80 research outputs found

    Digital rights management techniques for H.264 video

    Get PDF
    This work aims to present a number of low-complexity digital rights management (DRM) methodologies for the H.264 standard. Initially, requirements to enforce DRM are analyzed and understood. Based on these requirements, a framework is constructed which puts forth different possibilities that can be explored to satisfy the objective. To implement computationally efficient DRM methods, watermarking and content based copy detection are then chosen as the preferred methodologies. The first approach is based on robust watermarking which modifies the DC residuals of 4Ă—4 macroblocks within I-frames. Robust watermarks are appropriate for content protection and proving ownership. Experimental results show that the technique exhibits encouraging rate-distortion (R-D) characteristics while at the same time being computationally efficient. The problem of content authentication is addressed with the help of two methodologies: irreversible and reversible watermarks. The first approach utilizes the highest frequency coefficient within 4Ă—4 blocks of the I-frames after CAVLC en- tropy encoding to embed a watermark. The technique was found to be very effect- ive in detecting tampering. The second approach applies the difference expansion (DE) method on IPCM macroblocks within P-frames to embed a high-capacity reversible watermark. Experiments prove the technique to be not only fragile and reversible but also exhibiting minimal variation in its R-D characteristics. The final methodology adopted to enforce DRM for H.264 video is based on the concept of signature generation and matching. Specific types of macroblocks within each predefined region of an I-, B- and P-frame are counted at regular intervals in a video clip and an ordinal matrix is constructed based on their count. The matrix is considered to be the signature of that video clip and is matched with longer video sequences to detect copies within them. Simulation results show that the matching methodology is capable of not only detecting copies but also its location within a longer video sequence. Performance analysis depict acceptable false positive and false negative rates and encouraging receiver operating charac- teristics. Finally, the time taken to match and locate copies is significantly low which makes it ideal for use in broadcast and streaming applications

    ROI-BASED RATE CONTROL USING TILES FOR AN HEVC ENCODED VIDEO STREAM OVER A LOSSY NETWORK

    No full text
    International audienceThe growth in the use of high definition (HD) and above video resolutions streams has outstripped the rate at which network infrastructure has been deployed. Video streaming applications require appropriate rate control techniques that make use of the specific characteristics of the video content, such as the regions of interest (ROI). With the introduction of high efficiency video coding (HEVC) streams, we consider new coding features to make a novel ROI-based rate control (RC) algorithm. The proposed approach introduces tiling in a ROI-based rate control scheme. It aims at enhancing the quality of important regions (i.e. faces for a videoconferencing system) considering independently coded regions lying within an ROI and helps evaluating the ROI quality under poor channel conditions. Our work consists of two major steps. First, we designed a RC algorithm based on an independent processing of tiles of different regions. Second, we investigate the effect of ROI-and tile-based rate control algorithm on the decoded quality of the stream transmitted over a lossy channel

    Schémas de tatouage d'images, schémas de tatouage conjoint à la compression, et schémas de dissimulation de données

    Get PDF
    In this manuscript we address data-hiding in images and videos. Specifically we address robust watermarking for images, robust watermarking jointly with compression, and finally non robust data-hiding.The first part of the manuscript deals with high-rate robust watermarking. After having briefly recalled the concept of informed watermarking, we study the two major watermarking families : trellis-based watermarking and quantized-based watermarking. We propose, firstly to reduce the computational complexity of the trellis-based watermarking, with a rotation based embedding, and secondly to introduce a trellis-based quantization in a watermarking system based on quantization.The second part of the manuscript addresses the problem of watermarking jointly with a JPEG2000 compression step or an H.264 compression step. The quantization step and the watermarking step are achieved simultaneously, so that these two steps do not fight against each other. Watermarking in JPEG2000 is achieved by using the trellis quantization from the part 2 of the standard. Watermarking in H.264 is performed on the fly, after the quantization stage, choosing the best prediction through the process of rate-distortion optimization. We also propose to integrate a Tardos code to build an application for traitors tracing.The last part of the manuscript describes the different mechanisms of color hiding in a grayscale image. We propose two approaches based on hiding a color palette in its index image. The first approach relies on the optimization of an energetic function to get a decomposition of the color image allowing an easy embedding. The second approach consists in quickly obtaining a color palette of larger size and then in embedding it in a reversible way.Dans ce manuscrit nous abordons l’insertion de données dans les images et les vidéos. Plus particulièrement nous traitons du tatouage robuste dans les images, du tatouage robuste conjointement à la compression et enfin de l’insertion de données (non robuste).La première partie du manuscrit traite du tatouage robuste à haute capacité. Après avoir brièvement rappelé le concept de tatouage informé, nous étudions les deux principales familles de tatouage : le tatouage basé treillis et le tatouage basé quantification. Nous proposons d’une part de réduire la complexité calculatoire du tatouage basé treillis par une approche d’insertion par rotation, ainsi que d’autre part d’introduire une approche par quantification basée treillis au seind’un système de tatouage basé quantification.La deuxième partie du manuscrit aborde la problématique de tatouage conjointement à la phase de compression par JPEG2000 ou par H.264. L’idée consiste à faire en même temps l’étape de quantification et l’étape de tatouage, de sorte que ces deux étapes ne « luttent pas » l’une contre l’autre. Le tatouage au sein de JPEG2000 est effectué en détournant l’utilisation de la quantification basée treillis de la partie 2 du standard. Le tatouage au sein de H.264 est effectué à la volée, après la phase de quantification, en choisissant la meilleure prédiction via le processus d’optimisation débit-distorsion. Nous proposons également d’intégrer un code de Tardos pour construire une application de traçage de traîtres.La dernière partie du manuscrit décrit les différents mécanismes de dissimulation d’une information couleur au sein d’une image en niveaux de gris. Nous proposons deux approches reposant sur la dissimulation d’une palette couleur dans son image d’index. La première approche consiste à modéliser le problème puis à l’optimiser afin d’avoir une bonne décomposition de l’image couleur ainsi qu’une insertion aisée. La seconde approche consiste à obtenir, de manière rapide et sûre, une palette de plus grande dimension puis à l’insérer de manière réversible

    An Analysis of VP8, a new video codec for the web

    Get PDF
    Video is an increasingly ubiquitous part of our lives. Fast and efficient video codecs are necessary to satisfy the increasing demand for video on the web and mobile devices. However, open standards and patent grants are paramount to the adoption of video codecs across different platforms and browsers. Google On2 released VP8 in May 2010 to compete with H.264, the current standard of video codecs, complete with source code, specification and a perpetual patent grant. As the amount of video being created every day is growing rapidly, the decision of which codec to encode this video with is paramount; if a low quality codec or a restrictively licensed codec is used, the video recorded might be of little to no use. We sought to study VP8 and its quality versus its resource consumption compared to H.264 -- the most popular current video codec -- so that reader may make an informed decision for themselves or for their organizations about whether to use H.264 or VP8, or something else entirely. We examined VP8 in detail, compared its theoretical complexity to H.264 and measured the efficiency of its current implementation. VP8 shares many facets of its design with H.264 and other Discrete Cosine Transform (DCT) based video codecs. However, VP8 is both simpler and less feature rich than H.264, which may allow for rapid hardware and software implementations. As it was designed for the Internet and newer mobile devices, it contains fewer legacy features, such as interlacing, than H.264 supports. To perform quality measurements, the open source VP8 implementation libvpx was used. This is the reference implementation. For H.264, the open source H.264 encoder x264 was used. This encoder has very high performance, and is often rated at the top of its field in efficiency. The JM reference encoder was used to establish a baseline quality for H.264. Our findings indicate that VP8 performs very well at low bitrates, at resolutions at and below CIF. VP8 may be able to successfully displace H.264 Baseline in the mobile streaming video domain. It offers higher quality at a lower bitrate for low resolution images due to its high performing entropy coder and non-contiguous macroblock segmentation. At higher resolutions, VP8 still outperforms H.264 Baseline, but H.264 High profile leads. At HD resolution (720p and above), H.264 is significantly better than VP8 due to its superior motion estimation and adaptive coding. There is little significant difference between the intra-coding performance between H.264 and VP8. VP8\u27s in-loop deblocking filter outperforms H.264\u27s version. H.264\u27s inter-coding, with full support for B frames and weighting outperforms VP8\u27s alternate reference scheme, although this may improve in the future. On average, VP8\u27s feature set is less complex than H.264\u27s equivalents, which, along with its open source implementation, may spur development in the future. These findings indicate that VP8 has strong fundamentals when compared with H.264, but that it lacks optimization and maturity. It will likely improve as engineers optimize VP8\u27s reference implementation, or when a competing implementation is developed. We recommend several areas that the VP8 developers should focus on in the future

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Cloud media video encoding:review and challenges

    Get PDF
    In recent years, Internet traffic patterns have been changing. Most of the traffic demand by end users is multimedia, in particular, video streaming accounts for over 53%. This demand has led to improved network infrastructures and computing architectures to meet the challenges of delivering these multimedia services while maintaining an adequate quality of experience. Focusing on the preparation and adequacy of multimedia content for broadcasting, Cloud and Edge Computing infrastructures have been and will be crucial to offer high and ultra-high definition multimedia content in live, real-time, or video-on-demand scenarios. For these reasons, this review paper presents a detailed study of research papers related to encoding and transcoding techniques in cloud computing environments. It begins by discussing the evolution of streaming and the importance of the encoding process, with a focus on the latest streaming methods and codecs. Then, it examines the role of cloud systems in multimedia environments and provides details on the cloud infrastructure for media scenarios. After doing a systematic literature review, we have been able to find 49 valid papers that meet the requirements specified in the research questions. Each paper has been analyzed and classified according to several criteria, besides to inspect their relevance. To conclude this review, we have identified and elaborated on several challenges and open research issues associated with the development of video codecs optimized for diverse factors within both cloud and edge architectures. Additionally, we have discussed emerging challenges in designing new cloud/edge architectures aimed at more efficient delivery of media traffic. This involves investigating ways to improve the overall performance, reliability, and resource utilization of architectures that support the transmission of multimedia content over both cloud and edge computing environments ensuring a good quality of experience for the final user
    • …
    corecore