9,382 research outputs found

    STUDY OF FULLY-INTEGRATED LOW-DROPOUT REGULATORS

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the introduction of fully-integrated low-dropout regulators (LDOs). Recently, for the mobile and internet-of-things applications, the level of integration is getting higher. LDOs get popular in integrated circuit design including functions such as reducing switching ripples from high-efficiency regulators, cancelling spurs from other loads, and giving different supply voltages to loads. In accordance with load applications, choosing proper LDOs is important. LDOs can be classified by the types of power MOSEFT, the topologies of error amplifier, and the locations of dominant pole. Analog loads such as voltage-controlled oscillators and analog-to-digital converters need LDOs that have high power-supply-rejection-ratio (PSRR), high accuracy, and low noise. Digital loads such as DRAM and CPU need fast transient response, a wide range of load current providable LDOs. As an example, we present the design procedure of a fully-integrated LDO that obtains the desired PSRR. In analog LDOs, we discuss advanced techniques such as local positive feedback loop and zero path that can improve stability and PSRR performance. In digital LDOs, the techniques to improve transient response are introduced. In analog-digital hybrid LDOs, to achieve both fast transient and high PSRR performance in a fully-integrated chip, how to optimally combine analog and digital LDOs is considered based on the characteristics of each LDO type. The future work is extracted from the considerations and limitations of conventional techniques.clos

    Temperature Regulation in Multicore Processors Using Adjustable-Gain Integral Controllers

    Full text link
    This paper considers the problem of temperature regulation in multicore processors by dynamic voltage-frequency scaling. We propose a feedback law that is based on an integral controller with adjustable gain, designed for fast tracking convergence in the face of model uncertainties, time-varying plants, and tight computing-timing constraints. Moreover, unlike prior works we consider a nonlinear, time-varying plant model that trades off precision for simple and efficient on-line computations. Cycle-level, full system simulator implementation and evaluation illustrates fast and accurate tracking of given temperature reference values, and compares favorably with fixed-gain controllers.Comment: 8 pages, 6 figures, IEEE Conference on Control Applications 2015, Accepted Versio

    FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

    Get PDF
    A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of 433.80 μV/mA and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of 1 μs. The total current consumption is 17.88 μA (for a 0.9 V supply voltage).Ministerio de Economía y Competitividad TEC2015-71072-C3-3-RConsejería de Economía, Innovación y Ciencia. Junta de Andalucía P12-TIC-186

    Variation Resilient Adaptive Controller for Subthreshold Circuits

    No full text
    Subthreshold logic is showing good promise as a viable ultra-low-power circuit design technique for power-limited applications. For this design technique to gain widespread adoption, one of the most pressing concerns is how to improve the robustness of subthreshold logic to process and temperature variations. We propose a variation resilient adaptive controller for subthreshold circuits with the following novel features: new sensor based on time-to-digital converter for capturing the variations accurately as digital signatures, and an all-digital DC-DC converter incorporating the sensor capable of generating an operating operating Vdd from 0V to 1.2V with a resolution of 18.75mV, suitable for subthreshold circuit operation. The benefits of the proposed controller is reflected with energy improvement of up to 55% compared to when no controller is employed. The detailed implementation and validation of the proposed controller is discussed

    Switched Capacitor DC-DC Converter for Miniaturised Wearable Systems

    Get PDF
    Motivated by the demands of the integrated power system in the modern wearable electronics, this paper presents a new method of inductor-less switched-capacitor (SC) based DC-DC converter designed to produce two simultaneous boost and buck outputs by using a 4-phases logic switch mode regulation. While the existing SC converters missing their reconfigurability during needed spontaneous multi-outputs at the load ends, this work overcomes this limitation by being able to reconfigure higher gain mode at dual outputs. From an input voltage of 2.5 V, the proposed converter achieves step-up and step-down voltage conversions of 3.74 V and 1.233 V for Normal mode, and 4.872 V and 2.48 V for High mode, with the ripple variation of 20–60 mV. The proposed converter has been designed in a standard 0.35 μm CMOS technology and with conversion efficiencies up to 97–98% is in agreement with state-of-the-art SC converter designs. It produces the maximum load currents of 0.21 mA and 0.37 mA for Normal and High modes respectively. Due to the flexible gain accessibility and fast response time with only two clock cycles required for steady state outputs, this converter can be applicable for multi-function wearable devices, comprised of various integrated electronic modules

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc
    corecore