778 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Quantum Resistant Authenticated Key Exchange for OPC UA using Hybrid X.509 Certificates

    Get PDF
    While the current progress in quantum computing opens new opportunities in a wide range of scientific fields, it poses a serious threat to today?s asymmetric cryptography. New quantum resistant primitives are already available but under active investigation. To avoid the risk of deploying immature schemes we combine them with well-established classical primitives to hybrid schemes, thus hedging our bets. Because quantum resistant primitives have higher resource requirements, the transition to them will affect resource constrained IoT devices in particular. We propose two modifications for the authenticated key establishment process of the industrial machine-to-machine communication protocol OPC UA to make it quantum resistant. Our first variant is based on Kyber for the establishment of shared secrets and uses either Falcon or Dilithium for digital signatures in combination with classical RSA. The second variant is solely based on Kyber in combination with classical RSA. We modify existing opensource software (open62541, mbedTLS) to integrate our two proposed variants and perform various performance measurement

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    SoK: Design, Vulnerabilities and Defense of Cryptocurrency Wallets

    Full text link
    The rapid growth of decentralized digital currencies, enabled by blockchain technology, has ushered in a new era of peer-to-peer transactions, revolutionizing the global economy. Cryptocurrency wallets, serving as crucial endpoints for these transactions, have become increasingly prevalent. However, the escalating value and usage of these wallets also expose them to significant security risks and challenges. This research aims to comprehensively explore the security aspects of cryptocurrency wallets. It provides a taxonomy of wallet types, analyzes their design and implementation, identifies common vulnerabilities and attacks, and discusses defense mechanisms and mitigation strategies. The taxonomy covers custodial, non-custodial, hot, and cold wallets, highlighting their unique characteristics and associated security considerations. The security analysis scrutinizes the theoretical and practical aspects of wallet design, while assessing the efficacy of existing security measures and protocols. Notable wallet attacks, such as Binance, Mt. Gox are examined to understand their causes and consequences. Furthermore, the paper surveys defense mechanisms, transaction monitoring, evaluating their effectiveness in mitigating threats

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

    Get PDF
    Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HBC^C protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version
    corecore