147 research outputs found

    The Multi Crane Scheduling Problem: A Comparison Between Genetic Algorithm and Neural Network Approaches based on Simulation Modeling

    Get PDF
    The internal logistics for warehouses of many industrial applications, based on the movement of heavy goods, is commonly solved by the installment of a multi-crane system. The job scheduling of a multi-crane system is an interesting problem of optimization, solved in many ways in the past. This paper describes a comparison between the optimization by the use of Genetic Algorithms (GA) and introduce a framework for the solution of the problem using machine learning driven by Neural Networks (NN). Even though this last approach is not implemented in this paper, performances very close to GA ones are expected with NN. A case-study for steel coil production is proposed as a test frame for two different simulation software tools, one based on a heuristic solution and one on machine learning; performances and data achieved from reviews and simulations are compared

    Supervisory-plus-regulatory control design for efficient operation of industrial furnaces

    Get PDF
    A two-level system engineering design approach to integrated control and supervision of industrial multi-zone furnaces has been elaborated and tested. The application case study is the three-zone 25 MW RZS furnace plant at Skopje Steelworks. The integrated control and supervision design is based on combined use of general predictive control optimization of set-points and steady-state decoupling,at the upper level, and classical two-term laws with stady-state decouling, at the executive control level. This design technique exploits the intrinsic stability of thermal processes and makes use of constrained optimization, standard non-parametric time-domain process models, identified under operating conditions, using truncated k-time sequence matrices, controlled autoregressive moving average models. Digital implementations are sought within standard computer process control platform for practical engineering and maintenance reasons

    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy

    Get PDF
    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy, Zagreb, Croatia, March 22-23, 2022. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy

    Get PDF
    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy, Zagreb, Croatia, March 22-23, 2022. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    A Novel Black Box Process Quality Optimization Approach based on Hit Rate

    Full text link
    Hit rate is a key performance metric in predicting process product quality in integrated industrial processes. It represents the percentage of products accepted by downstream processes within a controlled range of quality. However, optimizing hit rate is a non-convex and challenging problem. To address this issue, we propose a data-driven quasi-convex approach that combines factorial hidden Markov models, multitask elastic net, and quasi-convex optimization. Our approach converts the original non-convex problem into a set of convex feasible problems, achieving an optimal hit rate. We verify the convex optimization property and quasi-convex frontier through Monte Carlo simulations and real-world experiments in steel production. Results demonstrate that our approach outperforms classical models, improving hit rates by at least 41.11% and 31.01% on two real datasets. Furthermore, the quasi-convex frontier provides a reference explanation and visualization for the deterioration of solutions obtained by conventional models

    Expert System for Sintering Process Control

    Get PDF

    Challenges and Prospects of Steelmaking Towards the Year 2050

    Get PDF
    The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem

    A review on CO2 mitigation in the Iron and Steel industry through Power to X processes

    Get PDF
    In this paper we present the first systematic review of Power to X processes applied to the iron and steel industry. These processes convert renewable electricity into valuable chemicals through an electrolysis stage that produces the final product or a necessary intermediate. We have classified them in five categories (Power to Iron, Power to Hydrogen, Power to Syngas, Power to Methane and Power to Methanol) to compare the results of the different studies published so far, gathering specific energy consumption, electrolysis power capacity, CO2 emissions, and technology readiness level. We also present, for the first time, novel concepts that integrate oxy-fuel ironmaking and Power to Gas. Lastly, we round the review off with a summary of the most important research projects on the topic, including relevant data on the largest pilot facilities (2–6 MW)

    Simulation optimization: A comprehensive review on theory and applications

    Get PDF
    For several decades, simulation has been used as a descriptive tool by the operations research community in the modeling and analysis of a wide variety of complex real systems. With recent developments in simulation optimization and advances in computing technology, it now becomes feasible to use simulation as a prescriptive tool in decision support systems. In this paper, we present a comprehensive survey on techniques for simulation optimization with emphasis given on recent developments. We classify the existing techniques according to problem characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). We discuss the major advantages and possible drawbacks of the different techniques. A comprehensive bibliography and future research directions are also provided in the paper. © "IIE"
    corecore