66 research outputs found

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Effective SAR image despeckling based on bandlet and SRAD

    Get PDF
    Despeckling of a SAR image without losing features of the image is a daring task as it is intrinsically affected by multiplicative noise called speckle. This thesis proposes a novel technique to efficiently despeckle SAR images. Using an SRAD filter, a Bandlet transform based filter and a Guided filter, the speckle noise in SAR images is removed without losing the features in it. Here a SAR image input is given parallel to both SRAD and Bandlet transform based filters. The SRAD filter despeckles the SAR image and the despeckled output image is used as a reference image for the guided filter. In the Bandlet transform based despeckling scheme, the input SAR image is first decomposed using the bandlet transform. Then the coefficients obtained are thresholded using a soft thresholding rule. All coefficients other than the low-frequency ones are so adjusted. The generalized cross-validation (GCV) technique is employed here to find the most favorable threshold for each subband. The bandlet transform is able to extract edges and fine features in the image because it finds the direction where the function gives maximum value and in the same direction it builds extended orthogonal vectors. Simple soft thresholding using an optimum threshold despeckles the input SAR image. The guided filter with the help of a reference image removes the remaining speckle from the bandlet transform output. In terms of numerical and visual quality, the proposed filtering scheme surpasses the available despeckling schemes

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    A New Approach for SAR Image Denoising

    Get PDF
    In synthetic aperture radar (SAR)  imaging, the transmitted pulses from space born antenna interacts with ground objects and returned energy or back scattered energy will be collected  to get backscattered image. In this process, a speckle noise will be added because of the coherent imaging system and  makes the study of SAR images very difficult. For better SAR image processing, the speckle has to be removed in the initial stages of processing  and maintain all texture features efficiently. The BM3D method is generally considered as state of art method in denoising of SAR images. In this paper, it is proposed a technique to despeckle the speckle noise to the maximum extent while maintaining the edge characteristics

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    Blind Speckle Decorrelation for SAR Image Despeckling

    Get PDF
    In the past few decades, several methods have been developed for despeckling synthetic aperture radar (SAR) images. A considerable number of them have been derived under the assumption of a fully-developed speckle model in which the multiplicative speckle noise is supposed to be a white process. Unfortunately, the transfer function of SAR acquisition systems can introduce a statistical correlation, which decreases the despeckling efficiency of such filters. In this paper, a whitening method is proposed for processing a complex image acquired by a SAR system. We demonstrate that the proposed approach allows the successful application of classical despeckling algorithms. First, we perform an estimation of the SAR system frequency response based on some statistical properties of the acquired image and by using realistic assumptions. Then, a decorrelation process is applied on the acquired image, taking into account the presence of point targets. Finally, the image is despeckled. The experimental results show that the despeckling filters achieve better performance when they are preceded by the proposed whitening method; furthermore, the radiometric characteristics of the image are preserve

    An approach for SLAR images denoising based on removing regions with low visual quality for oil spill detection

    Get PDF
    This paper presents an approach to remove SLAR (Side-Looking Airborne Radar) image regions with low visual quality to be used for an automatic detection of oil slicks on a board system. This approach is focused on the detection and labelling of SLAR image regions caused by a poor acquisition from two antennas located on both sides of an aircraft. Thereby, the method distinguishes ineligible regions which are not suitable to be used on the steps of an automatic detection process of oil slicks because they have a high probability of causing false positive results in the detection process. To do this, the method uses a hybrid approach based on edge-based segmentation aided by Gabor filters for texture detection combined with a search algorithm of significant grey-level changes for fitting the boundary lines in each of all the bad regions. Afterwards, a statistical analysis is done to label the set of pixels which should be used for recognition of oil slicks. The results show a successful detection of the ineligible regions and consequently how the image is partitioned in sub-regions of interest in terms of detecting the oil slicks, improving the accuracy and reliability of the oil slick detection.This work was supported by the project (RTC-2014-1863-8) of call for collaboration challenges MINECO
    • 

    corecore