooth and edge areas in an image: pixel 

value differencing related methods and traditional edge detection based methods. The 

goal of this chapter is two folds. First, it helps us shape our ideas towards a more 

effective steganographic approach. Second, we will conduct several experiments, later in 

Chapter 5, to compare these methods and also to benchmark our proposed steganographic 

system.  

3.1. PVD-Related Methods 

In this section, we discuss seven steganographic methods based on pixel-value 

differencing to detect edge areas and determine the number of secret bits to be embedded. 

A) PVD Method 

The original PVD approach was proposed by Wu and Tasi to hide a secret message 

into 256 gray-valued images [1]. Instead of inserting a fixed number of secret bits 

directly into the least significant bits of each byte of the cover image, PVD uses the 

difference of each pair of pixels to determine the number of bits that can be embedded 

into this pixel-pair. PVD relies on the fact that human eyes can observe small changes in 
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the gray level values of a smooth area but they cannot easily notice the changes at the 

edge areas. Hence, PVD partitions the cover image into blocks by scanning the cover 

image from the left-upper corner in a zigzag manner. Each block consists of two 

consecutive non-overlapping pixels. The differences of the two-pixel blocks are used to 

categorize the smoothness and contrast properties of the cover image. The pixels around 

an edge area will have large differences whereas the pixels at a smooth area will have 

small differences. The larger the difference, the more bits can be embedded into this 

block. 

Wu and Tasi segmented the gray level range (0, 255) into smaller ranges. To 

facilitate binary data embedding, each range must be a power of 2. Ranges with small 

widths represent the smooth areas and ranges with large widths represent edge areas. In 

their paper, they have experimented with two different sets of ranges: {8, 8, 16, 32, 64, 

128} and {2, 2, 4, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64}. Each range is demarcated by ui and li 

which represent the upper and lower levels of this range, respectively. Each range 

determines the number of bits that will be hidden in a pixel pair as given by

(     )i 2 i in  log u l  1   , for range i. Assume Pi and Pi+1 are two pixels of a pixel-pair, and 

gi and gi+1 are their gray values. The difference di is calculated as gi+1gi and its absolute 

value falls in the range from 0 to 255. Let the difference value after embedding be
'
id  

which can be calculated from: 
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where kb is the decimal value of some secret bits to be embedded in this block using the 

following equation: 

1

1

1

i i i i i
' '

i i

i i i i i

g m ,g m if  d is odd
( g ,g

,
)

  

,   g m ,g m if  d is even







        
 

        

 3.2 

where 
' ( ) / 2i i im d d  .  

The new pixel values may fall outside the boundary (0, 255), which is not a valid 

gray level value; hence the secret data will not be embedded in these pixels. Wu and Tasi 

proposed a falling-off-boundary procedure to discover these pixels and skip them. Figure 

2 illustrates the main steps in the embedding process of PVD. 

Although PVD has the potential to hide a reasonable amount of secret data, it has 

some drawbacks. First of all, only two pixels are considered each time, therefore it cannot 

capture the different edge features sufficiently [3]. Second, the falling-off-boundary 

procedure has a significant problem even with the solution proposed by Wu and Tasi. 

Third, most of the image areas are smooth, so few secret bits will be hidden using the 

ranges with small values [4]. Fourth, each pixel in the pixel-pair can have different 

values, therefore it may hide different amount of data from its neighbor. Fifth, the two-

pixel blocks are non-overlapping, and this will lower the embedding capacity [3]. 
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Figure 2. The process of embedding secret data using PVD. 

Moreover, the pixel value differencing method is not very sensitive to 

straightforward histogram analysis as compared to LSB. However, by drawing the 

histogram for the differences of pixel pairs, variations before and after embedding can be 

clearly observed. The histogram of the differences of pixel pairs has a smooth shape of a 

normal distribution whereas it has remarkable steps for the stego-image. This is due to 

the quantization ranges of the PVD method. When different differences fall in the same 

range, the calculation of the new differences will start from the same lower boundary of 

that range. In general, the number of occurrences of a pixel difference decreases with the 

increase of the absolute value of the difference. In [5], the authors presented an analysis 

of the changes in the histogram of the pixel difference due to the embedding of secret 

data in a cover image using PVD. This analysis can be summarized as follows. The secret 
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bits are assumed to be uniformly distributed (e.g., as a result of encryption before 

embedding) in the range [0, wi-1], where wi is width of range i. When i > 0, it will make 

the number of differences falling into ri, r0 and ri-1 and their boundaries are [li,ui], [-u0, u0] 

and [-li, –ui], respectively; as shown in Figure 3. The pixel difference histogram of the 

stego-image ( )h d will be approximated by [5]: 
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Figure 3. Ranges and their boundaries. 

Despite the PVD drawbacks, it can be enhanced in terms of security, capacity and 

image quality. In the following, we will discuss a number of other methods that have 

been proposed to extend the original PVD method in various ways.  

B) PVD+LSB Method 

Because the PVD method does not utilize the smooth area to hide large number of 

secret data, its capacity is relatively low. In order to achieve higher capacities, Wu et al. 

[37] used a combination of PVD and LSB to hide the secret data. This method is based on 

the idea of using PVD when the difference between pixels in a pixel-pair is large (edge 
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area), and uses 3-bits LSB per pixel with readjusting equations whenever the difference is 

small (smooth area). The discrimination between the edge area and the smooth area is 

determined by comparing the difference between the pixel-pairs with a threshold value, 

div. This threshold value is controlled by users and used as a secret key.  

During the embedding process, the difference di is calculated similar to the original 

PVD. If di < div, then the pixel-pair belongs to a smooth area and 3 bits of the secret 

message will be directly embedded into the least significant bits of each pixel using LSB. 

The new difference, 
'

id , will be calculated after the data is embedded and compared with 

the threshold, div. If
'

id div , a readjusting equation will be used; otherwise, the pixels 

belong to an edge area and the original PVD method is used instead. The readjustment 

equation is as given by: 
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The PVD+LSB method can have about 1.57 to 1.97 greater capacities than the 

original PVD method, but the value of the PSNR will be dropped by about 2.1 to 4 dB 

[57]. The high value of PSNR when using PVD only results from the scare modification 

of pixels of the cover image especially in the smooth areas. Further discussion of the 

drawbacks of PVD+LSB can be found in [4]. 
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C) Side-Match Method 

Using only two pixels in each block does not give much information about the 

surrounding area. Also it can cause noticeable distortion in the stego-image. To eliminate 

this defect, Chang and Tseng [40] used a concept of two-sided match vector quantization 

(SMVQ) which was developed by Kim [41] to hide secret data. SMVQ utilizes the 

information from two neighbouring pixels (the upper and the left pixels) to predict the 

state of the current pixel if it is located in an edge area or not. Three-sided and four-sided 

match methods for VQ encoding were also proposed in [58]. Using a raster scan, Chang 

and Tseng scanned the whole image except the first row and first column. Assume the 

current pixel is 
xP  and its upper and left neighboring pixels are denoted by 

uxP
 
and 

lxP  

respectively. The difference  x ux lx xd  g g / 2 g    where 
uxg and 

lxg
 
are the gray values 

of pixels 
uxP  

and lxP , respectively. If the value  –1,  0,  1xd  , then one bit of the secret 

data is embedded into the least-significant bit of the pixel 
xP
 
using the conventional LSB 

substitution approach. Otherwise, the number of bits to be hidden, n , and the difference

'

xd are calculated using the following equations: 

2 x xn log d  ,if  d 1     3.9 

 

n

x
'

x
n

2 b,    if  d 1

d
2 b ,  otherwise

  


 
 

 3.10 

where b is the decimal value of the secret data to be embedded, '

xP  
is the stego-image‟s 

pixel that contains the secret data, and its gray value is  ' '

x ux lx xg  g g / 2 – d  . 
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D) MPD Method 

To reduce the error of the Side-Match method, and also to increase the embedding 

capacity, Yang and Weng [3] proposed a Multi-Pixel Differencing (MPD) method. 

Similar to PVD, their approach uses raster scanning, but instead of taking two pixels as a 

block, they select a block of four pixels to hide the secret data. The four pixels must 

satisfy the condition 0 1 2 3g g ,g ,g , i.e. g0 is the pixel with the smallest value and g1, g2, g3 

are the next pixels in the clockwise direction in the same order. But if there exist more 

than one pixel with the smallest gray value in a block, g0 is assigned to the first pixel of 

those candidates in the sequence. Three groups are created as follows: group1 (g1 – g0), 

group2 (g2 – g0), and group3 (g3 – g0). Each group difference falls in one of the 

predetermined ranges ri. Therefore, instead of hiding data using the difference between 

two pixels, as in [1], Yang and Weng‟s approach can give the differences of the three 

groups; hence it will increase the hidden data. This approach can embed n1, n2, and n3 for 

group 1, 2 and 3, respectively.  

E) Tri-way PVD Method 

The original PVD method can only hide up to seven bits at most in each pixel-pair. 

Moreover, it detects the edge by only two horizontal pixels. To increase the capacity and 

to get more edge information, Chang et al. [42], [43] proposed a Tri-way PVD scheme 

which utilizes a block of four pixels to detect edges in different directions and to hide 

secret data. Their approach divides the cover image into non-overlapping 2×2 blocks with 

four combinations of pixel-pairs as shown in Figure 4. The four block pixels will be  
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Figure 4. An example of four pixel pairs. 

denoted as
( , ) ( 1, ) ( , 1) ( 1, 1) , , and x y x y x y x yP P P P   

 where x and y are the coordinates of the 

pixel position in the image. The four pixel pairs will be named as P0, P1, P2 and P3 where

0 ( , ) ( 1, ) 1 ( , ) ( , 1)( , ), ( , )x y x y x y x yP P P P P P   ,
2 ( , ) ( 1, 1)( , )x y x yP P P   , and 

(x,y 1) (x 1,y 13 ),( ).P P P   However, the fourth pixel-pair is discarded; this is because 

changing its pixel values will affect the first and the second pixel pairs. Therefore, the 

Tri-way PVD method can embed secret bits in horizontal, vertical, and diagonal edges of 

the cover image.  
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To reduce the distortion from hiding data in different directions, Chang et al. 

proposed branch conditions technique. If one of the branch conditions occurs, the original 

PVD will be used instead of hiding data using the Tri-way PVD method.  The original 

PVD method will hide the data in P0 and P3 pixel pairs. The branch conditions are: 

 
0 1embedding _ bit  ( ) 5, and embedding _ bit  ( ) 4P P   

 
 

0 2embedding _ bit  ( ) 5, and embedding _ bit  ( ) 6P P   

F) OPVD Method 

To enhance the capacity of PVD further, Chang et al. [46] proposed a concept of 

overlapping to increase the number of differenced pixel-values. By using this concept, 

they achieved higher average hiding capacity over the original PVD of Wu and Tasi. 

Chang et al.‟s approach is based on hiding a secret data using individual pixel, instead of 

hiding it in a pixel-pair. They hide secret bits into the least significant bits of the second 

pixel in each block of two pixels. Then, this approach uses the second pixel of the first 

block as the first pixel of the second block. Figure 5 demonstrates the concept of 

overlapping pixel-value differencing (OPVD) and contrasts it to PVD. 

 

 

Figure 5. Demonstration of the difference between PVD and OPVD methods. 
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If the pixel-pair difference before and after hiding the secret data belongs to the 

same range, the embedding process is successful; otherwise the secret bits cannot be 

embedded and the second pixel P2 is adjusted to indicate this situation. P2 is moved to the 

smallest value or the biggest value of the range according to the following equations: 

j j j j j
'

j

j

b L,   if  b L d b H d
d

b H ,        Otherwise                

   


 


 3.11 

Whether the embedding process is successful or not, the second pixel will be the first 

pixel in the next pixel pair. Although the OPVD method can hide larger data than the 

original PVD, it has some drawbacks: 

1) The arrangement of the table of ranges has a great influence on the image quality 

and the hiding capacity. 

2) It suffers from the problem of unused pixels which reduces its embedding 

capacity. 

3) Using simple LSB method to hide up to seven bits per pixel deforms the stego-

image histogram. 
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G) Modulus-PVD Method 

Wang et al. [32] proposed PVD with modulus function steganographic method to 

enhance the image quality by reducing the difference between the pixel pair before and 

after embedding of secret data. Instead of using the difference value, their approach 

modified the remainder of the pixel-pair. As a result, this method increases the PSNR 

more than the original PVD method. In addition, the falling-off boundary problem when 

the pixel exceeds the value of 255 after data has been embedded is solved by using 

readjusting conditions. The modulus PVD can be briefly described in the following steps: 

 Find the difference between consecutive pixels similar to the original PVD and 

determine the range where this difference falls. 

 Compute the remainder using the following equation: 

1

'

rem( i ) i i iF ( P P )mod t   3.12 

where ' 2 it

it  and it  is the hiding capacity of the pixel block.  

 Embed n secret bits into the pixel block such that the equivalent decimal value 

b is equal to remF . 

To keep the difference in the same range before and after the embedding, a method to 

alter the remainder of the pixel-pair is proposed in [32]. 
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3.2. Traditional Edge Based Methods  

Another direction in steganography is the application of traditional edge detectors. 

The proposed methods in this category of steganography differ in way the sender shares 

the edge information with the receiver. Some methods are cover dependent which means 

both the stego-image and the cover image are needed at the receiver side to recover the 

secret data. Other methods are cover independent; thus only the stego-image is needed at 

the receiver side. 

A) Cover-Dependent Steganography 

This type uses the cover image at the sender side to produce the edge information 

and to identify the edge pixels. Then based on the edge information, more secret bits will 

be embedded in edge areas. However, during the embedding process, the edge‟s 

information will be changed. Therefore, at the receiver side the cover image is needed to 

generate the original edge information and to extract the secret bits correctly. Algorithms 

in [53], [54] are examples of this type. The main disadvantage of this type is the 

inflexibility. Because the cover image is needed at the receiver side, this type will be 

restricted on some predefined cover images or the cover image should be transmitted 

securely every time.  

In [53], the edge image is generated from the cover image using a hybrid edge 

detection mechanism. To increase the number of detected edges, this method uses a 

combination of several edge detection algorithms namely Sobel, Prewitt, Zero crossing, 

Robert, Log and Canny algorithms. Furthermore, the authors use two shared keys for 
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encrypting the secret bits before embedding. The first key is used to encrypt five secret 

bits for each edge pixel, whereas the second key is used to encrypt two secret bits for 

each non-edge pixel. Although, this method embeds more bits in the edge pixels, the 

problem of transmitting the original cover still exists. Moreover, the exchange of the long 

shared keys is another drawback.   

In [54] the authors generate the edge image by utilizing the information from three 

neighboring pixels to identify the smoothness and contrast of the target pixel. The secret 

message bits are embedded in the smooth pixels. This method embeds variable amount of 

secret bits. The mechanism of this method is based on embedding more than two bits, 

since there is a similarity between the message and the LSB of the target pixel. Otherwise 

they embed only two bits. When the embedded data are more than two bits, the 

information about the last occurrence of the embedded data is saved in the three LSB bits 

of the corresponding edge pixel. 

B) Cover-Independent Steganography 

The second steganographic type is characterized by the ability to extract the edge 

information at the receiver side without the need for a cover image. To preserve the same 

edge information at the receiver side, this type of steganography encodes edges 

information and embeds this information with the secret bits into the cover image. The 

receiver side must know the locations of the encoded information and must have the 

ability to decode this information in order to retrieve the edge pixels. After retrieving the 
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edge information, the receiver side can extract the secret bits correctly. Algorithms in 

[55][56] are some examples of this type. 

In [55], the edge image is obtained from the grayscale image using a hybrid edge 

detector. Then the edge image is divided into a set of blocks. Each block consists of n 

pixels; where n must be no greater than nine. But to achieve good image quality, n should 

be less than or equal to five. These n pixels are denoted as P1, P2… Pn. Authors of [55] 

use the first pixel P1 in n-pixel block to store the status of the remaining pixels in that 

block. The status of the remaining pixels is defined as „1‟ if the pixel is an edge pixel. 

Otherwise the status of the pixel is defined as „0‟. The status of the pixels will be stored 

in the LSB bits of P1 using the LSB substitution method. For example, for a block of 

three pixels (P1, P2, and P3), n = 3. Assume P2 is an edge pixel whereas P3 is a smooth 

pixel. To store the status of these pixels in P1, the LSB bits of P1 will be replaced by „10‟. 

The number of secret bits that will be embedded in the block pixels will vary 

depending on the pixel status. If the pixel is located in an edge area, three bits from the 

secret message will be embedded in the LSB of this pixel otherwise, only one secret bit 

will be embedded in the LSB of the smooth pixel. 

Although this method can embed large amount of secret bits, it wastes about quarter 

of the image capacity in indexing the edge and the smooth pixels. The authors of [55] 

recommended using a block of four pixels because increasing the block size will affect 

the image quality. Furthermore, the authors claimed that the embedding of three bits in 

edge pixels and one bit in smooth pixels can preserve acceptable image quality. But using 
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three bits from the first pixel in each block to store the status of the remaining pixels can 

greatly impact the quality since the majority of these pixels will be located in smooth 

areas of the image [4]. Consequently, the capacity and the quality of this method can be 

improved further. This can be achieved by reducing the number of bits that can used to 

identify edges and smooth pixels and by reducing the number of pixels that can be used 

to store the status, this method can be improved even without changing the number of 

embedded bits in edge and smooth pixels as we will show in Section 5.3.1. 
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CHAPTER 4 

THE PROPOSED STEGANOGRAPHIC SYSTEM 

As mentioned before, security, capacity and invisibility are three crucial aspects for 

a good steganographic method. Although PVD has some advantages in terms of 

embedding capacity and PSNR [57] [59], it can be enhanced further. In addition, PVD 

has some drawbacks including: unusual steps in the pixel-pair histogram, inability to 

detect edges in different directions, and insufficient utilization of smooth areas. In this 

chapter, we are going to present a better steganographic system that can achieve good 

steganography aspects including security, capacity and invisibility. Each one of those 

aspects has its own purpose and requirements. Our proposed system is based on three 

main functions: chaotic block rotation, modulus with overlapping, and fuzzy logic. These 

functions mainly aim to improve security, increase embedding payload, and detect edges 

more efficiently, respectively. These components are depicted in Figure 6 and will be 

explained in more details in the following sections. 
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Figure 6. The components of the proposed system. 

4.1. Chaotic Block Rotation 

The objective of the chaotic block rotation function is to increase the security of the 

steganographic system without considerable effect on the image quality or the image 

capacity. It adds another level of security that makes the extraction of the embedded data 

harder for the unauthorized person. Furthermore, block rotation helps to defeat the pixel-

pair difference histogram attack [5] for the original PVD because it breaks the systematic 

way of embedding by randomizing the pixel-pair differences directions as we will discuss 

in Section 5.3.2. The chaotic rotation is based on dividing the image into 2 × 2 blocks and 

rotating the blocks into two different directions. This rotation depends on a stochastic 

sequence that is easy to generate at both the sender and the receiver side. The generation 

of this sequence is performed using a logistic-chaotic map that depends on two 
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parameters: initial condition and control parameter. These two values act as a shared 

stego-key between the sender and the receiver. 

4.1.1. Logistic-Chaotic Map 

The logistic-chaotic map is a simple approach for generating a stochastic sequence 

from a non-linear difference equation based on two parameters: an initial condition, x0, 

and a control parameter, r. Mathematically, it can be expressed as follows: 

1 (1 )n n nx rx x    
4.1 

where n is the state number (time index). The initial state value, x0, is a number in the 

range (0, 1), whereas the control value, r, is a real number and should be in the range 

(3.57, 4) to achieve the maximum randomization. The generated sequence of random 

numbers depends only on these two parameters and hence they should be shared between 

the sender and the receiver to generate the same random sequence. By varying the value of 

the control parameter, the generated sequence is bifurcated and it has been shown that an 

infinite random sequence can be generated when r = 3.599692 [60].  

Due to its relative simplicity, the logistic map is one of the excellent chaos 

mechanisms. It was first popularized by Robert May in 1976 to estimate the population of 

a specific year [60]. It has been previously used in encryption and steganography, but in 

different ways than what we propose here in this thesis. In [61], the authors utilize the 

logistic maps with Chebychev chaotic for image encryption. To increase the immunity to 

attacks, their approach is based on double logistic systems to generate chaotic sequences. 

Utilizing the chaotic theory in [62], the authors hide a secret message after encryption 
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into the spread spectrum of the digital images. To achieve this, they generate three 

different chaotic keys. The first key is for message encryption whereas the second and 

third chaotic keys are used for message modulation and embedding into a cover image, 

respectively. Moreover, in [63] a steganographic method is proposed for embedding data 

into the frequency domain of JPEG images. This approach utilizes the chaotic logistic 

map to shuffle the order of bits in the message. The parameters of the logistic map are 

selected using genetic algorithms to increase the image quality. The secret message is 

embedded into the image frequency coefficients using an adaptive version of the LSB 

method. 

4.1.2. PVD with Chaotic Block Rotation: Embedding  

One of the main PVD drawbacks is the unusual histogram steps as discussed in 

Section 3.1.A. In this part, chaotic rotation will be applied on the original PVD and its 

impact on security will be studied. The embedding procedure for PVD with chaotic block 

rotation is shown in Figure 7. It includes the following steps. First of all, the cover image 

is partitioned into non-overlapping blocks of size 2×2. This is achieved by scanning the 

cover image starting at the upper-left corner. Each block consists of two consecutive non-

overlapping pairs. Then, based on the secret key generated using the logistic chaotic map, 

a rotation direction is selected which can be either left (counter-clockwise) or right 

(clockwise) as illustrated in Figure 8. Changing the direction of the block introduces 

more challenge in tracking embedded bits without the secret key. Moreover, this 

modification helps the original PVD to pass the histogram analysis attack. After rotation, 

the secret message will be embedded in a similar manner to the original PVD algorithm 

as described in Section 3.1. This procedure is repeated till the end of the image. 
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Figure 7. The embedding procedure flowchart. 

 
Figure 8. Block rotations. 
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4.1.3. PVD with Chaotic Block Rotation: Recovery 

At the receiver side, only the control value r and the initial value x0 are needed to 

recover the secret message. The recovery procedure will be similar to embedding but 

using reverse operations. Because of the stochastic nature of the sequence generated by 

the chaotic map that depends only on the initial condition and the control parameter, the 

prediction of the rotation directions will be a challenge. This adds a confusion level that 

makes the relationship between the embedded secret bits and their positions in the image 

pixels complex and unpredictable. Thus, the extraction of the embedded message will be 

more difficult for unauthorized persons. Furthermore, the proposed chaotic block rotation 

improves the histogram of the pixel-pair differences which has been found to be a good 

steganalytic tool for detecting the existence of embedded data. More details and 

experimental results will be discussed in Section 5.3.2. 

4.2. Modulus Overlapping PVD Function  

To further increase the embedding capacity of the pixel-value differencing method, 

we proposed the modulus overlapping pixel-value difference (MOPVD). This method 

utilizes the concepts of pixel-value differencing and overlapping to hide more secret data 

bits in a similar way to OPVD. It uses a sliding window of two pixels and determines the 

amount of secret bits to be embedded based on the difference between the pixels within 

the window. Embedding is then performed in the second pixel only. The window is 

shifted by one pixel; thus the second pixel in the previous window becomes the first pixel 

in the new window. The process is repeated until the end of the cover image. Unlike 
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OPVD, which skips too many pixels during embedding due to the out-of-range problem, 

see Section 3.1.F, the proposed MOPVD overcomes this problem. By adjusting the range 

of the new difference d’ to fall in the same range as d, our method can utilize more 

unused pixels. This adjustment affects only the value of the pixel, but it does not change 

the value of the embedded data. Also the embedding procedure in our method differs 

from the one used in OPVD. OPVD uses LSB for embedding.  However, our method 

embeds by modifying the remainder of the pixel-pair as we will discuss in the following 

Section. This has the advantage of avoiding the LSB security limitations and its noise on 

the stego-image histogram. 

4.2.1. MOPVD with Chaotic Map: Embedding 

To achieve good security against the histogram attack, we can combine the chaotic 

block rotation with the MOPVD method. We call this new method Chaotic MOPVD 

(CMOPVD). The embedding procedure of the proposed CMOPVD method is shown in 

Figure 9, and it can be described by the following steps: 

 Apply the proposed chaotic block rotation. 

 Each pixel-pair in the rotated block is modified separately. Assume the pixel-

pair block Fi has pixels Pix and Piy, the following parameters are calculated:  

the difference
i iy ixd P P  , the width of the range 1i i iw u – l   where ui and li 

are the range upper and lower bounds respectively, the number of secret bits to 

be embedded  2i in log w and its equivalent decimal value is bi, and the block 

remainder 2 in

irem ix iyF ( P P )mod  . 
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 4.2 

where 
1 irem im F b   , 

2 2 in

irem im F b    and '

iyP  is the value of the second 

pixel of the pixel-pair after embedding.  

 Check the new difference of the pixel-pair after the embedding, ' '
iy ixd P P  , 

to ensure that it is in the same range as the old difference d. If they are in 

different ranges, '

iyP is adjusted by adding or subtracting 2 in
. This adjustment 

will return the value of 
'

d to the same range of d without affecting the 

embedded secret bits. 

 After this modification to preserve the same range, only few pixel values may 

fall out of the range (0, 255) which is not a proper gray level, these pixels are 

not used for embedding and they will be marked by moving them to the nearest 

limit of the range (0,255). 
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Figure 9. The embedding process of the CMOPVD method. 
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4.2.2. MOPVD with Chaotic Map: Extraction 

The extraction of the secret bits from the block '
iF is straight forward. After rotating 

the stego-image blocks using the chaotic sequence, the extracted secret bits are the binary 

transformation of the pixel block remainder '
iremF . 

4.3. Fuzzy Edge Detection Function 

In this section, we will discuss the third function of our system which utilizes the 

Fuzzy Template Based (FTB) edge detector to identify the image edges more efficiently 

(For more details about FTB, see Appendix 1). The procedure of this function consists of 

two steps. Firstly, an edge image will be generated using the FTB edge detector. Then the 

edge information and the secret data will be embedded into the cover image to generate 

the stego-image. Similar to [55] which was discussed in Section 3.2.B, the proposed 

method embeds the edge information into the stego image. However, in contrary to [55] 

which stores information about edge and smooth pixels, the proposed method stores only 

information about the edge pixels. The proposed method stores this information in the 

first pixels from every row of the stego image. Storing only edge information will 

decrease the number of used pixels to embed this information. Moreover, to embed the 

secret data in the remaining pixels, the proposed method uses a modified version of 

MOPVD function. Unlike the MOPVD, the modified MOPVD does not use the pixel-pair 

difference to detect the edge pixels. It depends on the edge information from the edge 

image that was generated using FTB edge detector. But similar to the MOPVD, the 
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modified MOPVD embeds the secret using the overlapping pixel concept with modulus. 

The combination of FTB and modified MOPVD functions is denoted as E-MOPVD. 

Similar to other data hiding methods, the proposed E-MOPVD method consists of 

two procedures: embedding and extracting procedures. 

4.3.1 E-MOPVD Embedding Example 

Assume a cover-image of size 512×512 and the corresponding edge image are as 

shown in Figure 10. The locus of the edge pixels in each row will be stored in the first 

few pixels of the cover image of the same row which is also illustrated in Figure 10. 

 

Figure 10. The storing process of edge information. 
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The meanings of the notations used in that figure are as follows: 

 L1: The digits length for the number of edges in the image row. Since the size of 

the image is 512×512, we used only two bits from the LSB of the first pixel from 

each row to represent this variable. 

 NO1: The number of edges in the selected row. Each digit of this number will be 

stored in the LSB of one pixel. The number of used pixels for this part will vary 

from one to three pixels. We used four LSB bits from each pixel to store a single 

digit. 

 LP: The length of digits of the first edge position in the selected row. This length 

will be represented by the LSB of one pixel only. 

 P: The first edge position in the selected row. Each digit will be represented by 

the LSB of one pixel only. 

 Ld1: To identify the next edge position in the same row, the difference (dif1) 

between the first edge position and the second edge position is calculated. Ld1 is 

the length of digits of this difference. We used only the LSB of one pixel for this 

value. 

 d1: The value of the dif1 difference. Depending on the number of digits, the 

number of pixels will be used for embedding this value will vary from one to 

three pixels. 

 Ld2: The length of the digits of the difference (dif2) between the second edge 

position and the third edge position. 
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 d2: The value of the dif2 difference. Depending on the number of digits, the 

number of pixels will be used for embedding this value will vary from one to 

three pixels. 

 

In the case of consecutive edge pixels, the LSBs of the Ld part will be zeros. This means 

that the selected pixel represented a consecutive edge pixel position. Using this 

mechanism, we can represent the consecutive edges by constant overhead which is one 

pixel for each edge. Embedding is then performed for the secret message utilizing the 

edge information and using the MOPVD procedure as follows: 

 Embed three secret bits in the LSB of the first pixel after the pixels that store the 

edge information. 

 This pixel will be the first pixel in the first pixel-pair block which used to store 

the secret bits. Use the edge information to know the status of the pixels in this 

pixel-pair block.  

 Based on the status of the pixels, the number of secret bits will be embedded in 

the second pixel using the modified MOPVD version. The numbers of embedded 

bits are illustrated in Table 1. 

 Then the second pixel of the first block will be the first pixel in the second block. 

Notice that LSB method is only used for one pixel, because the MOPVD procedure starts 

storing information from the second pixel of the pixel block. 
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Table 1. Numbers of embedded bits using the edge detection with MOPVD  

First pixel status Second pixel status Number of secret bits 

Smooth Smooth Three bits 

Smooth Edge Five bits 

Edge Edge Six bits 

   

4.3.2 E-MOPVD Extracting Procedure 

The receiver will read the edge information from the reserved first pixels in every 

row. Then, it reads three secret LSB bits from the first pixel, after that it uses this pixel as 

the first pixel in the pixel-pair and extracts the information using the MOPVD extraction 

mechanism. For example, assume we have 3 edge pixels in the first row. These pixels are 

located in the pixels 70, 75 and 99. Table 2 illustrates the process of storing edge 

information in the image pixels. 

 

Table 2. Storing edge information in image pixels. 

Variable Value Pixels 

L1 1 LSB of P1 

NO1 3 LSB of P2 

LP 2 LSB of P3 

P 7 LSB of P4 

P 0 LSB of P5 

Ld1 1 LSB of P6 

d1 5 LSB of P7 

Ld2 2 LSB of P8 

d2 1 LSB of P9 

d2 4 LSB of P10 
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CHAPTER 5 

EVALUATION AND COMPARISONS 

In this chapter, we will conduct several experiments to evaluate and compare the 

proposed steganographic system with the existing methods in the literature. The 

evaluation and comparison will be in terms of capacity, invisibility and security. 

5.1. Evaluation Criteria 

In order to evaluate and compare the performance of steganographic methods, three 

common evaluation criteria are used. These criteria are payload capacity, invisibility, and 

security of the stego images. 

A)  Payload Capacity 

This measure assesses how much of the secret data can be embedded into the cover 

image without jeopardizing the quality of the cover image. A good steganographic 

method should have high payload capacity. In this study, the payload capacity is 

measured by bits. In addition, we will also count the number of unused pixels to measure 

the wasted capacity of some steganographic methods. 
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B)  Invisibility 

Unlike data encryption, the changes made to the cover image by the embedding 

procedure of the steganographic method should not be observable by human eyes. In 

other words, a good steganographic method should not have any visual artifacts in the 

stego-image. This criterion is also known as imperceptibility. Among the measures that 

are commonly used to assess invisibility are the peak signal-to-noise ratio (PSNR), the 

weighted peak signal-to-noise ratio (WPSNR) and the structural similarity (SSIM) index. 

These measures assess the perceptual distortion caused to the image as a result of the 

embedding process. The higher the values of these measures are, the closer the stego-

image is to the cover image. 

The PSNR between a cover image X and its corresponding stego-image Y is 

calculated from: 

2

10

[max ( )]
( , ) 10 log

( , )

ij ijx
PSNR X Y dB

MSE X Y
   

5.1 

where dB is the decibel unit and MSE(X, Y) is the mean square error which is calculated 

as follows: 

 
21 1

0 0

1 m n

ij ij

i j

MSE( X ,Y ) x y
m n

 

 

 
  

 
  

5.2 

 

where m×n represents the size of each image, and xij  and yij  are the pixels in the cover 

image and stego image at location (i, j). We also computed a special value for PSNR 

assuming the maximum pixel value to be 255 and named it maximum PSNR (denoted as 

MPSNR).  
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The WPSNR improves the classical PSNR by taking into account the human visual 

system (HVS) characteristics. We used the code available at [64] which computes 

WPSNR using the contrast sensitivity function (CSF) to weight spatial frequency of error 

image [65].  

The last quality measure that we have used is a relatively recent measure known as 

structural similarity (SSIM) index [66], [67]. This  new  similarity  metric  focuses on  the  

similarity of structural  information  instead  of the  pixel-based comparison. It is 

computed from: 

  31 2
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5.3 

 

where μX and μY represent the sample means of X and Y, σX and σY represent the sample 

standard deviations of X and Y, and σXY denote the sample cross correlation between X 

and Y after removing their means. The constants C1, C2, and C3 are small positive values 

that stabilize each term to avoid numerical instability caused by near zero sample means, 

variances, or correlations. Similar to the original paper [66], C3 is set to C2/2 to simplify 

the above equation to:  
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C)  Security 

Steganography may be vulnerable to different attacks such as visual attacks and 

histogram attacks. Security criterion is used to assess the robustness of an information 

hiding method against each attack. In experimental work, we will evaluate security of 
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several methods using histogram attacks. We used histogram attacks since almost all of 

the compared methods use the pixel-pair difference concept which affects the histogram 

of the pixel-pair difference as we discussed in Section 3.1.A. The histogram attack 

includes: pixel-pair difference histogram attack, Fourier attack, and image histogram 

attack.  

5.2. Test Images 

Two benchmark image dataset collections are used as cover images in our 

experimental work. The first dataset consists of ten 512×512 gray-level test images: 

Tank, Plane, Elaine, Car, Bridge, Aerial, Boat, Lena, Peppers and Baboon. These images 

are commonly used in many publications on image processing, image compression and 

steganography. Figure 11 illustrates a sample of images from the first dataset. The second 

dataset is the Uncompressed Color Image Database (version 2) (UCID) [68], [69]. It was 

initially created for the purpose of content-based image retrieval and later used in a 

number of papers on steganography and steganalysis such as [70], [71]. It has a total of 

1338 uncompressed TIFF images including indoor and outdoor on a variety of topics 

such as natural scenes and man-made objects. Examples of the images included in this 

dataset are shown in Figure 12. This dataset has a large number of images of different 

sizes. To standardize the size of images and to speed up processing, all images in the 

UCID dataset are resized to 384×512. Then, the images are converted into gray-level and 

saved as bitmap images before the experiments. 
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Figure 11. Sample of the first dataset test images. 

  



56 
 

 

    

    

    

Figure 12. UCID dataset samples. 

5.3. Experimental Work 

In this section, we will discuss the experimental work and results of the proposed 

steganographic system components. The conducted experiments include testing each 

component of the proposed system separately and altogether to evaluate their 

effectiveness. We will also compare the results with several existing steganographic 

methods from the literature. All methods are implemented in MATLAB Release R2010a 

[72]. In all experiments, the same secret message is randomly generated and embedded 

into cover images to generate the stego images. Moreover, the first benchmark image 

dataset will be the main dataset in evaluating the capacity, invisibility and security 

against the histogram attacks. On the other hand, the UCID dataset will be mostly used 
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when comparing the performance of the proposed edge steganographic method with 

different edge detection methods. First of all, we will compare the resulted stego images 

for several methods to prove that these images have no visual artifacts. Then, we will 

calculate the embedding capacity and number of unutilized pixels to evaluate the capacity 

performance. The PSNR, MPSNR, WPSNR and SSIM will be used as the quality 

performance measures. Moreover, in our experiments we will apply the histogram attacks 

to evaluate the security of the steganographic methods.  

5.3.1. Capacity and Invisibility Evaluation 

In this section, we report the results of several experimental tests to evaluate and 

compare the capacity and invisibility of the proposed system functions (MOPVD, 

CMOPVD, and E-MOPVD). There are three parts. In the first part, we compare the 

capacity and invisibility of the proposed system functions with existing methods (PVD, 

OPVD, Modulus PVD, MPD, PVD+LSB, Side-Match, and Tri-way PVD). The second 

part discusses the effect of different parameters of the proposed system on capacity and 

security of this system. The third part compares the proposed E-MOPVD with the HP 

method in [55] under the same conditions.  

A) Capacity and Invisibility Comparison 

Figure 13 compares the cover images and the stego-images for several 

steganographic methods. It is observed that there are no obvious visual artifacts found in 

the stego-images. Therefore, the stego-images cannot be identified easily by human eyes.   
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Cover image (Peppers) Cover image (Boat) 

  
PVD stego images 

  
OPVD stego images 

Figure 13. Visual comparision of cover and stego images (peppers and boat images). 
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Modulus PVD stego images 

  
MPD stego images 

  
PVD+LSB stego images 

Figure 13 (Cont.). Visual comparision of cover and stego images (peppers and boat images). 
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Side-Match stego images 

  
Tri-way PVD stego images 

  
MOPVD stego images 

Figure 13 (Cont.). Visual comparision of cover and stego images (peppers and boat images). 
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CMOPVD stego images 

  
E-MOPVD stego images 

  
E-MOPVD with rotation stego images 

Figure 13 (Cont.). Visual comparision of cover and stego images (peppers and boat images). 
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Table 3 shows the capacity comparison in bits for several steganographic methods 

using the first image dataset described in Section 5.2. The average embedding capacities 

are shown in Figure 14. It can be noticed from this figure that the PVD and the modulus 

methods have the lowest embedding capacities. We can also notice that the proposed 

CMOPVD and MOPVD methods have comparably high embedding capacities. These 

results are due to the utilization of each pixel individually in the embedding process and 

due to the reduction of the number of unutilized pixels. On the other hand, the proposed 

E-MOPVD has less embedding capacity than the MOPVD due to the utilization of some 

pixels for storing the edge information. Although its capacity is a bit lower than 

PVD+LSB, the latter method has similar characteristics to the LSB more than the PVD 

characteristics as explained in Section 3.1.B. This can be demonstrated through Figure 

15, where the number of LSB operations is much more than the number of PVD 

operations in the PVD+LSB method. Since most of the image areas are smooth, the 

pixel-pair difference is small. Consequently, the number of LSB operations is very high 

in the PVD+LSB.  
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Table 3. Comparing the capacity for different methods 

Images 
Methods 

Modulus MPD OPVD PVD+LSB PVD Tri-way Side-Match MOPVD CMOPVD E- MOPVD 

Tank 403990 577224 569546 777582 403990 601090 484284 810471 829009 756676 

Plane 397911 416953 691264 784441 397904 592366 323841 794828 799570 769262 

Elaine 408594 597740 540597 773285 408582 601665 530462 820296 836900 765016 

Car 400521 576218 599239 779871 400504 601874 453488 801871 830299 739924 

Bridge 446618 613575 507228 755148 442290 625310 654123 884191 922234 738624 

Aerial 432439 648951 558191 766311 430783 614761 551471 863764 906991 740942 

Boat 421083 613182 549603 770337 419317 607517 525530 844988 853903 757362 

Lena 409810 578463 590087 776078 409804 600087 428690 820123 833076 763429 

Peppers 407643 585548 587361 778277 402552 599329 455900 810493 824475 753921 

Baboon 457105 723909 477795 751735 456867 627616 725997 920830 981513 730115 
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Figure 14. The average capacities of methods using the first image dataset. 

 

 

 

 

Figure 15. The number of LSB and PVD operations in PVD+LSB method. 
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In the following test, we will compare the number of unused pixels in the proposed 

MOPVD and CMOPVD with the OPVD method. The first dataset is used in this test. 

Figure 16 shows that the proposed MOPVD with and without block rotation can reduce 

the problem of unused pixels in the OPVD method significantly. Because of the large 

variation between the numbers, the scale in Figure 16 is changed to logarithmic scale. 

 

 
Figure 16.  Number of unused pixels for the OPVD, MOPVD and CMOPVD.  
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the sego image. Despite the proposed E-MOPVD and MOPVD has the same PSNR, the 

E-MOPVD improved the WPSNR more than the MOPVD. The WPSNR takes into 

account the human visual sensitivity system. Therefore, the proposed E-MOPVD 

improves invisibility of the MOPVD stego-image. Figure 18 shows a trade-off between 

average capacity and average PSNR for steganographic methods. We can notice that one 

of the proposed methods (namely CMOPVD) has the highest average embedding 

capacity but the lowest average PSNR (yet it is still higher than 30dB). In addition, it has 

good security characteristics due to the chaotic block rotation, as it will be shown later in 

the next section.  

We also computed the SSIM measure for the ten methods for the ten test images 

and the results are shown in Table 7 and the corresponding trade-off curve between the 

average SSIM and average capacity is shown in Figure 19. We can notice that the 

proposed methods have higher average capacities with a slight degradation in the SSIM 

which would not be clear to the human eye.   
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Table 4. Comparing the PSNR for different methods. 

Images 
Methods 

Modulus MPD OPVD PVD+LSB PVD Tri-way Side-Match MOPVD CMOPVD E- MOPVD 

Tank 43.99 37.08 37.97 36.38 41.22 37.07 38.74 35.64 34.72 35.64 

Plane 45.03 39.75 37.95 37.38 42.00 39.09 41.52 38.07 36.79 38.07 

Elaine 44.41 37.42 38.96 37.11 41.49 37.72 38.36 37.57 34.69 37.57 

Car 45.44 38.16 38.93 37.45 42.68 38.06 40.39 36.89 35.63 36.89 

Bridge 41.00 33.15 37.21 36.83 37.67 35.77 34.03 36.81 30.18 36.81 

Aerial 41.54 33.01 37.05 36.86 38.45 36.35 34.76 36.23 29.93 36.23 

Boat 42.06 35.58 37.94 37.07 39.50 36.67 37.24 36.04 32.65 36.04 

Lena 43.63 37.24 37.99 37.11 40.78 37.75 39.23 36.32 33.94 36.32 

Peppers 42.68 35.74 37.65 36.55 40.53 36.54 37.96 36.51 33.26 36.51 

Baboon 39.28 29.90 35.53 35.39 36.07 34.06 31.06 35.80 27.18 35.80 
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Table 5. Comparing the MPSNR for different methods. 

Images 
Methods 

Modulus MPD OPVD PVD+LSB PVD Tri-way Side-Match MOPVD CMOPVD E-MOPVD 

Tank 45.15 38.24 39.13 37.54 42.38 38.24 39.90 37.55 35.88 36.81 

Plane 45.20 39.92 38.12 37.55 42.17 39.26 41.70 38.31 36.96 38.24 

Elaine 44.83 37.84 39.38 37.52 41.91 38.14 38.78 36.85 35.11 37.98 

Car 45.61 38.33 39.10 37.63 42.85 38.24 40.56 38.53 35.80 37.06 

Bridge 41.00 33.15 37.21 36.83 37.67 35.77 34.03 32.03 30.18 36.81 

Aerial 41.54 33.01 37.05 36.86 38.45 36.35 34.76 32.72 29.93 36.23 

Boat 42.06 35.58 37.94 37.07 39.50 36.67 37.24 33.31 32.65 36.04 

Lena 43.97 37.58 38.34 37.46 41.13 38.10 39.58 35.97 34.28 36.66 

Peppers 43.62 36.67 38.58 37.48 41.47 37.47 38.89 36.01 34.19 37.45 

Baboon 40.17 30.80 36.43 36.29 36.97 34.96 31.96 30.82 28.08 36.70 
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Table 6. Comparing the WPSNR for different methods. 

Images 
Methods 

Modulus MPD OPVD PVD+LSB PVD Tri-way Side-Match MOPVD CMOPVD E-MOPVD 

Tank 39.12 30.67 38.53 44.18 38.42 38.90 31.28 31.07 31.07 38.37 

Plane 38.29 45.82 50.00 35.69 38.50 52.73 46.08 48.14 44.74 51.36 

Elaine 35.07 37.24 45.38 42.36 57.12 36.44 37.51 36.99 36.96 36.43 

Car 37.04 40.83 47.57 51.16 51.94 36.44 39.51 51.31 37.81 47.59 

Bridge 53.56 53.63 51.48 52.16 58.98 51.10 48.82 47.52 45.67 50.86 

Aerial 50.70 41.49 42.23 49.68 44.18 40.86 40.61 40.96 40.43 41.62 

Boat 54.73 56.13 52.56 52.97 60.97 51.71 51.63 48.55 48.08 50.52 

Lena 44.30 36.13 30.45 36.39 35.21 43.98 31.95 32.54 32.53 33.38 

Peppers 37.68 31.60 49.12 49.43 40.12 31.63 31.74 31.48 31.48 33.83 

Baboon 50.98 30.90 50.43 41.73 45.81 33.56 31.01 30.73 30.65 46.80 

 



70 
 

 

 

 

Figure 17. Average of PSNR, MPSNR and WPSNR. 
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Figure 18. Comparing the average PSNR with the average capacity. 
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Table 7.  Comparing the SSIM for different methods. 

Images 
Methods 

Modulus MPD OPVD PVD+LSB PVD Tri-way Side-Match MOPVD CMOPVD E- MOPVD 

Tank 0.990 0.959 0.957 0.938 0.981 0.950 0.976 0.953 0.940 0.935 

Plane 0.982 0.961 0.905 0.891 0.962 0.921 0.984 0.933 0.928 0.913 

Elaine 0.990 0.955 0.957 0.936 0.980 0.949 0.968 0.947 0.934 0.949 

Car 0.990 0.960 0.954 0.939 0.982 0.952 0.981 0.959 0.942 0.935 

Bridge 0.993 0.968 0.978 0.972 0.985 0.971 0.974 0.957 0.939 0.967 

Aerial 0.992 0.963 0.968 0.960 0.985 0.967 0.982 0.960 0.939 0.953 

Boat 0.990 0.959 0.959 0.942 0.981 0.953 0.977 0.947 0.942 0.940 

Lena 0.988 0.955 0.942 0.925 0.977 0.943 0.983 0.948 0.937 0.921 

Peppers 0.988 0.954 0.944 0.925 0.978 0.942 0.978 0.949 0.938 0.932 

Baboon 0.993 0.959 0.978 0.970 0.987 0.971 0.971 0.956 0.931 0.975 
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Figure 19. Comparing the average SSIM with the average capacity. 
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B) Impact of Chaotic Map  

Here, we study the effect of the proposed chaotic block rotation component 

individually. We will apply this component to the original PVD. This component uses the 

logistic chaotic map to rotate each image block either clockwise or anti-clockwise as we 

discussed it in Section 4.1.1. Furthermore, we consider two sets of ranges for the PVD: 

{8, 8, 16, 32, 64, 128} and {2, 2, 4, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64}, which have been 

used in the original PVD. The results in Tables 8 and 9 illustrate that changing the control 

value r does not affect the embedding capacity and the image quality. It only increases 

the variation in the block rotation which adds more complications in the secret extraction 

to the attackers. Moreover, the embedding capacity and the PSNR for the original PVD 

and the PVD with chaotic block rotation are almost the same. Only the changes in those 

values in Tables 8 and 9 come from the selection of different edges because of rotation. 

Table 10 illustrates the results of the same test, but when using the second set of ranges 

and full capacity. 

 

Table 8. Capacity of PVD and modified PVD using first range set. 

r=3.9 

x0=0.9 

Original PVD Modified PVD  

Capacity 

(bits) 

PSNR 

(dB) 

Capacity  PSNR 

bits 
%relative 

change 
dB 

%relative 

change 

Baboon 456867 36.94 477556 4.53% 35.08 −5.03% 

Lena 409804 41.11 402605 −1.76% 42.29 2.87% 

Peppers 402552 41.55 402244 −0.08% 41.67 0.29% 
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Table 9. Capacity of PVD and modified PVD with different chaotic parameters. 

r=3.59 

x0=0.9 

Original PVD Modified PVD  

Capacity 

(bits) 

PSNR 

(dB) 

Capacity  PSNR 

bits 
%relative 

change 
dB 

%relative 

change 

Baboon 456867 36.94 477556 4.53% 35.09 −5% 

Lena 409804 41.11 402605 −1.76% 42.34 2.99% 

Peppers 402552 41.55 402244 −0.08% 41.70 0.36% 

 

Table 10. Capacity of PVD and modified PVD using the second range set. 

r=3.9 

x0=0.9 

Original PVD Modified PVD  

Capacity 

(bits) 

PSNR 

(dB) 

Capacity  PSNR 

bits 
%relative 

change 
dB 

%relative 

change 

Baboon 297442 43.29 322883 8.55% 40.95 −5.41% 

Lena 213626 47.87 196209 −8.15% 49.57 3.55% 

Peppers 214997 47.98 211611 −1.57% 47.83 −0.31% 

 

We also study the effect of adding the chaotic block rotation to the proposed edge 

detection steganography. We will use the abbreviation E-CMOPVD for the proposed E-

MOPVD with chaotic block rotation. The evaluation of the capacity and quality of this 

method is as shown in Tables 11; for the ease of reference we also added the performance 

of E-MOPVD to clearly see the impact (though, these metrics have been mentioned 

before). The table also shows the number of pixels used to store edge information and the 

number of out of range cases. It can be seen that the block rotation component does not 

significantly affect the capacity or the quality of the stego images.  
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Table 11. Performance of E-CMOPVD as compared to E-MOPVD. 

Images 

EMOPVD E-CMOPVD 

Capacity MPSNR PSNR WPSNR 
Pixels for 

edge info 

Out 

range 

cases 

Capacity MPSNR PSNR WPSNR 
Pixels for 

edge info 

Out 

range 

cases 

Tank 756676 36.81 35.64 38.37 20471 1 758477 36.90 35.73 42.79 19274 0 

Plane 769262 38.24 38.07 51.36 11137 0 769482 38.03 37.85 50.68 11490 2 

Elaine 765016 37.98 37.57 36.43 13210 6 764162 37.70 37.28 36.41 14281 13 

Car 739924 37.06 36.89 47.59 25972 15 744874 37.05 36.87 50.28 23801 23 

Bridge 738624 36.81 36.81 50.86 24624 1817 743264 37.10 37.10 51.17 22202 1673 

Aerial 740942 36.23 36.23 41.62 28217 521 745898 36.34 36.34 43.76 25944 289 

Boat 757362 36.04 36.04 50.52 21359 36 756141 36.51 36.51 50.88 21097 31 

Lena 763429 36.66 36.32 33.38 17423 2 762367 36.67 36.32 34.29 18140 0 

Peppers 753921 37.45 36.51 33.83 16616 1286 753047 37.26 36.32 32.34 17603 1291 

Baboon 730115 36.70 35.80 46.80 30603 94 742260 37.03 36.14 45.72 24404 48 
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C) Effectiveness of the Proposed Edge Detection   

Finally, we evaluate the proposed edge steganography and compare it with the high 

payload (HP) method [55] which uses the same traditional edge detection mechanism. To 

demonstrate that our method is much better than the one in [55], we evaluate both 

methods under the same embedding criteria and compare them using different edge 

detection mechanisms in terms of average embedding capacity and average PSNR. Our 

method is modified to embed only one bit in the LSB of the smooth pixel whereas three 

bits are embedded in the LSB of the edge pixel, which is the same number of embedded 

bits used by [55]. The UCID image dataset [69] is used in this experiment. Figures 20 and 

21 show various comparisons. Obviously, the proposed method has achieved higher 

performance measures (both capacity and PSNR).  

 

 

Figure 20. Comparing the capacity of HP and edge detection methods. 
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Figure 21. Comparing average PSNR of the HP and edge detection methods. 
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(a) Histogram of original images  

   

(b) Histogram of PVD stego images 

   

(c) Histogram of OPVD stego images 

   

(d) Histogram of Modulus PVD stego images 

Figure 22. Image histogram test (aerial, baboon and peppers images from left to right). 
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(e) Histogram of MPD stego images 

   

(f) Histogram of PVD+LSB stego images 

   

(g) Histogram of Side-Match stego images 

   

(h) Histogram of Tri-way PVD stego images 

Figure 22 (Cont.). Image histogram test (aerial, baboon and peppers images from left to right). 
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(i) Histogram of MOPVD stego images 

   

(j) Histogram of CMOPVD stego images 
 

Figure 22 (Cont.). Image histogram test (aerial, baboon and peppers images from left to right). 

 

 

Since PVD+LSB and the OPVD methods mainly embed the secret data using 

simple LSB, we can notice the clear impact of the LSB method in the image histogram, 
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not have remarkable distortion on the stego-image histogram as illustrated in Figure 22 (i 

and j).  We also applied the pixel-pair difference histogram test on the stego-images. In 

this test, only the pixel-pair difference are calculated and drawn. Figure 23 shows the 

results for the different methods. From Figure 23 (j), we can observe that block rotation 

with MOPVD successfully removes the unusual steps from the pixel-pair difference 
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E-MOPVD method, even without rotation, successfully passes the pixel-pair histogram 

attack as shown in Figure 23 (k), and (l). 

   

(a) original images  

   

(b) PVD 

   

(c) OPVD 

 

   

(d) Modulus PVD 

 

Figure 23. Pixel-pair difference histogram (aerial, baboon and peppers images from left to 

right). 
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(e) MPD 

   

(f) PVD+LSB 

   

(g) Side-Match 

   

(h) Tri-way PVD 
 

Figure 23 (Cont.). Pixel-pair difference histogram (aerial, baboon and peppers images from 

left to right). 
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(i) MOPVD 

   

(j) CMOPVD 

 

 

   

(k) E-MOPVD  

   

(l) E-CMOPVD  

Figure 23 (Cont.). Pixel-pair difference histogram (aerial, baboon and peppers images from 

left to right). 
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Finally, we applied the fast Fourier transform steganalysis [5] on different methods 

by drawing the logarithmic value of the absolute discrete Fourier transform coefficients 

of the pixel-pair difference histograms before and after embedding. To calculate this, we 

used the following equation.  

21

0
log

k
i nN

N
k nn

F abs f e




  
   

   
  5.5 

where N is the number of the image pixel-pairs, fn is the pixel-pair difference. 

Figure 24 shows the results of this experiment for different methods for the ten test 

images in the first dataset. From this figure, we can notice a pattern in the form of 

successive peaks for the stego-images resulting from the PVD, OPVD and Tri-way PVD 

methods. However, for other methods this pattern doesn‟t appear clearly for most of the 

tested images. For instance, it disappears in the baboon stego-image histogram for our 

proposed CMOPVD method, whereas it appears in the car stego-image histogram for the 

same method. 
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PVD (Tank) PVD (Plane) 

  
PVD (Elaine) PVD (Car) 

  
PVD (Bridge) PVD (Aerial) 

  
PVD (Boat) PVD (Lena) 

  
PVD (Peppers) PVD (Baboon) 

Figure 24. Fourier transform of stego-images for different methods. 
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OPVD (Tank) OPVD (Plane) 

  
OPVD (Elaine) OPVD (Car) 

  
OPVD (Bridge) OPVD (Aerial) 

  
OPVD (Boat) OPVD (Lena) 

  
OPVD (Peppers) OPVD (Baboon) 

Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Modulus PVD (Tank) Modulus PVD (Plane) 

  
Modulus PVD (Elaine) Modulus PVD (Car) 

  
Modulus PVD (Bridge) Modulus PVD (Aerial) 

  
Modulus PVD (Boat) Modulus PVD (Lena) 

  
Modulus PVD (Peppers) Modulus PVD (Baboon) 

Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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Figure 24 (Cont.). Fourier transform of stego-images for different methods. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

Data transmission in open access environments, such the Internet, has raised several 

security issues. Steganography has been one of the effective methodologies for concealing the 

existence of secret data by hiding it in a cover medium or carrier. In this work, we reviewed and 

discussed several existing spatial domain approaches for digital image steganography based on 

pixel-value differencing including PVD method and six other related methods. We conducted 

several experiments to evaluate their performance in terms of embedding capacity, quality, and 

security. We used PSNR, MPSNR, WPSNR and SSIM as performance measures for image 

quality. For security, we considered their resistance to a number of steganalytic attacks including 

image histogram, pixel-pair difference histogram and fast Fourier transform spectrum. Based on 

our analysis, observations and understanding of how pixel-value differencing methods operate, 

we then proposed a new steganographic system composed mainly of three components that can 

be used separately or combined together to have more flexibility. These components are rotation 

based on chaotic maps, modulus overlapping of pixel-value differencing and fuzzy edge 

detection mechanism. Each component in this system has its own specific strength.  

The rotation component increases the security of pixel-value differencing steganography by 

randomly changing the order of computing the pixel-pair difference. It divides the cover image 

into 2×2 blocks which are then rotated clockwise or counter-clockwise based on the sequence 

generated by a chaotic map. Because of the stochastic nature of the sequence generated by the 

chaotic map that depends only on the initial condition and the control parameter, the prediction 
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of the rotations will be a challenge. This will make the extraction of the embedded message 

without knowing the chaotic map parameters a difficult chore. Also it improves the histogram of 

the pixel-pair differences which has been found to be a good steganalytic tool for detecting the 

existence of data embedded by the PVD method. 

The second component, which is the modulus overlapping of pixel-value differencing, 

increases the embedding capacity. It modifies the remainder of the pixel-pair blocks of the cover 

image to be equal to the secret data that will be embedded in this pixel pair. Then, this 

component uses the second pixel of the first block as the first pixel of the second block. This 

leads to utilizing each pixel individually for embedding the secret data. 

The third part of our system depends on the fuzzy edge detection algorithm. Unlike the 

PVD method which identifies only vertical edges, the fuzzy edge detection algorithm detects 

edges in various directions and generates an edge image. Since the number of edge pixels is 

much less than the number of the smooth pixels, the proposed method hides edge information in 

the stego-image in addition to the secret message. Consequently, the receiver only requires the 

stego-image to extract the message.  

The experimental results show that the proposed system increases the embedding capacity, 

and the security while preserving a good quality for the stego-image with more than 30dB 

WPSNR. Some methods such as the proposed MOPVD has increased the average capacity by a 

factor of 2 more than the original PVD, around 8% over PVD+LSB, more than 47% over OPVD 

(with a slight degradation in the average PSNR). Moreover, comparing with the HP method, the 

proposed E-MOPVD has around 23.27% greater average capacity and around 9.21% greater 

average PSNR than the HP method under the same conditions. We have also found that the 

security of the proposed system is excellent against the histogram attacks comparing to almost all 
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surveyed methods. For instance, using chaotic rotation in the proposed system significantly 

reduced the unusual steps in the pixel-pair difference histogram.  

Future Work 

As future work, we are planning to enhance the proposed steganographic system further. 

We plan to make the number of embedded bits more adaptive. This can be achieved by 

calculating the edge strength percentage to identify the number of secret bits which can be 

embedded in edge pixels. Storing information about edges in the first columns of the image still 

affects the quality and should be examined further to develop more effective approaches.  
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APPENDIX 1: FUZZY TEMPLATE BASED EDGE DETECTOR 

 

In this appendix, we explain the details of the Fuzzy Template Based (FTB) edge detector. This 

method has been proposed by Chaira and Ray [51], [52] [73] to identify edge directions using a 

set of 16 fuzzy templates; each template is 3×3 matrix representing the edge profile in one 

direction. Figure 25 shows the adopted 16 fuzzy templates in FTB where the values of the 

parameters a and b are arbitrarily chosen to ensure good edge detection; the inventors of the 

method suggested a = 0.3 and b = 0.8 [73]. To detect edges, the image is initially normalized, i.e. 

each pixel is divided by the maximum gray level value of the image; thus each pixel value 

becomes a real value between 0 and 1. Then, each template is located at each pixel position in 

the image and a fuzzy similarity measure is calculated between the template elements and the 

image pixels where the template is located. Assume two elements are denoted aij and bij (where 

aij represents an image pixel and bij represents the corresponding element in a template r), a 

divergence measure is calculated as follows: 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) (1 )2 1 I ij ij r ij I ijr

r ij ij

a b b a

I ij r ij r ij I ijDiv a , b eab b ae
   

   
 

              (A.1) 

where    and iI rj ija b   represent the membership values of the (i,j)
th

 pixel of the normalized 

image I and the corresponding element in the fuzzy template r. Using the following max-min 

measure, a fuzzy value is calculated for the position (i,j) in the image : 

   
1 16 ,{ ,..., }

, max min ( , )r ij ij
i jr m m

Div i j Div a b


 
  

 
(A.2) 
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If Div (i,j) is greater than a certain threshold, this pixel (i,j) is an edge pixel and is assigned 1 in 

the edge image otherwise it becomes 0. At the end the morphological thinning approach 

implemented in Matlab image processing toolbox is applied to the binary edge image [72]. The 

flowchart of the FTB procedure for edge detection is shown in Figure 26. 
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Figure 25. The FTB sixteen fuzzy templates of size 3×3. 
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Figure 26. Fuzzy Template Based (FTB) edge detector flowchart. 
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APPENDIX 2: PUBLISHED PAPERS 

 

 

1. El-Alfy, E.-S. M. and Al-Sadi, A. “A More Effective Steganographic Approach for Color 

Images by Combining Simple Methods,” The 7th International Computing Conference in 

Arabic, ICCA 2011, Riyadh, Saudi Arabia, May 2011. (in Arabic) 

2. El-Alfy, E.-S. M. and Al-Sadi, A. “A Comparative Study of PVD-Based Schemes for 

Data Hiding in Digital Images,” The 9th ACS/IEEE International Conference on 

Computer Systems and Applications, (AICCSA 2011), Sharm El-Sheikh, Egypt, June 

2011. 

3. Al-Sadi, A. A. and El-Alfy, E.-S. M., “An Adaptive Steganographic Method for Color 

Images Based on LSB Substitution and Pixel Value Differencing,” The International 

Conference on Advances in Computing and Communications (AC 2011), Kochi Kerala, 

India, July 2011. 

4. El-Alfy, E.-S. M. and Al-Sadi, A. “Pixel-Value Differencing Steganography: Attacks and 

Improvements,” in Proceedings of the First Taibah University International Conference 

on Computing and Information Technology, (ICCIT2012), Al-Madinah Al-Munawwarah, 

Saudi Arabia, March 2012. 

5. El-Alfy, E.-S. M. and Al-Sadi, A. “Pixel Improved Pixel Value Differencing 

Steganography Using Logistic Chaotic Maps,” in Proceedings of the 8th International 

Conference on Innovations in Information Technology, (IIT2012), Al Ain, UAE, March 

2012. 

6. El-Alfy, E.-S. M. and Al-Sadi, A. “High-Capacity Image Steganography Based on 

Overlapped Pixel Differences and Modulus Function,” in Proceedings of the Fourth 

International Conference on Networked Digital Technologies, (NDT2012), Dubai, UAE, 

April  2012. 

7. Al-Sadi A. and El-Alfy, E.-S. M. “Security Improvement of PVD Steganographic 

Method against Histogram Attack,” Third Scientific Conference for Graduate and 

Undergraduate Students, Khobar, April/May 2012. 

8. Al-Sadi A. and El-Alfy, E.-S. M. “High-Capacity Steganographic Method Based on 

Overlapped PVD,” Third Scientific Conference for Graduate and Undergraduate Students, 

Khobar, April/May 2012. 
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APPENDIX 3: LIST OF ABBREVIATIONS 

 

 

CMOPVD Chaotic MOPVD 

DCT Discrete Cosine Transform 

E-CMOPVD E-MOPVD with chaotic block rotation 

E-MOPVD A combination of FTB and modified MOPVD functions 

FTB Fuzzy Template Based )edge detector( 

HP High Payload Method 

HVS Human Visual System 

LSB Least Significant Bit 

Modulus-PVD PVD with Modulus Function 

MOPVD Modulus Overlapping Pixel-Value Differencing 

MPD Multi-Pixel Differencing  

MPSNR Maximum Peak Signal-to-Noise Ratio 

OPVD Overlapping Pixel-Value Differencing 

PSNR Peak Signal-to-Noise Ratio 

PVD Pixel-Value Differencing 

PVD+LSB A combination of the PVD and LSB replacement methods 

SMVQ Two-sided-match vector quantization 

SSIM Structural Similarity Index 

TPVD Tri-way PVD Method 

WPSNR Weighted Peak Signal-to-Noise Ratio 
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