273 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    A binary tree-structured MRF model for multispectral satellite image segmentation

    Get PDF
    In this work we detail a tree-structured MRF (TS-MRF) prior model useful for segmentation of multispectral satellite images. This model allows a hierarchical representation of a 2-D field by the use of a sequence of binary MRFs, each corresponding to a node in the tree. In order to get good performances, one can fit the intrinsic structure of the data to the TS-MRF model, thereby defining a multi-parameter, flexible, MRF. Although a global MRF model is defined on the whole tree, optimization as well estimation can be carried out by working on a single node at a time, from the root down to the leaves, with a significant reduction in complexity. Indeed the overall algorithm is proved experimentally to be much faster than a comparable algorithm based on a conventional Ising MRF model, especially when the number of bands becomes very large. Thanks to the sequential optimization procedure, this model also addresses the cluster validation problem of unsupervised segmentation, through the use of a stopping condition local to each node. Experiments on a SPOT image of the Lannion Bay, a ground-truth of which is available, prove the superior performance of the algorithm w.r.t. some other MRF based algorithms for supervised segmentation, as well as w.r.t. some variational methods

    A robust framework for medical image segmentation through adaptable class-specific representation

    Get PDF
    Medical image segmentation is an increasingly important component in virtual pathology, diagnostic imaging and computer-assisted surgery. Better hardware for image acquisition and a variety of advanced visualisation methods have paved the way for the development of computer based tools for medical image analysis and interpretation. The routine use of medical imaging scans of multiple modalities has been growing over the last decades and data sets such as the Visible Human Project have introduced a new modality in the form of colour cryo section data. These developments have given rise to an increasing need for better automatic and semiautomatic segmentation methods. The work presented in this thesis concerns the development of a new framework for robust semi-automatic segmentation of medical imaging data of multiple modalities. Following the specification of a set of conceptual and technical requirements, the framework known as ACSR (Adaptable Class-Specific Representation) is developed in the first case for 2D colour cryo section segmentation. This is achieved through the development of a novel algorithm for adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path Growing Algorithm), combined with Learning Vector Quantization. The framework is extended to accommodate 3D volume segmentation of cryo section data and subsequently segmentation of single and multi-channel greyscale MRl data. For the latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is based on comparison with previously published results on standard simulated and real data sets, using visual presentation, ground truth comparison and human observer experiments. ACSR provides the user with a simple and intuitive visual initialisation process followed by a fully automatic segmentation. Results on both cryo section and MRI data compare favourably to existing methods, demonstrating robustness both to common artefacts and multiple user initialisations. Further developments into specific clinical applications are discussed in the future work section

    Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery

    Get PDF
    Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Dynamic Block-Based Parameter Estimation for MRF Classification of High-Resolution Images

    Get PDF
    International audienceA Markov random field is a graphical model that is commonly used to combine spectral information and spatial context into image classification problems. The contributions of the spatial versus spectral energies are typically defined by using a smoothing parameter, which is often set empirically. We propose a new framework to estimate the smoothing parameter. For this purpose, we introduce the new concepts of dynamic blocks and class label co-occurrence matrices. The estimation is then based on the analysis of the balance of spatial and spectral energies computed using the spatial class co-occurrence distribution and dynamic blocks. Moreover, we construct a new spatially weighted parameter to preserve the edges, based on the Canny edge detector. We evaluate the performance of the proposed method on three data sets: a multispectral DigitalGlobe WorldView-2 and two hyperspectral images, recorded by the AVIRIS and the ROSIS sensors, respectively. The experimental results show that the proposed method succeeds in estimating the optimal smoothing parameter and yields higher classification accuracies when compared to the state-of-the-art methods
    • …
    corecore