906 research outputs found

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Towards Scalable Beaconing in VANETs

    Get PDF
    Beaconing is envisioned to build a cooperative awareness in future intelligent vehicles, from which many ITS applications can draw their inputs. The problem of scalability has received ample attention over the past years and is primarily approached using power control methods. We reason power control alone will not be sufficient if we are to meet application requirements; the rate at which beacons are generated must also be controlled. Ultimately, adaptive approaches based on actual channel and traffic state can tune MAC and beaconing properties to optimal values in the dynamic VANET environment

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Game-theoretical design of an adaptive distributed dissemination protocol for VANETs

    Get PDF
    Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposalsPeer ReviewedPostprint (published version
    • …
    corecore