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For several decades, simulation has been used as a descriptive tool by the operations research community in the modeling and analysis
of a wide variety of complex real systems. With recent developments in simulation optimization and advances in computing technology,
it now becomes feasible to use simulation as a prescriptive tool in decision support systems. In this paper, we present a comprehensive
survey on techniques for simulation optimization with emphasis given on recent developments. We classify the existing techniques
according to problem characteristics such as shape of the response surface (global as compared to local optimization), objective
functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). We discuss the major advantages
and possible drawbacks of the different techniques. A comprehensive bibliography and future research directions are also provided

in the paper.

1. Introduction

With the continuing developments in computer technology,
simulation is receiving increasing attention as a decision-
making tool. Most real-world systems are so complex that
computing values of performance measures and finding op-
timal decision variables analytically is very hard and some-
times impossible. Therefore, computer simulation is fre-
quently used in evaluating complex systems and optimizing
responses.

The problem under consideration is the maximization or
minimization of the expected value of the objective function
with respect to its constraint set as given below:

(max) I){lel(r)l H(X), (1)

where H(X) = E[L(X, ¢)]is the performance measure of the
problem. The quantity L(X, ¢) will be called the sample per-
formance, € represents the stochastic effects in the system, X
is a p-vector of controllable factors and © is the constraint
set on X. If H(X) is a one-dimensional vector, the prob-
lem is single objective optimization, whereas if its dimen-
sion is more than one, the problem becomes multiobjective.
The optimum is denoted by X*. Without loss of generality,
we will consider the minimization problem throughout the

paper.
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A variety of techniques and approaches have been pro-
posed to solve the above optimization problem. In the
literature, there are also several survey papers that dis-
cuss foundations, theoretical developments and applica-
tions of these techniques (Meketon, 1987; Jacobson and
Schruben, 1989; Safizadeh, 1990; Azadivar, 1992; Fu,
1994a; Andradottir, 1998; Swisher et al., 2000). The sim-
ulation optimization techniques covered in these papers
are listed in Table 1. The objective of this paper is to pro-
vide a more comprehensive coverage of these techniques
and their applications. Besides reviewing the “traditional”
methods, we give emphasis to recent developments in this
area (i.e., global optimization methods such as evolutionary
algorithms, simulated annealing, and tabu search).

We classify the existing studies under two main headings:
(1) local optimization; and (ii) global optimization. Local
optimization techniques are further classified in terms of
discrete and continuous parameter spaces. Figure 1 shows
such a classification scheme. In this paper, in addition to re-
viewing the theoretical aspects of these techniques, we also
discuss their applications to various production systems.

The rest of the paper is organized as follows. In Section
2.1, we focus on techniques for the discrete-parameter case
such as ranking and selection, multiple comparison pro-
cedures, random search, Nelder-Mead simplex/complex
search, Hooke-Jeeves pattern search and the single-factor
method. For the continuous-parameter space case, we
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Table 1. Techniques discussed in various survey papers

Tekin and Sabuncuoglu

Publication Techniques

Meketon (1987) StApp, PA, LRE, adaptive control, nonlinear programming

Jacobson and Schruben (1989) FDA, StApp, PA, RSM, LRE, H-J, simplex method, random search, integral methods
Safizadeh (1990) RSM, FDA, PA

Azadivar (1992, 1999) RSM, FDA, StApp, LRE, IPA, FDE, complex search, SA

Fu (1994a) MCP, R&S, FDE, PA, FDA, LRE, StApp, RSM

Andradottir (1998) MCP, R&S, FDE, PA, FDA, LRE, StApp, sample path optimization

Swisher et al. (2000)

PA, StApp, N-M, H-J, MCP, R&S, 00, SA, GA

consider response surface methodology, gradient-based
methods (finite difference estimates, perturbation analy-
sis, frequency-domain analysis, likelihood ratio estimators)
and stochastic approximation methods in Section 2.2. In
Section 3, we discuss global search methods such as evo-
lutionary algorithms, simulated annealing, tabu search,
Bayesian/sampling algorithms, and the gradient surface
method. In Section 4, we review the studies for multiple ob-
jective problems. The paper ends with concluding remarks
and suggestions for further research in Section 5.

2. Local optimization

Local optimization problems are discussed in terms of dis-
crete and continuous decision spaces. In a discrete space,
decision variables take a discrete set of values such as the
number of machines in the system, alternative locations of
depots, different scheduling rules or policies, etc. On the
other hand, in a continuous space, the feasible region con-

sists of real-valued decision variables such as order quantity
and reorder quantity in inventory problems, release time of
factory orders, etc.

2.1. Discrete decision space

The discrete case can further be classified into: finite pa-
rameter space and infinite parameter space. In the finite
case, X € {A, ..., Ax} where A; is one of the k points in
the feasible region and the aim is to find X* = ;. The
two most popular methodologies for the class of problems
are: (i) ranking and selection; and (ii) multiple compari-
son procedures. For excellent reviews of these two classes
of techniques, one can refer to Bechhofer ef al. (1995) and
Goldsman and Nelson (1998). Other methods (e.g., ran-
dom search, Nelder-Mead simplex/complex search, single-
factor method, Hooke-Jeeves pattern search) can operate
in the infinite parameter space.

There are two main approaches with respect to ranking
and selection. The first is the indifference-zone approach

Local Optimization

Discrete Decision Space

Ranking and Selection
Multiple Comparison
Ordinal Optimization
Random Search
Simplex/Complex Search
Single Factor Method
Hooke-Jeeves Pattern Search

Optimization Problems

Continuous Decision Space

Response Surface Methodology
Finite Difference Estimates
Perturbation Analysis
Frequency Domain Analysis
Likelihood Ratio Estimates
Stochastic Approximation

Global Optimization

Evolutionary Algorithms

Tabu Search

Simulated Annealing
Bayesian/Sampling Algorithms
Gradient Surface Method

Fig. 1. Classification scheme.
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(Dudewicz and Dalal, 1975). This method guarantees that
the performance measure value of the selected A; differs
from the optimal solution value by at most a small amount
8, with a probability of at least P*. The second approach is
called subset selection. It aims to select a subset of at most
m < k A;’s and guarantees that this subset contains at least
the best A;, with probability of at least P*. The latter ap-
proach is more useful when the number of choices is quite
large. Sullivan and Wilson (1989) propose two extensions to
the subset selection procedure for normal populations with
unknown moments. Butler et al. (2001) combine multiat-
tribute utility theory with the indifference-zone approach
to make comparisons of systems that have multiple perfor-
mance measures.

Nelson et al. (2001) present a general theory and
procedures for reducing sampling efforts in a two-stage
indifference-zone approach when the number of alterna-
tives is large. Boesel (2000) and Boesel et al. (2003) study
the problem of finding the best system when the number
of systems is large and initial samples from each system
have already been taken. These articles develop statistical
procedures that identify the best system encountered in the
search by using a variety of approaches including subset se-
lection and indifference-zone. Kim and Nelson (2001, 2004)
and Goldsman et al. (2002) present efficient fully-sequential
indifference-zone techniques that eliminate systems deemed
inferior as sampling progresses.

A disadvantage of some ranking and selection procedures
is the requirement of independence between competing de-
signs; but see the subsequent discussion. The assumption
of normality is handled by the appropriate batching tech-
niques (Lund et al., 1992).

In multiple comparison procedures, the idea is to run
a number of replications and make conclusions on a per-
formance measure by constructing confidence intervals. In
general, for all A; and A; pairs, the differences between the
estimates of the performance measures are computed and
(1 — «)100% confidence intervals are formed for each inter-
val. We select the system corresponding to the confidence
interval for which the differences with all other pairs are
strictly negative (Hochberg and Tamhane, 1987).

Fu (1994a) and Hsu (1996) summarize the main ideas
for three different multiple comparison procedures (i.e., all
pairwise multiple comparisons, multiple comparisons with
the best, and multiple comparisons with a control) and dis-
cuss the differences between these three approaches. Yang
and Nelson (1991) propose refinements to the classical mul-
tiple comparison procedures by using variance reduction
techniques such as common random numbers and con-
trol variates. Matejcik and Nelson (1995) and Damerd;ji
and Nakayama (1999) develop two-stage sampling pro-
cedures for multiple comparisons with the best. Nelson
and Matejcik (1995) study the use of common random
numbers in a combined indifference-zone selection and
multiple comparison procedure. Nakayama (1997) derives
simultaneous confidence intervals based on standardized
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time-series methods for comparing systems with unknown
steady-state means, and unknown asymptotic variances.

Generally, real systems have a large number of decision
variables and it is often infeasible (because of time con-
straints and computational budget) to find the best design
for discrete-event system simulations. For this reason, Or-
dinal Optimization (OO) concentrates on finding a subset
of “good enough” designs by sampling from a large set
of solutions and evaluating a smaller set of designs (Ho,
Sreenivas and Vakili, 1992). Lee et al. (1999) explain the
goal-softening issue in OO. Ho (1999) presents a tutorial
on the fundamentals of ordinal optimization, including the
subset selection and alignment probability (i.e., probability
of having the selected subset in the set of “good enough”
subsets). Chen (1996) quantifies the satisfaction level of a
selected subset by using a confidence probability and pro-
poses two lower bounds. Lau and Ho (1997) give subset
selection rules and calculate the alignment probabilities de-
pending on these rules. Sullivan and Jacobson (2000) apply
OO within a hill climbing algorithm framework. There are
also some studies that enhance the efficiency of OO by sev-
eral different approaches such as Chen, Chen and Yiicesan
(2000), Chen, Lin, Yicesan and Chick (2000) and Shi and
Chen (2000).

Random search can work on an infinite parameter space.
Inputs of upper and lower bounds on each of the control-
lable factors define an overall search region. The technique
selects points at random from the overall search region
(Smith, 1971). Since the search region contains a large num-
ber of combinations of p-dimensional points, the procedure
stops when a specified number of computer runs has been
completed. The point that gives the best response is se-
lected to be optimal. Very little has been done with random
search in trying to solve simulation optimization problems.
The major drawback is that it converges slowly to an op-
timum because previous information is not used at each
iteration.

Nelder-Mead simplex/complex search (N-M) (Nelder
and Mead, 1965) constructs a p-dimensional simplex by
choosing p + 1 extreme points for a response function of
p parameters, and simulates the response at each extreme
point (vertex). At each iteration, a new point is added to the
simplex by projecting that point to the centroid of the re-
maining points of the simplex and dropping the worst point
from the set. The procedure continues until the size of the
simplex becomes sufficiently small (i.e., all the points in the
simplex are located at nearly the same place). The com-
plex search is the constrained version of the simplex search.
This search procedure is similar to the simplex method ex-
cept that a special effort is made to prevent the simplex from
leaving the feasible region (Box, 1965). Azadivar and Lee
(1988) develop a heuristic simplex method and compare the
vertices statistically, i.e., the worst point that will be deleted
is the one whose lower confidence limit is greater than the
upper confidence limits of the other vertices of the simplex.
Barton and Ivey (1996) propose a modified version of the
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simplex method in order to avoid the risk of inappropriate
termination.

Single-Factor Method (SFM) (Friedman and Savage,
1947) and Hooke-Jeeves pattern search (H-J) (Hooke and
Jeeves, 1961) are also direct search methods that can work
on an infinite parameter space. SFM involves coordinated
movement of one factor while all other factors are held
constant. On the other hand, H-J, starting from an initial
base point, checks if an incremental change in a variable
improves the response value and repeats it for all variables
until a new setting is obtained. The procedure continues un-
til the incremental values do not change the response value.
H-J is generally used in conjunction with other methods
(Chen and Tsai, 1996).

2.2. Continuous decision space

A great amount of work has been done with problems that
have a continuous decision space. Below we discuss the most
common methods from the literature.

2.2.1. Response surface methodology

Response Surface Methodology (RSM) is a class of pro-
cedures that: (i) fit a series of regression models to the re-
sponses of a simulation model evaluated at several points;
and (ii) optimize the resulting regression function. The ba-
sic algorithm consists of two phases. In the first phase, a
first-order model is fit to the response surface. Afterwards,
a steepest descent direction is estimated from the model.
The first phase is repeated until the computed slope be-
comes approximately zero, meaning that first-order design
is no longer a good fit to the subregion on hand. In the
second phase, a quadratic response surface is fitted using
second-order experimental designs, and then the optimum
is determined from this fit.

A survey of the RSM research from 1966 to 1988 is given
in Myers et al. (1989). The book by Box and Draper (1986)
has an extensive discussion on response surfaces and exper-
imental designs. A study by Kleijnen (1998) discusses the
use of statistical designs for what-if analysis in simulation
and emphasizes how RSM combines regression analysis,
statistical designs and the steepest descent (ascent) method
to optimize a simulated system. Factorial and fractional
factorial orthogonal designs are the best known first-order
designs for RSM (Montgomery, 1991). Composite and ro-
tatable designs are the most useful second-order designs
(Montgomery and Evans, 1975). Ramberg et al. (1991) re-
late the orthogonal arrays advocated by Genichi Taguchi to
classical experimental designs and use Taguchi’s techniques
in the construction of mathematical metamodels for RSM.
In order to get better fits from RSM, some researchers use it
in conjunction with other methods such as gradient-based
techniques, quasi-Newton methods, and simplex experi-
mental designs (Safizadeh and Signorile, 1994; Joshi et al.,
1998).

Tekin and Sabuncuoglu

Since RSM is a widely accepted method in simulation op-
timization, there are a number of examples of its real-time
implementations. Kleijnen (1990, 1995) presents optimiza-
tion of a decision support system of a Dutch company via
RSM. In another study, Shang and Tadikamalla (1993) in-
vestigate a computer-integrated manufacturing system of
an automated printed circuit board manufacturing plant
and implement RSM to maximize output.

RSM provides a general methodology for optimiza-
tion via simulation. Its biggest advantage is that it uses
well-known statistical tools. Compared to many gradient
methods, RSM is a relatively efficient method of simula-
tion optimization in the number of simulations experiments
needed. However, it has a drawback due to its computa-
tional requirements if applied blindly.

2.2.2. Gradient-based methods

There are four well-known methods in the simulation opti-
mization literature that are used for estimating gradients of
the response: (i) finite difference estimates; (ii) perturbation
analysis; (iii) frequency domain analysis; and (iv) likelihood
ratio estimates.

The Finite Difference Estimate (FDE) method is based
on determining partial derivatives of H(X) by:

IH(X)

0.X;
[H(Xi, ..

L Xi+AX, .

LX) —HX L XL X))
AX, :

(@)

In order to estimate the gradient at each point, at least
p + 1 evaluations of the simulation model are necessary.
For a more reliable estimate, multiple observations for each
derivative may be needed. An example of applying this
method together with the H-J technique is discussed by
Pegden and Gately (1977). It is also used in stochastic ap-
proximation applications as will be discussed in the next
subsection.

Perturbation Analysis (PA) was introduced by Ho et al.
(1979) in the context of a buffer allocation problem in se-
rial production lines. PA, when applied properly to models
that satisfy certain conditions, estimates all gradients of
an objective function from a single simulation run. There
are two classifications of PA: Finite Perturbation Analy-
sis (FPA); and Infinitesimal Perturbation Analysis (IPA).
FPA is designed for discrete parameters and is an heuristic
that approximates the difference in a performance measure
when a discrete parameter is perturbed by one unit. IPA
is used to obtain derivatives of continuous parameters and
estimates all partial derivatives from a single run by keeping
track of related statistics of certain events during a run by
computing:

oL oL 0Ty 0T;

X 49T, 9T; 0X
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where 8 T;/0 X indicates how the change in the value of a sys-
tem parameter, X, changes the timing of events, d 7} /9 T} in-
dicates how changes in the timing of some events 7; change
the timing of other events 7}, dL/07T} indicates how the
changes in the timing of some events 7 change the system
performance (Ho and Cao, 1991).

Some restrictive conditions have to be satisfied for PA
to be applicable. For instance, if as a result of the pertur-
bation of a given parameter, the sequence of events that
govern the behavior of the system changes, the results of
PA may not be reliable (Heidelberger, 1986). A difficulty
with the application of PA is that the modeler has to have a
complete knowledge of the simulation model and in some
situations must build up the model from scratch in order
to add additional tracking capabilities. However, PA has
been one of the most attractive research areas in simulation
optimization because of its efficiency. Glasserman (1991)
gives sufficient conditions for unbiased estimates of IPA.
L’Ecuyer and Perron (1994) study the convergence rates of
PA estimators. Dai (2000) investigates PA via coupling (i.e.,
generating multiple random samples), which is useful for
variance reduction and efficient implementation.

Since PA performs well in simple discrete-event dynamic
systems which can be modeled as queueing networks, there
are a number of papers on the applications of PA to queue-
ing systems; i.e., Ho et al. (1984), Ho (1985), Ho and Hu
(1990), Wardi et al. (1991), Chong and Ramadge (1993)
and also Fu and Hu (1994). In addition, there is litera-
ture on the application of PA to (s, S) inventory systems.
Fu (1994b) considers a periodic review system with contin-
uous demands and full backordering, and derives sample
path derivatives of performance measures. Bashyam and Fu
(1994) apply PA to obtain efficient derivative estimators of
the expected cost per period with respect to s and S, for a
class of (s, S) inventory systems.

PA has been widely used for optimizing manufacturing
systems of interest. Donohue and Spearman (1993) de-
termine the most profitable capacity configuration for a
production line by using PA. Yan et al. (1994) use PA to de-
velop algorithms to approximate the optimal threshold val-
ues in a manufacturing system with two tandem machines.
Liberopoulos and Caramanis (1994) use IPA to obtain the
first and second derivative estimates for manufacturing flow
controllers of an unreliable flexible manufacturing system.
Cheng (1994) considers a multistage make-to-stock system
and establishes sample-path derivatives by using IPA to find
an appropriate trade-off between reduced order-waiting
time and increased process speeds. Brooks and Varaiya
(1997) use IPA to determine asymptotically unbiased gra-
dient estimates for computing the minimum average net-
work delay in intree ATM networks. Heidergott (1999) uses
smoothed PA to optimize threshold values of repair times
in a maintenance model.

Frequency-Domain Analysis (FDA) was introduced by
Schruben and Cogliano (1981) for the purpose of fac-
tor screening in simulation experiments. The intuitive idea
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behind FDA is to oscillate the value of a parameter accord-
ing to a sinusoidal function during simulation. The magni-
tude of the performance measure variation gives an indica-
tion of the relative sensitivity of the performance measure
to the parameter. A vector of parameters is modulated as
follows:

X(t) = Xy + asin(wt)

where X is the parameter vector of interest, « is the vector
of oscillation amplitudes, and w is the vector of oscillation
frequencies. Generally, the time variable 7 is not the simu-
lation time but, instead, it is a variable of the model, which
keeps track of certain statistics during each run. Jacobson
etal (1988, 1991) propose some ways to select 7, w, . Once
these values are determined, one can obtain a quadratic re-
sponse metamodel by approximating H through X, using
a second-order Taylor series expansion:

2 &,
— > HX(@)sin(;),
=1

V:H(Xo) = lim lim

T—o00 wi—0

where V; denotes the partial derivative with respect to X;.

Although FDA is seen to have a strong potential for en-
hancing the efficiency of simulation optimization, it has
some drawbacks. First, it requires careful indexing of simu-
lation observations together with sinusoidal variation of in-
put variables according to a time index. Hazra ef al. (1997)
address the indexing problem by providing some general
guidelines. Heidergott (1995) compares the performance of
FDA and PA in estimating the sensitivity of the steady-
state throughput of a manufacturing system with respect
to various parameters (i.e., service times, buffer sizes). Fur-
thermore, FDA has one added restriction that the region
under investigation should be small in order to avoid large
variances.

Likelihood Ratio Estimators (LRE) differentiate the un-
derlying probability measure of the system. LRE assumes
that the performance measure function is L(Y) where Y is a
random vector with joint cumulative distribution function
F(X, ) and density f(X, -), and dependence on X enters
only through the random vector Y. Thus:

E[L(Y)] = / LOYF(X. ).

By differentiating the above equation with respect to X,
one can estimate the derivative of the performance mea-
sure together with the performance measure itself (Glynn,
1990; Rubinstein, 1991; Rubinstein and Shapiro, 1993). Im-
plementation of the LRE technique to a GI/G/1 queue is
given in Fu (1994a) by using both natural and regener-
ative estimators. Nakayama et al. (1994) discuss the ap-
plication of LRE to the simulation of large Markovian
models of highly dependable systems. Nakayama and
Shahabuddin (1998) investigate the LRE method for es-
timating derivatives of finite performance measures in
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generalized semi-Markov processes under some conditions
on the transition probabilities.

LRE estimates the derivative of the performance mea-
sure and the performance measure itself in a single run.
But the method is not applicable to structural parameters
such as s and S in (s, S) inventory systems. One other ma-
jor drawback is that the variance of the estimator increases
as the run length increases (Rubinstein, 1999). LRE usu-
ally finds application areas when it is used in conjunction
with stochastic approximation. Andradottir (1996a) shows
how to evaluate the performance measure of interest and
its gradient for a general state space Markov chain by us-
ing LRE in conjunction with stochastic approximation. Fu
et al. (1995) apply variants of PA and LRE to derive and
compare estimates of the derivative of the steady-state mean
time for a single queue system with nonidentical multiple
servers. They report that neither method universally out-
performs the other. Fu and Hu (1999) apply PA and LRE
to derive estimators that can be used in gradient-based opti-
mization algorithms and in sensitivity analysis when Monte
Carlo simulation is used.

2.2.3. Stochastic approximation

Stochastic approximation (StApp) was first introduced by
Robbins and Monro (1951) and Kiefer and Wolfowitz
(1952). The basic assumption underlying StApp is that the
original problem given by the formula minx.e H(X) can
be solved by VH(X) = 0. This method uses a recursive
formula:

Xn+1 = n@(Xn - an@Hn)v

where a, is a series of real-valued step sizes that satisfy
Y a, < o0, Y a? < oo. The quantity X, is the estimated
value at the beginning of iteration n, V H, is an estimate of
the gradient VH(X,,) from iteration n, and I1g is a projec-
tion onto ®. The Robbins-Monro algorithm uses an unbi-
ased estimator for VH(X,,) whereas the Kiefer-Wolfowitz
algorithm uses finite-difference estimates.

As n approaches infinity, X, approaches a value such
that the theoretical regression function of the stochastic re-
sponse is minimized. Kouritzin (1996) and Kulkarni and
Horn (1996) give alternate proofs for the convergence of
the stochastic approximation method. The difficulty with
StApp is that a large number of iterations of the recur-
sive formula are needed to come up with the optimum.
L’Ecuyer and Yin (1998) identify how to allocate a total
available computational budget to StApp iterations for dif-
ferent gradient estimators. In addition, the choice of the ob-
servation length for each iteration is an important problem
with respect to preventing conditional bias caused by the
information known at the beginning of the iteration. Aris-
ing from the facts that the classical StApp algorithm can
converge extremely slowly when applied to flat functions
and can sometimes diverge when applied to functions with
superlinear growth, Andradottir (1995) proposes a variant

Tekin and Sabuncuoglu

of StApp defined over a growing sequence of compact sets.
Kleinman et al. (1999) describe the use of common random
numbers for reducing the variance in stochastic approxima-
tion estimates.

A number of different gradient estimators can be used
in StApp algorithms. L’Ecuyer and Glynn (1994) study
the minimization of the mean system time in a GI/G/1
queue and prove the convergence of finite difference esti-
mates, likelihood ratios and infinitesimal perturbation anal-
ysis methods in StApp algorithms under mild conditions. In
a companion paper, they report numerical examples with an
M/M/1 queue (L’Ecuyer ef al., 1994). Fu and Hill (1997)
propose a simultaneous perturbation method as an alter-
nate to classical finite-difference estimates in StApp. The
method is a finite-difference-like technique but requires
only two simulations per gradient estimate regardless of the
number of parameters in the problem. The authorsillustrate
the method’s performance on a single-server queue, a queu-
ing network and a bus transit network. They report that
the method results in substantial computational savings
for large dimensional systems. In another study, Chong and
Ramadge (1994) consider a load-sharing problem for a mul-
tiprocessor system in which jobs have real-time constraints.
If the waiting time of a job exceeds a random amount, this
jobislost. In order to minimize the steady-state probability
of loss, a StApp algorithm with LRE is used and the results
are reported. Andradottir (1996b) presents a scaled StApp
algorithm and reports that it has some practical advantages
over the Robbins-Monro algorithm.

Tang et al. (1997) propose the “Perturbation-Analysis-
Robbins-Monro-Single-Run” algorithm and use it to esti-
mate the optimal parameter of a performance measure for
GI1/G/1 queuing systems. Later, Tang et al. (1999, 2000) ob-
tain central limit theorems for this algorithm. Hasan and
Spearman (1999) consider determining the optimal mate-
rial release times for a make-to-order manufacturing sys-
tem and propose a solution methodology using stochastic
approximation and IPA for a transient state simulation of
the system. Rossetti and Clark (1998) evaluate queueing
approximations by using an optimization framework that
combines IPA and StApp, and present illustrations on a
queuing approximation for the two-type machine interfer-
ence problem.

3. Global search methods

All of the techniques discussed in Section 2 assume a uni-
modal surface. The methods that we will discuss in this sec-
tion, such as evolutionary algorithms, simulated annealing,
tabu search, Bayesian/sampling algorithms, gradient sur-
face method, are designed for problems with multi-modal
response surfaces. Moreover, these methods have some
other advantages when compared to “traditional” meth-
ods. The traditional methods are adapted to cases where the
domains of the decision variables are real intervals. Several
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of them are iterative, and some (i.e., perturbation analysis,
finite difference estimates, etc.) require gradient informa-
tion. Thus, when the response surface is high-dimensional,
discontinuous, and nondifferentiable, or when the decision
variables are qualitative (e.g., queueing strategies), these
methods often fail to find the optimal solution. On the other
hand, methods such as evolutionary algorithms can be ap-
plied to these type of problems (Azadivar and Tomkins,
1999; Pierreval and Paris, 2000). Below we review the liter-
ature on global optimization methods.

3.1. Evolutionary algorithms

Evolutionary Algorithms (EAs) are heuristic search meth-
ods that implement ideas from the evolution process. As
opposed to a single solution used in traditional methods,
EAs work on a population of solutions in such a way that
poor solutions become extinct, whereas the good solutions
evolve to reach for the optimum. Recently, there has been
an increasing interest in using EAs in simulation optimiza-
tion because they require no restrictive assumptions or
prior knowledge about the shape of the response surface
(Back and Schwefel, 1993). Biethahn and Nissen (1994)
identify alternative combinations of EAs in simulation
optimization and discuss how they differ from traditional
optimization methods. In general, an EA for simulation op-
timization can be described as follows: (i) generate a pop-
ulation of solutions; (i1) evaluate these solutions through a
simulation model; (iii) perform selection, apply genetic op-
erators to produce a new offspring (or solution), and insert
it into the population; and (iv) repeat until some stopping
criterion is reached.

In the literature, the most popular EAs are Genetic
Algorithms (GAs) (Goldberg, 1989), Evolutionary Pro-
gramming (EP) (Fogel, 1992), and Evolution Strategies
(ES) (Schwefel, 1981). These algorithms differ in the repre-
sentation of individuals, the design of variation operators,
and the selection of their reproduction mechanisms. Back
et al. (1997) describe the purpose, structure, and working
principles of these three well-known EAs. In general, each
point in the solution space is represented by a string of val-
ues for the decision variables (i.e., each position in the string
represents the decision alternatives regarding a parameter
in the system). The use of appropriate crossover and mu-
tation operators reduces the probability of trapping to a
local optimum. The crossover operator breaks the strings
representing two members of the population and exchanges
certain portions of the strings to produce two new strings,
where the mutation operator selects a random position in a
string and changes the value of that variable with a prespec-
ified probability. Liepins and Hilliard (1989), Davis (1991)
and Mubhlebein (1997) give detailed overviews on the dif-
ferent techniques used in applying GAs.

Although EP and ES have not been widely used in simula-
tion optimization, GAs have found considerable interest in
optimizing problems that arise in complex manufacturing
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systems. Bowden and Bullington (1996) simulate a man-
ufacturing system to discover opportunistic control rules
for job routing and process sequence flexibility; and then
they use GAs to develop cooperative strategies for selecting
the best route through the manufacturing system based on
simulated real-time information. Dengiz et al. (1997) use
GAs for optimization of an (s, S) periodic review inventory
control system with stochastic lead times, and for optimiza-
tion of buffer sizes of an asynchronous automatic assembly
system. They compare the results of GA with the exhaus-
tive search and random search methods. Results indicate
that GA performs better than random search. Azadivar
and Tomkins (1999) develop an object-oriented method
that automatically generates a simulation model and com-
putes responses for a given set of decision factors. These
responses are in turn provided to the GA to generate the
next population. The authors apply this method to a par-
ticular manufacturing system where the decision variables
are the choice of a machine in each station, the dispatch-
ing rule, and other characteristics of the components of the
system. They report that GA outperforms random search
on three sample problems. They also note that GA consis-
tently achieves a larger fraction of the possible improvement
at each iteration. Diimmler (1999) considers the problem of
sequencing n lots, where each lot can be processed by any of
m available cluster tools to minimize the cycle time. In this
study, GA is used to generate the lot sequences. Numerical
results on three problem instances suggest that optimal or
close-to-optimal sequences can be found in a short time.
Wellman and Gemmill (1995) apply GA to optimize the
performance of asynchronous automatic assembly systems.
Their results indicate that GA performs as well as stochas-
tic quasi-gradient methods. There are also other studies in
the literature in which the authors report successful ap-
plications of GAs to various manufacturing problems (an
AGYV network problem by McHaney (2000), assembly line
optimization by Lee et al. (2000), optimization of manage-
ment parameters in flowlines by Fontanili et al. (2000) and
finding the best facility layout by Suresh et al. (1995)).

Stuckman et al. (1991) compare GAs, simulated anneal-
ing and Bayesian/sampling algorithms, and conclude that
GAs and simulated annealing are suitable for problems
with high dimensionality. Lacksonen and Anussornnitisarn
(1995) compare GAs with simulated annealing, H-J and
N-M on 20 test problems and report that GAs give the best
results. Yunker and Tew (1994) compare a GA, H-J and re-
sponse surface method search for accuracy and stability on
an example problem. They report that the GA is superior
to the other two in finding the optimum. The variance also
results in a narrower confidence interval with GA.

Hall et al. (1996) use ES to solve the kanban sizing prob-
lem for a manufacturing system with 39 decision variables.
They provide some insights on the effects of the number
of decision variables on the population size and the fitness
of the solutions. The study by Cassady et al. (2000) uses
ES to find the optimal decision variables and to obtain the
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cost performance of a combined control chart-preventive
maintenance model.

Pierreval and Tautou (1997) propose a new EA to opti-
mize both quantitative and qualitative variables. They fo-
cus on the general schema of the EAs given in Muhlebein
(1997). The method is applied to a workshop producing
yogurt pots. The near-optimal solutions are compared with
the results of an exhaustive search. The results indicate that
the algorithm achieves reasonably good solutions. Pierreval
and Paris (2000) suggest the use of a distributed EA for
optimization of simulation models. In the distributed ap-
proach, several computers do their own simulation exper-
iments with their own populations of solutions, but also
exchange the solutions by using a migration operator. The
benefits of this new approach are demonstrated through an
example involving a transport lot sizing and transporter al-
location problem in a flow shop. The authors discuss how
the new approach allows the use of qualitative variables.

3.2. Simulated annealing

As discussed in Kirkpatrick ef al. (1983) and Cerny (1985),
a Simulated Annealing (SA) algorithm starts with an initial
solution, generally chosen at random. A neighbor of this
solution is then generated by a suitable mechanism and a
change in the objective value is calculated. If a reduction oc-
curs, the generated neighbor replaces the current solution.
If there is no reduction, the SA algorithm may accept this
solution with some probability to avoid entrapment in a lo-
cal optimum. Generally, the probability of accepting such
points is less than the value of acceptance function which
is set to exp(-1/T). In this expression, / is the difference be-
tween the function value evaluated at the current solution
and its neighborhood, and T is a control parameter that is
analogous to temperature in physical annealing. To achieve
the optimum, SA algorithms begin with high values of 7,
and stay at the same temperature for a prespecified number
of iterations, gradually decreasing it until a final tempera-
ture is reached. In order to implement SA algorithms, all
the parameters (i.e., initial temperature, final temperature,
and number of iterations at each temperature) must be de-
termined a priori, a task which requires additional compu-
tation and cooling schedules. Collins et al. (1988) and Hajek
(1988) have suggested a great variety of cooling schedules.
Overviews on theory and applications of SA algorithms can
be found in Van Laarhoven and Aarts (1987), Johnson et al.
(1989), Eglese (1990) and Koulamas et al. (1994).

There is a substantial literature that aims to outline gen-
eral working principles for SA algorithms. Haddock and
Mittenthal (1992) apply a SA with a heuristic cooling func-
tion to a hypothetical model. Their results indicate that a
lower final temperature, a slower rate of temperature de-
crease and a large number of iterations performed at each
temperature yield better solutions. Catoni (1992) derives
finite-time estimates for the cooling schedules. Alkhamis
et al. (1999) extend the basic results for SA algorithms to a
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stochastic optimization problem where the objective func-
tion is evaluated through Monte Carlo simulation. They
show that the modified SA algorithm converges in proba-
bility to a global optimum under suitable conditions on the
random error. Alrefaei and Andradottir (1999) also pro-
pose a modified SA algorithm that uses a constant (instead
of decreasing) temperature. They use two approaches to
estimate the optimal solution and show that both are guar-
anteed to converge to the set of global optimal solutions.

Yicesan and Jacobson (1996) consider solving the ac-
cessibility problem by using a local search procedure and
five different variants of SA algorithms. SA outperforms
the local search, but must be customized (i.e., modification
of the annealing schedule) to the problem at hand, a major
undertaking.

SA algorithms are also widely used for optimization of
manufacturing systems. Manz et al. (1989) apply an SA
algorithm to an automated manufacturing system. Brady
and McGarvey (1998) compare SA, tabu search, GA and a
frequency-based heuristic in the optimization of staffing
levels in a pharmaceutical manufacturing laboratory.
Barretto et al. (1999) apply a variant of the Linear Move and
Exchange Move (LEO) optimization algorithm (Barretto
et al., 1998) based on SA to a steelworks simulation model.

3.3. Tabu search

Tabu search is a constrained search procedure, where each
step consists of solving a secondary optimization problem.
At each step, the search procedure omits a subset of the so-
lution space to search . This subset changes as the algorithm
proceeds and is usually defined by previously considered so-
lutions which are called the reigning tabu conditions (Glover
and Laguna, 1997). A number of papers employ tabu search
procedures to simulation optimization. Hu (1992) investi-
gates the reliability and efficiency of a tabu search algorithm
by using some standard test functions and reports that it
outperforms the random search and a composite GA on
the example problems. Garcia and Bolivar (1999) develop a
simulation system which they call the Stochastic Inventory
System Simulator (SISS) and optimize five stochastic inven-
tory models with a wide range of probability distributions
for demand and lead time by using tabu search. Lutz ez al.
(1998) address the problem of buffer location and storage
size in a manufacturing line and use tabu search to find the
optimal output. Martin ez al. (1998) implement four dif-
ferent variations of tabu search to determine the number
of kanbans and lot sizes in a generic kanban system. They
report that tabu search performs much better than local
search, but SA provides the same results as tabu search with
better computation times. They conclude that the algorithm
can rapidly identify optimal or near-optimal schedules for
a broad range of industrial settings. Dengiz and Alabas
(2000) also apply a tabu search algorithm to a simulation
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model of a just-in-time system to find the optimal number
of kanbans and report that it outperforms random search.

3.4. Bayesian/ sampling algorithms

The Bayesian/Sampling (B/S) methodology is a search
strategy where at each iteration, the next guess is chosen
to be the point that maximizes the probability of not ex-
ceeding the previous value by some positive constant v, as
given by:

P[H(Xn+1) = H(Xn) + %]

For a minimization problem, this method takes guesses in
areas where the mean performance evaluated by simulation
is low. Initially, v, is small but increases as the optimiza-
tion search becomes more local in nature to speed up the
convergence. In order to search for a global minimum, the
search space is explored once in an area until local solutions
become overpopulated. Lorenzen (1985) and Easom (1990)
employ this method for multi-dimensional solution spaces.
Stuckman and Easom (1992) give a survey of existing
B/S methods (i.e., Stuckman’s method, Mockus’s method,
Perttunen’s method) and compare them with other meth-
ods such as a clustering algorithm, a SA algorithm and the
Monte Carlo method on functions of continuous variables.
From their results, it appears that B/S algorithms consis-
tently outperform Monte Carlo and SA.

3.5. Gradient surface method

Ho, Shi, Dai and Gong (1992) proposed the Gradient
Surface Method (GSM) for optimization of discrete-event
dynamic systems. GSM differs from other global search
techniques because it uses traditional search methods to
globally explore a response surface. It combines the advan-
tages of RSM and efficient derivative estimation techniques
such as PA and LRE in conjunction with stochastic ap-
proximation algorithms. In GSM, the gradient estimation
is obtained by PA or LRE, and the performance gradient
surface is fit from these gradient estimates by using least
squares methods as in RSM. Zero points of the fitted gra-
dient surface are than taken as the estimates of the optimal
solution. GSM is a global search algorithm because at each
iteration, it uses the information from all data points rather
than just the local gradient. The most attractive features
of the algorithm are that it obtains the gradient estimates
by a single run, and it quickly gets to the vicinity of the
optimal solution because of its global orientation. Ho, Shi,
Dai and Gong (1992) apply this algorithm to six examples
of queuing networks, but do not provide any comparisons
with other methods.
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Real problems of interest may be characterized by several
objectives that should be optimized simultaneously. While
optimizing more than one objective via simulation, a num-
ber of difficulties arise due to the stochastic nature of the
responses. In addition, some of the objectives may be in con-
flict, in the sense that improving one makes at least another
one worse. Because of these complexities, only limited work
has been done in multiobjective simulation optimization.

In the literature, a number of different approaches have
been used. Kleijnen (1990) assigns one of the responses as
the primary response to be optimized and tries to have cer-
tain levels of achievement on the other objective functions.
Variations of the goal programming approach are used by
Clayton et al. (1982) and Rees et al. (1984). Chen and Tsai
(1996) develop a direct search algorithm expanded from the
H-J for multiobjective manufacturing systems where user-
specified goals can be precise and/or fuzzy.

Mollaghasemi et al. (1991) describe a procedure based on
the gradient projection technique and the use-of-value func-
tion. Teleb and Azadivar (1994) propose a modified com-
plex search method in which they assume that the objective
functions and the stochastic constraints are distributed as
normal random variables, and use the maximum likelihood
concept.

Some interactive approaches have been developed
for multiobjective simulation optimization. Mollaghasemi
(1994) introduces an interactive approach based on the
Geoffrion-Dyer-Feinberg (GDF) vector maximal algo-
rithm. Boyle and Shin (1996) propose an interactive mul-
ticriteria method (i.e., the Pairwise Comparison Stochastic
Cutting Plane (PCSCP) method) that combines features
from interactive multiple objective mathematical program-
ming and RSM. Lee ef al. (1996) also present an interactive
algorithm by using a cutting plane approach with trade-off
weights and trade-off cuts. Baesler and Sepulveda (2000) in-
tegrate a stochastic GA heuristic with a goal programming
model to solve multiple objective simulation optimization
problems.

5. Discussion and further research directions

In the past, simulation has often been regarded as the
method of last resort among OR researchers and users.
However, over the years as a result of advances in com-
puter technology and simulation languages, it has become
one of the most valuable OR tools (it is usually ranked
at the top of the list). The need for dynamic and stochas-
tic models to analyze complex systems is also expected to
increase the interest for simulation in the future. A sim-
ulation model is typically a descriptive model of the sys-
tem, i.e., it describes the behavior of the system under con-
sideration, and helps us to understand the dynamics and
complex interactions among the elements of the system. In
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the scientific community, simulation has often been criti-
cized for a lack of optimization capability; simulation re-
sults have typically been runs with a set of observations,
rather an optimum solution to the problem as usually
found by the prescriptive or normative models (e.g., linear
programming, dynamic programming). By incorporating
optimization features in simulation systems, we not only
eliminate its major limitation, but also open a door for
simulation in terms of new application areas and research
possibilities. With the ability of performing optimization,
simulation can also become an operational tool to solve
short-term decision-making problems as well as strategic
and tactical problems (i.e., design and long-term planning
problems).

In this paper, we presented a comprehensive survey on
techniques for simulation optimization. We classified the
techniques according to the characteristics of the problems
such as objective functions, parameter spaces and shape of
the response surface, i.e., unimodal or multimodal. We also
discussed major advantages, drawbacks and, comparisons
of these techniques in the paper. We point out that there
are several heuristics and approaches that integrate ideas
from the well-known methods such as retrospective tech-
niques (Healy and Schruben, 1991; Fu and Healy, 1997),
and sample-path optimization (Giirkan, 2000) which are
not discussed extensively here.

The methods proposed for simulation optimization each
carry their own assumptions, and the performances depend
on the characteristics of the problems to which they are ap-
plied. In the literature, there have been also some research
efforts to compare the methods. A list of the comparative
studies is presented as Table 2. The conclusions from these
studies vary, i.e., one method can perform very well for
one problem but can be the worst for another problem. In
our opinion, one future research effort would be to generate

Table 2. Classification on the basis of compared techniques
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benchmark problems or define some standard test functions
to evaluate performances of different techniques. These test
problems also provide important insights into which meth-
ods to integrate for solving a particular problem. As dis-
cussed in Law and McComas (2000), some commercial sim-
ulation companies have already integrated their simulation
systems with some kind of global search methods (SA, GA,
and tabu search). In this context, these benchmark prob-
lems can also serve as a platform to evaluate the effective-
ness (solution quality and run times) of future simulation
packages.

Since the problems that are to be solved by simulation op-
timization vary in terms of the number and structure (i.e.,
discrete or continuous, quantitative or qualitative) of deci-
sion variables, and shape of the response function, there is
no single method to solve all of these problems. This forces
researchers to develop more robust techniques that can han-
dle a larger class of problems. For instance, EAs require no
prior idea about the response surface and can handle both
quantitative and qualitative variables. Therefore, they seem
to be very promising in terms of future research potential
in this area. At the same time, there is also a need for special
methods that work effectively under certain circumstances
(Fu et al., 2000). This is especially needed when simulation
optimization has to be used on a continuous basis to solve
day-to-day operational problems.

As pointed out by Andradottir in Fu et al. (2000), sim-
ulation optimization still requires a considerable amount
of computer time. This is one of the important barriers on
future simulation optimization applications since a model
has to be run under a large number of experimental condi-
tions. One possible solution (or at least a way to alleviate the
problem) would be to use parallel processors or the utilities
of distributed computing. There are already some commer-
cial simulation products that make use of the benefits of

Publication Techniques Implementation
Smith (1971) RSM, SFM Hypothetical surfaces
Azadivar and Talavage (1980) StApp, RSM Unimodal polynomials

Azadivar and Lee (1988)

Reiman and Weiss (1989)
Stuckman et al. (1991)

Hu (1992)

Stuckman and Easom (1992)
L’Ecuyer and Perron (1994)
L’Ecuyer et al. (1994)

Fu (1994b)

Yunker and Tew (1994)
Lacksonen and Anussornnitisarn (1995)
Heidergott (1995)

Fu and Healy (1997)

Brady and McGarvey (1998)

Heuristic based on simplex search, integer
gradient search, RSM

LRE, PA

B/S, SA, GA

Tabu search, RSM, GA

B/S

IPA, FDE

FDE, LRE, PA

LRE, FDE, PA, FDA

GA, H-J, RSM

GA, SA, H-J, N-M

FDE, PA

Retrospective methods, PA

SA, tabu, GA, frequency-based heuristic

Hypothetical surfaces

Standard test functions
Hypothetical surfaces
GI/G/1 queue
M/M/1 queue

20 test problems

A manufacturing system
(s, S) inventory systems
A staffing problem
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distributed computing in a multiprocessing environment.
The other possibility to reduce the computational burden,
as suggested by Harrell in Fu et al. (2000), would be to use
statistical methods such as factor screening techniques to
reduce the search space. More research also needs to be con-
ducted in these areas to improve the efficiency of simulation
optimization systems.

It appears that most of the existing simulation software
packages with optimization features rely on meta-heuristics
(SA, GA, tabu, etc.). However, there is already a great deal
of work that has been done in RSM and gradient-based
methods. In future studies, these traditional methods to-
gether with meta-heuristics can be jointly used to develop
better hybrid approaches in dealing with simulation opti-
mization problems.
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