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Abstract

While the current progress in quantum computing opens new opportunities in a wide range of
scientific fields, it poses a serious threat to today’s asymmetric cryptography. New quantum
resistant primitives are already available but under active investigation. To avoid the risk of
deploying immature schemes we combine them with well-established classical primitives to
hybrid schemes, thus hedging our bets. Because quantum resistant primitives have higher
resource requirements, the transition to them will affect resource constrained IoT devices in
particular. We propose two modifications for the authenticated key establishment process
of the industrial machine-to-machine communication protocol OPC UA to make it quantum
resistant. Our first variant is based on Kyber for the establishment of shared secrets and uses
either Falcon or Dilithium for digital signatures in combination with classical RSA. The second
variant is solely based on Kyber in combination with classical RSA. We modify existing open-
source software (open62541, mbedTLS) to integrate our two proposed variants and perform
various performance measurements.
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1 Introduction

Today’s industrial control systems (ICSs) often comprise a network of different components
such as sensors and actuators, programmable logic controllers (PLCs), supervisory control and
data acquisition (SCADA) systems as well as human machine interfaces (HMIs). Furthermore,
manufacturing execution systems (MESs) and enterprise resource planning systems (ERPs)
on higher levels enable production control and scheduling from a business perspective. New
applications like data mining and machine learning allow to improve the production process
but require to interconnect these systems on all levels, thus forming a cyber physical system
(CPS). The industry is slowly becoming aware of the fact that ICSs suffer from the same
security threats as classical computer networks and are starting to deploy security measures.
An example is the vendor independent machine to machine (M2M) communication protocol
OPC Unified Automation (OPC UA). It was designed from the ground up with security in
mind and uses strong cryptography.

But recent advances in quantum computing start to threaten the security measures. Most
of the currently used asymmetric cryptography schemes rely on the hardness of integer factor-
ization and the discrete logarithm of large numbers. An algorithm, for quantum computers,
to efficiently solve the two aforementioned problems, i.e. in polynomial time, already exists
today [1]. The only missing part to render most current asymmetric crypto systems useless
is a large scale quantum computer. However, it seems quite possible that such a large scale
quantum computer will become reality within the next few decades. This threat has lead to
active research in the field of quantum resistant crypto algorithms and their incorporation
into protocols. But the effort focuses mainly on standard IT and doesn’t consider the ICS
devices’ peculiarities such as small memory and reduced computing resources.

The following sections of this introduction will explain the development of industrial au-
tomation systems towards the Industrial Internet of Things (IIoT) with a special focus on
security measures in place. Then, a quick overview of the OPC UA protocol and introduction
to the threat of quantum computers on its security will be given.

1.1 Industrial Internet of Things

An ICS can be separated into the Field-, Direct Control-, Supervisory Control-, Production
Control- and Production Scheduling levels as depicted in Figure 1. The information-flow
between the levels used to be as follows: The field-, direct- and supervisory control level used
to communicate via proprietary field bus protocols. The higher levels with the MESs and
ERPs are located in the office IT network of the company. Data was transmitted manually
from the supervisory control level to the higher layers, which could have been as simple as
a worker reading gauge values and noting them down on a report sheet. Typical IT security
threats, such as worms, viruses and trojans, did not apply to these systems.

However, with cheap sensor and network technology becoming more widely available, a
tendency to deploy standard components and technology in ICSs emerged. Field bus protocols
were replaced with Ethernet-like standards such as ProfiNet for PLC communication and
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sensors/actuators (I/O)

PLC

SCADA

MES
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Direct Control Level

Supervisory Control Level

Production Control

Production Scheduling

Figure 1: Automation pyramid showing at which logical level the functions are located in an
industrial network.

standard Windows PCs are used to run SCADA software. In this thesis these networks
will be referenced as industrial control system, industrial network or automation network
synonymously. The rest of a company’s network with typical services such as e-mail, web
servers and access to the internet will be called office network, corporate network or business
network.

Even though it was always considered a security risk to connect the automation to the cor-
porate network, it is, in fact, done in practice [2], which is not surprising since in combination
with big data analytics it will increase efficiency significantly [3, p. 4].

The term Industrial Internet of Things will be used for industrial networks that are con-
nected to the office network.

Apart from the enormous advantages, connectivity undermines the traditional main secu-
rity feature of these networks: Strict separation from the office IT and the internet [2], [4]. A
growing number of incidents have shown that new strategies for industrial network security
are needed. The incidents range from a worm intended for office networks but also making
its way into the industrial network of a nuclear power plant [5] over malware gathering infor-
mation specifically from ICSs [6] to the infamous Stuxnet sabotage attack [7]. A new concept
coming up in the industry is "defense in depth" [4], [8]–[10], which uses not only perimeter
security (i.e. strict separation of networks) but follows the strategy of "Prevent" – "Detect" –
"Response", where the focus of this thesis on encryption and authentication falls in the first
category "Prevent". An example of such an in-depth security building block is the use of the
OPC UA protocol, which is designed for the communication between industrial devices and
offers a range of security features.

1.2 OPC Unified Automation

OPC UA was first published in 2006 by the OPC Foundation, a consortium of the automation
industry. It is a set of standards that define a data model for industrial communication that

11



helps to increase vendor independent interoperability throughout all levels of the automation
pyramid. Additionally, OPC UA describes different encodings for the data models as well
as network protocols. Exemplary data which is exchanged using OPC UA are sensor values
and set point values. For instance, think of an OPC UA enabled air conditioner system, that
accepts temperature as a writeable value. It also senses the humidity, which it exposes for
other devices as a readable value. A PC could connect to the air conditioner, display the
humidity and let the user set the temperature via a graphical user interface (GUI) [11, p. 85].
Of course this is only a minimal example, in practice automation systems are usually more
complex.

Currently OPC UA supports the data encodings UA Binary, XML/text and JSON. Each
encoding uses different network transport layers, i.e. XML/text uses HTTP and JSON uses
WebSockets, both on top of transport layer security (TLS). They are intended for the use in
higher layer systems that typically use desktop PC hardware and can deal with high protocol
overhead. For UA Binary, OPC UA defines its own transport layer OPC UA TCP and a
service called secure channel to provide confidentiality and integrity [11, p. 198, 211]. The
secure channel design is loosely based on TLS. Due to its very small resources footprint,
compared to XML/text and JSON, UA Binary is used in the lower levels of the ICS.

From the early design phases on, OPC UA seriously considered IT security [12, p. 9].
Network traffic can be encrypted to provide confidentiality and all messages can be signed to
provide integrity. The use of PKIs allows the devices to authenticate each other, which makes
it much harder for an attacker to insert malicious devices into the network or for corrupted
devices to impersonate others. Security evaluations regarding the protocol itself as well as its
popular implementations have been carried out and couldn’t find any serious flaws [13], [14].

The OPC UA protocol stack is currently available for Python, C#.Net, C and Java.
Prototypical implementations in the scope of this thesis will make use of the open source
library open62541 which is implemented in C and published under the Mozilla Public License
v2.01 [15]. Since there is already research work carried out for quantum resistant versions of
TLS [16], [17] this thesis will focus on the security of the binary version of OPC UA only.

1.3 Post Quantum Cryptography

The asymmetric crypto algorithm used in OPC UA depends on the security profile selected,
but the recommendation is RSA with a key size of 2048 bits. In this thesis, when RSA is
mentioned without a key size, by default 2048 bits is assumed. The security of RSA can be
reduced to the problem of factorizing large integers, which is believed to be hard because
it can only be solved in subexponential time on a classical computer. However Peter Shor
developed an algorithm that makes use of superposition in a potential quantum computer,
thus solving the factorization problem in polynomial time in O(logN), where log(N) is the
number of digits of N [1]. Running Shor’s algorithm requires a quantum computer with at
least 2 + 3

2 log(N) fault tolerant qubits [18]. For RSA 2048 (log(N) = log(22048) = 2048)

1Available from https://open62541.org/ and https://github.com/open62541/open62541
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this would be 3074. However, physical qubits are not fault tolerant and many of them are
needed in order to emulate one logical (fault tolerant) qubit. Thus running Shor’s algorithm
for large numbers requires several millions [19] if not hundreds of millions of qubits [20]. In
contrast, the latest breakthrough in quantum computing, as of 2019, is a 53 qubit quantum
computer [21]. Even though today’s quantum computers are far from being powerful enough,
from here on the term quantum computer will be used for a possible future large scale version
that is powerful enough to break RSA.

The possibility of such a quantum computer has sparked interest in a field of research
called quantum resistant or post quantum (PQ) cryptography. There are some algorithms
available that are based on problems for which no efficient conventional nor quantum solution
is found yet. These algorithms and the underlying mathematical problems are under active
investigation and it is quite possible that cryptanalysis uncovers new weaknesses or bad pa-
rameter choices. However as research progresses, confidence into these new algorithms will
grow and they will be ready to be used as a replacement of RSA.

The remaining question is: When should we start the transition to quantum resistant
algorithms? To answer that question we have to consider the following [22]:

• The time we want the data to remain secret denoted as x. It is possible that an attacker
records encrypted data today and decrypts it in the future when he becomes able to
do so. We have to ensure that encryption happens only after time x, when the data
has become irrelevant. Note that for authentication x = 0 since it can not be broken
afterwards.

• The time y that we need for the transition to new cryptographic systems for all our
devices. This value depends on the measures that we have to take. If our current
hardware is capable of executing new algorithms, software updates might be sufficient.
However, if new hardware is required this can be a more complex task. Especially in the
automation industry, devices often are used for >15 years in order to get a reasonable
return of investment.

If we say z is the time we have left until a quantum computer is available, then we have
to ensure that x + y < z. x is a question of policy and to estimate y we have to investigate
how complex the migration time is. But z is hard to predict. Michele Mosca, a renowned
researcher in the field of quantum algorithms, estimates a 1/7 chance to break RSA 2048 by
2026 and a 1/2 chance to break it by 2031 [22].

This estimation shows that it is important to start investigating quantum resistant schemes
and to analyse the effort that has to be taken to implement those in a large scale. For the
automation industry it will be very beneficial to have prototypes of quantum resistant com-
munication devices available as soon as possible in order to properly estimate the migration
time y.

In this thesis, the terms quantum resistant or post quantum cryptography describe all
schemes that are hard to break, even for an attacker with access to a quantum computer,
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opposed to conventional or classical cryptography, that is only hard to break on a conventional
computer.

1.4 Hybrid Cryptography

As explained before, most quantum resistant crypto primitives are rather new and have not
withstood many years of cryptanalysis yet. This leaves us in the situation that on one hand,
we have the threat that in the not so distant future conventional crypto might be broken,
on the other hand, there is a risk that quantum resistant schemes may suffer from teething
problems.

A good compromise is a hybrid approach, i.e. to combine conventional and quantum
resistant schemes in such a way that an attacker has to break both in order to break the
system. For instance, this concept is very useful in key exchange protocols, where a key can
be derived from multiple partial keys such that knowledge of less than all partial keys is
completely useless for an attacker. We exchange each partial key using a different scheme.
Also for signature schemes it is very easily applicable, by signing the message twice, each
with a different scheme. Only when both signatures can be verified we consider the message
authentic.

Note that the term hybrid is ambiguous in the context of cryptography. Typically it
describes a system that combines symmetric with asymmetric schemes. However in the context
of PQ crypto, as well as in this thesis, hybrid cryptography refers to the principle described
above.

1.5 Scope and Goals

The primary aim of this work is to present a novel method for an authenticated quantum
resistant hybrid key exchange in OPC UA. In order to reach this goal we will outline an
exemplary PKI suitable for the industrial environment. Then we will evaluate different ways
of using X.509 compliant quantum resistant hybrid certificates. Finally we will put these
parts together to an authenticated key exchange method based on existing work about unau-
thenticated but quantum resistant hybrid key exchange for OPC UA. We will focus on the
client/server communication model and not consider the publisher/subscriber model which
has just very recently been introduced into OPC UA and has not been properly adopted by
the protocol stack implementations yet.

Thus, the main research question is:

How can we design an authenticated hybrid key exchange that combines conventional and
quantum-resistant cryptographic primitives for an OPC UA based industrial network, using
hybrid X.509 compliant certificates?

In particular following questions shall be answered:
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• How can we incorporate additional quantum resistant public keys into X.509 certificates
while maintaining backwards compatibility, in the setup of an OPC UA secure session?

• How can we digitally sign certificates, used in the OPC UA secure channel setup,
within a quantum-resistant PKI that utilizes conventional and post-quantum signature
schemes.

• How can we use these certificates to authenticate a key exchange in OPC UA.

• What are the performance impacts of our proposed solution on currently used micro
controller hardware?
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2 State of the Art

This section shall give an overview over all the "building blocks" that are used to arrive at the
goal of this work. We first have to take a detailed look at the conventional security features
of OPC UA, in particular on how to setup secure channels. While OPC UA is intended
for the use with PKIs, the standard leaves the actual design of said PKI open [11, p. 212].
Therefore we will point out the peculiarities of industrial PKIs in contrast to normal PKIs
and survey different concepts in literature. Furthermore we will introduce relevant quantum
resistant cryptographic primitives. Finally, different hybrid schemes will be explained, setting
the stage for authenticated key exchange methods.

2.1 OPC UA

As explained in Section 1.2, OPC UA is not only a network protocol, but defines an informa-
tion model for industrial process data and different ways of how to encode this data. It also
describes ways of transmitting the encoded data through the network, which can be seen as
the protocol part. For higher level systems, the data is transported using the standard proto-
cols HTTP and WebSockets, both relying on TLS for security. For them, it seems appropriate
to wait for quantum resistant versions of TLS to be used in the web and then adopt them
into OPC UA.

However in order to avoid as much protocol overhead as possible, OPC UA defines its
own transport layer based on TCP/IP and names it OPC UA TCP and basing security on
its own secure channel layer. The data is encoded using the UA Binary encoding, defined in
part 6 of the OPC UA standard [23]. For this protocol it is necessary to investigate a post
quantum secure version on its own. Thus, this work will solely focus on OPC UA TCP with
UA Binary encoding and will refer to it simply as OPC UA protocol.

2.1.1 Security of OPC UA

Part 2 of the OPC UA specification [10] gives an overview over the security goals that the
standard considers and describes a threat model.

Then it defines the term security profile [10, p. 16] as a set which enumerates the security
functionalities that a certain OPC UA product offers. A security profile can contain several
security policies. A policy defines the concrete algorithms and cryptographic primitives that
have to be used for signing, encryption and key derivation. For instance, "Basic256Sha256"
stands for a cipher suite with RSA 2048, Sha256 and AES-CBC 256. Usually the adminis-
trator of an application decides which security policies he wants to enable. Additionally, each
connection has one of the three security modes: "None", "Sign" and "SignAndEncrypt". Ac-
cording to the OPC UA specification, the security policy "None" is intended only for testing
and the security mode "None" can only be used with this policy. When the security mode
"Sign" is used, the session key exchange happens encrypted and all other communication
is secured by a message authentication code (MAC) but not encrypted. This makes sense
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since in the industrial environment the goal integrity is usually much higher prioritised than
confidentiality [24, p. 279].

2.1.2 Protocol Overview

Client – Server connections in OPC UA are organised in logical layers. In the highest layer
there is a session between client and server. Users are authenticated and authorized per
session. The session data is transmitted inside a secure channel. Besides integrity and con-
fidentiality, the secure channel layer also provides authentication between the applications
by the means of certificates. On the lowest level, the transport layer is responsible for the
delivery of messages and functions such as data fragmentation. Figure 2 shows the layers.

Application Layer

User Authentication
& Authorization

Product Authentication
& Authorization

session

Secure Channel

Socket Connection

Application Layer

User Authentication
& Authorization
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& Authorization

Communication Layer

Application
Authentication
& Authorization

Confidentiality Integrity

Communication Layer

Application
Authentication
& Authorization

Confidentiality Integrity

Transport Layer

Availability

Transport Layer

Availability

Figure 2: OPC UA communication layers [11, p. 211]

An OPC UA server offers different endpoints. They could provide different functionalities,
or the same functionality with a different combination of security policies and security modes.
For simplicity herein we will focus on very simple servers that just offer a single functionality
and the endpoints only differ in their security configuration. For example, a server could offer
two endpoints with the security policy "Basic256Sha256" and the security mode "Sign" for
the first endpoint and with the same policy, but with the security mode "SignAndEncrypt" for
the second endpoint. Both endpoints expose a single read only variable as their functionality.
The server provides a certificate for each endpoint, even when each endpoint uses the same
one. The client can then decide which endpoint he wants to connect to.

A client either knows available endpoints in advance or he queries them by sending an
unencrypted getEndpointsRequest to the server. The server answers with a getEndpointsRe-
sponse, which contains all available endpoints as well as the server’s certificate with his public
key.

In detail, first the OPC UA TCP transport layer has to be established. Therefore, the two
parties negotiate the maximum message length, called chunk size, by sending a HEL message
from the client and replying with an ACK message from the server. This serves the purpose to
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initialize appropriately sized message buffers on each side and also determines the maximum
chunk size. Before the getEndpoint request and response can be transmitted it is required to
establish a secure channel first, however, it uses the security policy "None" which means no
encryption and integrity checks are performed. Finally the connection is terminated again.
The upper part of Figure 3 shows this in detail.

Subsequently, a new connection is established with a secure channel that uses a security
policy different from "None", picked by the client from the available policies on that server.
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Figure 3: Detailed view of the exchanged messages in order to connect to a server.

On top of the secure channel, a session is established. The session is independent from
the secure channel, which means that the secure channel can be closed and reopened without
terminating the session.

2.1.3 Secure Channel in OPC UA

We will take a closer look at the secure channel: During the establishment of the channel,
asymmetric cryptography is used to authenticate the applications and to derive a shared
session key. Afterwards symmetric cryptography is used to encrypt and provide message
authentication.

After the connection is established on the transport layer, we need to open a secure channel
as shown in Figure 4. Thus, the client sends an openSecureChannel request to the server.
This request contains the client’s certificate, the security policy he wants to use (not shown
in the figure), a random number called nonceclient, a thumbprint of the server’s certificate
tbserver and a signature s1 over the whole message. nonceclient and the signature s1 are
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encrypted using the server’s public key. The server receives that message and verifies the
client’s certificate and the thumbprint. Then, he uses his own private key to decrypt the
message and verifies the signature using the client’s public key from the certificate.

certclient, tbserver, c1

Client Server

certserver, endpoints

getEndpointResponse

openSecureChannel Request

certserver, tbclient, c2
openSecureChannel Response

nonceclient= random()

tbserver = H(certserver)

s1 = sigsk_client(certclient | tbserver | nonceclient)

c1=Epk_server(nonceclient | s1)

(nonceserver | s2) = Dsk_client(c2)

k = KDF(nonceclient, nonceserver)

(nonceclient | s1)  = Dsk_server(c1)

nonceserver = random()

tbclient = H(certclient)

s2 = sigsk_server(certserver | tbclient | nonceserver )

c2 = Epk_client(nonceserver | s2)

k = KDF(nonceclient, nonceserver)

verify(certclient)

verify(certserver)

Figure 4: Key exchange in OPC UA. H() is a cryptographic hash function, Epk() is an
encryption function using the public key pk, sigsk is a signature function using the private
key sk, Dsk() is a decryption function using the private key sk and KDF () is a key derivation
function.

Next, the server will generate his own random number nonceserver and encapsulate it into
a message, the same way as the client did, adding a signature and encrypting the packet
using the client’s public key and sends it to the client. Now both sides know nonceclient and
nonceserver and use them as input to a key derivation function to generate the symmetric
session key k.

2.2 X.509 Certificate Format

X.509 certificates have the purpose of binding an identity to a public key. This is done by
writing the name and public key together into a file, then computing a hash over this file and
attaching a signature of the hash at the end of the file. To verify a certificate, the verifier
needs to know the public key of the signer of the certificate, also called issuer, which he could
as well obtain via a certificate. This way, a chain of certificates can be constructed, however
the last public key in the chain has to be trusted, thus it is called the trust anchor. The
system of certificate chains forms a part of a PKI which is further described in Section 2.3.

This section explains the structure and file format used for X.509 certificates as specified
by RFC 5280 [25]. In particular we refer to version 3 called X.509v3. For clearer notation
we only refer to X.509 and mean X.509v3 implicitly. The format is described in Abstract
Syntax Notation One (ASN.1) [26], which is comparable to a struct in the C programming
language but more generic and independent from actual programming languages. Figure 5
gives a graphical representation of the important parts of the X.509 data structure: The cer-
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tificate consists of three data fields: While signatureAlgorithm specifies which algorithm was
used, signatureValue contains the actual signature over the binary representation of tbsCer-
tificate. tbsCertificate itself is constructed from more data types and contains organizational
information, the subject, i.e. the identity that is bound to a public key, the issuer, the public
key of the subject and a field with extensions. The extension field consists of a sequence of
extension objects, each having an ID, an attribute that defines if it is critical and the binary
extension data. When a software parses the certificate it will check the ID of the extension
and then decide how to interpret the binary extension value. If the extension ID is unknown
and critical equals false, the extension is simply ignored but for unknown critical extensions
the verification will fail. RFC5280 defines 15 standard extensions that are known by common
software, however, it is possible to define custom extensions to be used with specialized tools.

tbsCertificate

Certificate

signatureAlgorithm

signatureValue
(bit string)

tbsCertificate

version (int)

serialNumber (int)

signature

issuer

validity

subject

subjectPublicKeyInfo

IssuerUniqueID

subjectUniqueID

subjectUniqueID

algorithm (OID)
AlgorithmId

parameters (ANY)

type (OID)
Name

value (ANY)

not before
Validity

not after

type (OID)
Name

value (ANY)

algorithm
KeyInfo

subjectPublicKey
(Bit String)

extension

ExtensionID
Extension

critical (BOOL)

Extension Value (Bytes)

• • •

• • •

• • •

• • • 
primitive
constructed

sequence

Figure 5: Structure of an X.509 certificate. The three dots mean that this type is repeated in
a sequence 0 – n times. Primitive data types can be encoded directly and constructed data
types consist of a set of primitive types.

Each data type can be encoded into a binary representation as defined by the Distinguished
Encoding Rules (DER) [27]. Every container in Figure 5 is represented as a sequence of data.
For example, the container Certificate is a sequence of the three objects inside, represented
by their respective binary data. The binary representation of a certificate therefore is one
byte that identifies a sequence followed by several bytes defining the length of the sequence.
After that, the binary data of tbsCertificate follows. The end of tbsCertificate and the start
of signatureAlgorithm can be determined by examining the first few bytes of tbsCertificate,
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which contain the length of this sequence.
To sign a certificate we must follow these steps:

1. setting the proper data in tbsCertificate (subject, signer, public key, etc.)

2. set the proper algorithm identifiers

3. encode tbsCertificate into its binary representation

4. calculate the signature form this binary data and write it to signatureValue

Later sections discuss the use of the Extension field to adopt this format for the use in
hybrid public key schemes.

2.3 Public Key Infrastructures for IIoT

As mentioned before, parts of the OPC UA security depend on certificates. However the
standard does not specify how certificates are signed [11, p. 212] and in general does not
define the structure of a PKI. Of course the first idea would be to use the same PKIs that
are already in use for the web. But it turns out that the requirements for industrial networks
are different. For example, in the web, typically only the server is authenticated, whereas in
an industrial network usually mutual authentication is desired [28].

Since awareness for IT security in industrial networks started to rise only in the past
few years, there exist no well established best practices for industrial PKIs yet. The NIST’s
"Guide to Industrial Control Systems (ICS) Security" from 2011 [4] discusses mainly firewall
configurations, i.e. network separation, as a means of technical security measures and does not
consider PKIs as part of a cyber security strategy for industrial networks. On the contrary,
more recent studies [9, p. 13] do start to demand PKIs for mutual authentication between
devices, also as a result of the increasing demand for cloud services.

2.3.1 Differences between Classical and Industrial PKIs

Because PKIs have been well studied for classical IT environments, it is interesting to point
out some differences of their industrial counter parts.

• In an industrial PKI, a certificate identifies a device, whereas a certificate classically
identifies a person or organisation.

• The administrative overhead that is acceptable to sign a certificate is much lower. While
it is feasible to check an ID card before signing a certificate, this approach would not
scale very well if for every device that has to be replaced in a factory plant we would
have to manually sign its certificate. In fact, in classical PKIs you can observe that only
servers are equipped with certificates since it is considered too costly and intricate for
every single user [29, p. 18]
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This leads to problems mainly in provisioning of new devices in the factory plant. A pos-
sible solution is to consider two separate PKIs: The operator and the manufacturer PKI [28].
The manufacturer of the devices equips all his produced devices with a manufacturer certifi-
cate that contains data such as a public key, serial ID etc. and is signed by the manufacturer
certificate authority (CA). During provisioning the new device can setup a secure connection
with the operator PKI’s registration authority (RA). The operator RA can verify the data
of the new device using the manufacturer CA’s public key and decides if the device can be
trusted2. Now the new device has to generate a new key pair and send a certificate signing
request to the RA. Once this certificate is signed, all other devices in the ICS will trust this
device as well.

Independently from available solutions we can formulate following special requirements
for an industrial PKI:

• Run in an isolated network, possibly without internet connection.

• Every end device needs a certificate (not only servers).

• Very little to no human interaction when provisioning certificates to new devices.

• Signature verification must be possible on resource constraint devices (regarding memory
and CPU power).

2.3.2 Exemplary PKI

For the purpose of this thesis, we find ourselves in the situation that on one hand, there are
no well established industrial PKI solutions yet, on the other hand, that a quantum resistant
authentication scheme depends on such an infrastructure. Thus we will rely on evaluations
done in research literature in order to sketch out a PKI scheme that can be used for evaluation
in conjunction with quantum resistant hybrid certificates. In [30] the following three trust
models are shown:

• A Web of Trust as it is used in pretty good privacy (PGP).

• The Direct Trust Model where all certificates are installed manually in a trust list.

• A hierarchical PKI where certificates are signed by a root CA and intermediate CAs.

And they come to the conclusion that the Web of Trust and the Direct Trust Model do not
scale sufficiently [30]. Thus we will consider a typical hierarchical PKI with one root CA at the
corporate level and intermediate CAs for each factory plant and assume that the additional
requirements from 2.3.1 can be fulfilled by introducing concepts like the manufacturer and
operator PKI.

2For instance the RA could have rules like "always trust model x from vendor y", it could know the
serial numbers of all purchased devices or there could be a message that a human supervisor has to confirm.
Additionally a log entry can be made to provide an audit trail.
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Figure 6: Exemplary industrial PKI for a company with multiple factory plants.

Figure 6 shows the exemplary industrial PKI that we consider for this thesis. The company
operates one root CA. Every factory plant runs an intermediate CA that is signed by the root
CA. All devices in the factory plant have certificates that are signed by the corresponding
intermediate CA and need to have the root certificate installed. By caching their intermediate
CA’s certificate, the devices inside the factory plant, between which we expect the majority of
communication, do not need to exchange long certificate chains. Only when devices between
factory plant A and B need to communicate, they have to include their intermediate certificate
into the chain.

2.4 Security Levels

When cryptographic primitive shall be compared or when primitives have to be parametrized
to have an equivalent security, the need to quantize the security of algorithms arises. For
example, when two or more primitives are combined in a hybrid scheme it is desired to have
the same level of security for each algorithm.

This security level is commonly expressed in bits, meaning that an attacker has to perform
at least 2n computational steps in order to break a n-bit secure cipher or hash function with n
bits of output. Symmetric ciphers for which the best known attack is a brute force search over
the whole key space have a security level corresponding to the key length. For hash functions
with n-bit output the preimage resistance security level is also n-bit, because on average we
have to perform 2n calculations, but the collision resistance is usually much lower due to the
birthday paradox.

For asymmetric primitives there are more efficient attacks available than brute force
searches. Therefore we have to relate the security level to the computational steps performed
by these attacks. For example, to achieve roughly 128-bit security for RSA, a key length of
3072 bits is required [31, p. 63]. Actually breaking RSA, i.e. solving the RSA problem, is
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not harder than factoring the modulo N = p · q of the public key [32, p. 1065]. Similar, the
Diffie-Hellmann (DH) key exchange primitive can be broken by solving the discrete logarithm
problem [33].

The NIST has defined five security levels used in their PQ cryptography project (see Sec-
tion 2.5.1). Level L1, L3 and L5 correspond to 128-bit, 192-bit and 256-bit security respec-
tively. L2 and L4 are defined as algorithms that can be broken with the same computational
resources as required to find a collision in SHA-256 and SHA-384 [34, p. 16]. These levels will
be used throughout the thesis to compare cryptographic primitives.

Bruce Schneier recommends 128 bit security for the most valuable secrets [35] so at least
for sensor data etc. this security level should be sufficient.

2.5 Post Quantum Cryptography

Today, there exist no algorithms that can solve integer factorization or the discrete logarithm
problem in polynomial time on a classical computer. Nor is there a method to reduce the
number of steps in a brute force search on the keyspace of, for instance Advanced Encryption
Standard (AES) or hash functions.

However two algorithms, designed for quantum computers, tackle these problems, thus
rendering crypto systems based on the above described problems insecure. The first one,
Grover’s search algorithm [36], allows to perform a brute force search with a square root
speed up. This means that the complexity is reduced from O(n) to O(

√
n) and the bit level

security of symmetric crypto primitives such as AES or Secure Hash Algorithm (SHA) is
halved. If we want to achieve an equivalent bit level security in a post quantum scenario we
have to double the key sizes. This change in security parameters is feasible and therefore we
can conclude that quantum computers with Grover’s algorithm do not pose a serious threat
to symmetric ciphers and cryptographic hash functions.

On the contrary, Shor’s algorithm is capable of factorizing large prime numbers and solving
the discrete logarithm problem in polynomial time on a quantum computer [1]. Unlike the
solution for symmetric primitives, increasing the key size is a practically ineffective counter
measure. Thus, we have to consider all commonly used asymmetric cryptographic primitives
as broken in a PQ scenario. Table 1 lists the most common algorithms and the effect of
quantum computers on them. The only strategy left is to switch to new algorithms that do
not depend on the difficulty of integer factorization and the discrete logarithm.

The most promising quantum resistant cryptography systems can be divided into four
categories [37] that are explained in more detail in the following subsections:

• Code based

• Hash based

• Multivariate Polynomial based

• Lattice based
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Table 1: Effects of Grover’s and Shor’s algorithm on commonly used cryptographic primi-
tives [37].

Type Scheme Post-quantum
security level

Public key encryption RSA Broken
ECC Broken

Signatures RSA Broken
DSA Broken
ECDSA Broken

Key exchange DH Broken
ECDH Broken

Symmetric key encryption AES-128 64 bit
AES-256 128 bit

Hash functions SHA-256 128 bit
SHA-3-256 128 bit

A fifth category, isogeny based, is also emerging, however is not considered in this thesis
as it is still a very new field.

2.5.1 NIST Post-Quantum Cryptography Project

Different standardization organisations have started to address quantum secure cryptography.
The ETSI’s Quantum Safe Working Group [38] has published several studies on post quantum
scenarios and on quantum safe algorithms, the IETF has looked into some proposals for the
integration of quantum safe algorithms in protocols such as TLS and X.509 certificates [25],
[39], [40] and the US NIST is running their Post-Quantum Cryptography standardization
project [41].

The NIST PQ project’s goal is to specify one or more publicly disclosed digital signature,
public-key encryption and key-establishment algorithms that are secure even in the presence
of a quantum computer by 2024. Therefore, they have asked the public for proposals for
quantum secure key encapsulation methods (KEMs) and signature schemes. The proposals
have undergone vivid discussions among the community of cryptography experts and the
algorithms left in round 2, which is the current status of the project as of writing this thesis,
are promising candidates for future standardized post quantum schemes. Table 2 shows the
17 KEMs and 9 signature schemes in round 2. Due to the progress of the NIST’s project and
the vast public attention it receives, this thesis focuses on the algorithms of round 2 of this
project. Note that NIST did not consider stateful signature schemes.

The following sections will first give some basic insight into the mathematical foundations
of simple examples of each family and will then discuss the specific properties of the NIST

25



Table 2: Encryption schemes of round 2 of the NIST’s PQ crypto project.

Type Name Family
Public key encryption BIKE Code
and key exchange Classic McEliece Code

CRYSTALS-KYBER Lattice
FrodoKEM Lattice
HQC Code
LAC Lattice
LEDAcrypt Code
NewHope Lattice
NTRU Lattice
NTRU Prime Lattice
NTS-KEM Code
ROLLO Code
Round5 Lattice
RQC Code
SABER Lattice
SIKE Isogeny
Three Bears Lattice

Signatures CRYSTALS-DILITHIUM Lattice
FALCON Lattice
GeMSS Multivariate
LUOV Multivariate
MQDSS Multivariate
Picnic -
qTESLA Lattice
Rainbow Multivariate
SPHINCS+ Stateless hash

signature algorithms. The KEMs have already been evaluated for the use in OPC UA in a
project [42] preceding this thesis and these results will be used. Therefore only the digital
signature schemes of the NIST PQ project will be reviewed.

2.5.2 Code Based Methods

McEliece suggested the first public key crypto system based on coding theory [43]. The main
idea is to have a general linear code as the public key. Random errors are added to the message
and to recover it we need to decode. In general, decoding is believed to be not possible in
polynomial time [44], however for special codes it is easy. Therefore, the private key contains
information on how to easily decode. Following we give a quick summary how linear codes
work [45, p. 159] and then explain how they can be used for cryptography.

Consider a vector space C of the dimension k over a binary finite field. This means that
each vector has k entries (k dimensions) and each entry can have either the value 0 or 1 where
1 + 1 = 0 (binary finite field). We can encode any binary message of length k as a vector in
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Figure 7: Example of a 3 dimensional vector space over a binary finite field. On each axis we
can only be at either position 0 or 1. The stars mark all possible vectors in this space. Each
star corresponds to a 3-bit message.

C and every vector in C represents a message. Figure 7 illustrates this.

k︷ ︸︸ ︷
(0 1 1 0 · · · 1) (1)

In order to obtain redundancy, the messages are encoded into vectors of length n with
n > k. Thus the, codewords are vectors in an n dimensional space V . The number of all
vectors in V is bigger than the number of vectors in C. Hence not all vectors in V are mapped
to a message.

To easily convert between messages and their corresponding encoded vectors, the message
can be seen as the coefficients of a basis in V . Let’s say ~b1, ..., ~bk are k linear independent
vectors in V . Then we find the vector ~c that represents the message m by

~c = m1
~b1 + ...+mk

~bk (2)

where m1 represents the first bit of the message etc. Mathematically C is a subspace of
V with the basis ~b1... ~bk. An easy notation for (2) is to write the k basis vectors as rows in a
matrix G, called generator matrix, as shown in Figure 8.

0 1 1 0 … 1
.
.
.

1 0 1 1 … 0

n

G = k

b1

bk

Figure 8: Generator matrix.

To retrieve the codeword from a message, the message has to be written as a row vector
and be multiplied by the generator matrix:

~mG = ~c (3)

During transmission, an error vector is added to the codeword (~c′ = ~c + ~e). This means
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that the received vector is not inside the subspace C. To decode we assume that the weight3

of the error vector, i.e. the number of ’1’ bits in the vector, is small because it is more likely
that only a few errors have occurred. The goal is to find an error vector with a small weight
that takes us back to a valid codeword.

It is possible to transform G into a (n − k) × n matrix H that can be used to check if a
received encoded message is a vector in the code’s subspace, i.e. if an error has occurred [45,
p. 166]. Therefore the received message is written as a column vector and multiplied by H.
The result of this operation is called syndrom.

H~c = ~0 (4)

For valid codewords, i.e. if the error vector has a weight of 0, the syndrom is ~0. Otherwise,
the syndrom only depends on the error vector and not on the message. Thus, if we want
to correct errors with a weight ≤ t we can create a table with all error vectors and their
corresponding syndroms. Assuming that the mapping between error vectors and syndroms
is distinct, the procedure to correct errors is to calculate the syndrom of a received encoded
message, matching the syndrom in the table, correct the error in the received encoded message
and then decode. While this is a computationally complex task and might not be possible for
an arbitrary code, there is a way of constructing codes that allow to correct up to t errors,
called Goppa Codes [46]. It has been proven that efficient decoding algorithms for Goppa
Codes exist.

In order to utilize linear coding for cryptography, the McEliece crypto system firstly creates
a Goppa Code with a k×n generator matrix G that can correct up to t errors. Then a random
invertible k×k matrix S and a random n×n permutation matrixP are created. The properties
of a permutation matrix are that each row and column contains only a single ’1’ entry, the
rest is ’0’. When multiplied by a vector, the elements in the vector are permuted but not
changed. Especially important is that a permutation does not change the weight of a vector.

The public key is a generator matrix that is calculated as the product of the three matrices:

Ĝ = SGP (5)

To encrypt a message, it has to be multiplied by Ĝ and an error vector e with weight t
has to be added.

c = mĜ + e (6)

Because Ĝ, in contrast to G, is not a Goppa Code, it is computationally hard to decode
c. On the other hand with the knowledge of S, G and P it is easy to decode as will be shown
in the following, and therefore these three matrices constitute the private key. To decrypt,

3 For example, the weight of the vector (000101) = 2 because two bits are set. We simply count the number
of ones in a vector.
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the ciphertext is first multiplied by the inverse of P.

c′ = cP−1 = (mĜ + e)P−1 = mSG + eP−1 (7)

Since P−1 is a permutation matrix it will simply change the position of the ’1’ bits in the
error vector, the weight remains the same. Thus we can rewrite (7) as:

c′ = (mS)G + e′ (8)

and using the Goppa Code G the error e′ can be corrected and (mS) can be decoded.
Finally we multiply by the inverse of S to obtain m.

m = c′S−1 = mSS−1 (9)

A problem of code based crypto systems is the large size of public keys. While variants of
McEliece, such as the Niederreiter crypto system, can reduce the public key size, it still lies in
the range of 100 kilobytes to several megabytes [37, p. 95]. On the other hand, encryption and
decryption can be performed very fast, since matrix multiplications have a low computational
complexity.

2.5.3 Hash Based Methods

Cryptographic hash functions have the advantage that they are not vulnerable to Shor’s
algorithm since they are not based on factorization or the discrete logarithm problem. The
output size of the hash functions have to be selected large enough to withstand a brute force
search with quadratic speed up due to Grover’s algorithm. While there are no hash based
public key encryption schemes available, it is possible to sign messages using a private key
and verify the signatures with a public key entirely based on a generic hash function. As an
example, the fundamentals of Lamport’s signature system [47] are explained.

First we consider a system that can only sign a 1-bit message. This means the message is
either 1 or 0. The secret key will consist of two random numbers s0 and s1. The public key
comprises the hash values of these two random numbers, p0 = H(s0) and p1 = H(s1).

sk = {s0, s1}

pk = {p0=H(s0), p1=H(s1)}
(10)

If the message ’0’ shall be signed, we reveal the secret key s0 as the signature and if ’1’
shall be signed we reveal s1. When we want to verify the signature we just have to hash the
signature and compare it to p0 for a ’0’ message or p1 for a ’1’ message.

To sign messages of arbitrary length, we compute a hash over the message and sign the
hash h that produces an output of b bits. hi refers to the ith bit of the hash. To sign the
hash we have to expand the 1-bit system described above to a b-bit system. Therefore, the
private key s is computed as b pairs of random numbers i.e. two random numbers for each
bit of h and 2b random numbers in total. si refers to the ith pair of random numbers.
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Figure 9: Generation of private and public key for a hash based signature system.

Then for the public key we take each random number of the private key and compute
the hash of each. Analogous to the private key, the public key consists of b pairs of hashes,
each associated with a bit of h. If we assume that always the same hash function is used, the
public key consists of 2b hashes of length b-bit and therefore of 2b2 bits. See Figure 9 for a
graphical representation.

Furthermore, to sign a hash h, we look at every single bit hi and use the ith pair of random
numbers of the secret key si as the signature. When hi = 0 then sigi is set to si[0] and if
hi = 1 then sigi is set to si[1]. Hence the signature consists of b secret numbers.

When a signature shall be verified, we take the ith number from the signature, look at hi
and pick pi[0] or pi[1] depending on hi. If H(sigi) = pi[hi] then the verification was correct.
Additionally it has to be ensured that the has h matches the hash of the message.

A major disadvantage of this signature scheme is that part of the private key is revealed
with each signature. Therefore it is only secure when a key pair is used only for one signature.
A solution to the problem is to generate enough key pairs, depending on how many messages
we expect to sign in a certain amount of time. For example at a certificate authority we know
the valid time of a root certificate and we can estimate how many certificates we expect to
sign in this period.

When this scheme is combined with a Merkle hash tree [48, p. 227], it is possible to have
only one public key for all the key pairs that were created. In Figure 10 we have created 8
key pairs and a hash tree for the public keys. The only key we have to distribute is p15. In
order to verify s1 the signer of the message has to show the recipient p1, p2, p10 and p14. If
this works out until p15, the verifier can trust the signature. After signing a message with s1
we can never use it again and have to use s2 for the next message, thus making the system
stateful.
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Figure 10: A Merkle tree of public keys.

The effort of maintaining a stateful system might be feasible in some scenarios, however it
seems very impractical to be used to sign messages that are exchanged in IIoT applications.

Goldreich [49] suggested a stateless hash based crypto system which uses huge signature
chains that can be created "on the fly". When a message is signed, a random chain can be
selected and therefore the number of chains just has to be large enough to make it unlikely
to use the same key pair twice.

SPHINCS+ SPHINCS+ [50] is the only stateless hash based signature scheme left in round
two of the NIST PQ project. It improves the ideas introduced above and achieves small private
and public keys, however generates rather large signatures. It can be used with different hash
functions and the authors describe 36 different parameter sets, Table 3 summarizes key and
signatures sizes for security levels L1, L3 and L5.

Table 3: Key and signature sizes of SPHINCS+ in bytes.

Security Level Public-key Private-key Signature
L1 (128 bit) 32 64 8080 – 16976
L3 (192 bit) 48 96 17064 – 36664
L5 (256 bit) 64 128 29792 – 49261

2.5.4 Multivariate Polynomial Based Methods

Solving a set of multivariate quadratic polynomial equations over a finite field in general
is NP-hard. This problem is called MQ problem or Multivariate Quadratics problem. But
we can find instances of this problem that are easier to solve, thus creating trap doors and
making them useful for public key cryptography [37, p. 193]. Following the wonderful expla-
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nations of [51, p. 162] this section gives a brief overview over the underlying problem and the
construction of multivariate schemes.

Firstly, we define a multivariate quadratic polynomial over a finite field Fq as: A polyno-
mial function of multiple variables of the form:

p(x1, ..., xn) =
∑

1≤j≤k≤n
γj,kxjxk +

n∑
j=1

βjxj + α (11)

where γj,k, βj , α ∈ Fq.
For example a multivariate quadratic of two variables (n = 2) would look like this:

p(x1, x2) = γ1,1x1x1 + γ1,2 + γ2,2x2x2 + β1x1 + β2x2 + α

= γ1,1x
2
1 + γ1,2 + γ2,2x

2
2 + β1x1 + β2x2 + α

(12)

Basically the γ terms are every possible combination of variables where x1x2 = x2x1 and
is combined to one term which is expressed by the constraint j ≤ k in the summation.

We can define a system of m multivariate quadratic polynomials of n variables

p1(x1, ..., xn) =
∑

1≤j≤k≤n
γ1,j,kxjxk +

n∑
j=1

β1,jxj + α1

...

pm(x1, ..., xn) =
∑

1≤j≤k≤n
γm,j,kxjxk +

n∑
j=1

βm,jxj + αm

(13)

The set of polynomials is denoted as P = (p1, ..., pm). For encryption we represent the
message as a vector ~x = (x1, ..., xn) ∈ Fq and use P as the public key with m = n, i.e. the
same number of polynomials as we have variables. We evaluate each polynomial of P with
~x as input. This yields n results, one for each polynomial, which we collect in the vector ~y.
Thus we simply write ~y = P(~x), which is the one way function. It is NP-hard to find ~x if only
the ciphertext ~y and the polynomials are known.

However, now we must construct a trap door, i.e. a way to reverse that calculation with a
private key. Therefore, we have to find a set of polynomials P ′ that are actually easy to invert
and then transform them to a general instance of the problem. The method of constructing P ′

differs in the variants of multivariate public key crypto systems, however the transformation
to P is done in the same way. We need to find the invertible affine transformations S and T .
The tuple (S,P ′, T ) compose the private key. The public key P is obtained by applying the
affine transformations to P ′. Figure 11 illustrates the trap door.

For decryption we take the ciphertext ~y and apply the inverse affine transform Y = T−1(~y)

to it. Then we have to find X such that P ′(X) = Y . How this is done depends on the concrete
scheme. Finally we do the inverse of the affine transform ~x = S−1(X) to obtain the plain
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input x

x = (x1, …. , xn)

private: S

private: P’

private: T

x’

y’

y

public:
P = (p1, …. , pn)

Figure 11: Graphical representation of the trapdoor. The left path via S, P ′ and T can be
gone backwards, the path via P not [51, p. 163].

text.
P ′(X) = Y is not always bijective, that means that for a given Y we can find multiple X.

Therefore we have to find all possible X and decrypt to multiple ~x. Via a checksum we have
to ensure to select the correct ~x.

An advantage of multivariate schemes, especially when used for digital signatures are the
very small signature sizes. However, the public keys are very large. So these schemes are
ideal for applications where public keys are rarely distributed, but many messages have to be
signed.

GeMSS GeMSS [52] stands for ’A Great Multivariate Short Signature’ and is among the
candidates in round two of the National Institute of Standards and Technology (NIST) PQ
project. It is based on the Hidden Field Equations (HFE) cryptosystem and offers very small
signature sizes, however has very large public keys, as can be seen in Table 4. The author’s
claim that verification can be implemented rather fast.

Table 4: Key and signature sizes of GeMSS in bytes. Signature values are rounded to full
bytes.

Security Level Public-key Private-key Signature
L1 (128 bit) 352 188 13 438 33
L3 (192 bit) 1237 964 34 070 52
L5 (256 bit) 3040 700 75 893 72

LUOV LUOV [53] is the abbreviation for Lifted Unbalanced Oil and Vinegar. Compared
to GeMSS it has much smaller public key sizes (see Table 5) but they are still large compared
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to, for instance, lattice based schemes. It is based on the UOV (Unbalanced Oil and Vine-
gar) crypto scheme that was proposed in 1997 but greatly reduces the public key size. The
techniques that are used to reduce the key size are rather new and in 2019 some new attacks
on LUOV were presented [54].

Table 5: Key and signature sizes of LUOV in bytes.

Security Level Public-key Private-key Signature
L1 (128 bit) 11 500 32 239
L3 (192 bit) 35 400 32 337
L5 (256 bit) 82 000 32 440

MQDSS The MQDSS specification [55] does not explain the meaning of the scheme’s name
but one could guess it means Multivariate Quadratic Digital Signature Scheme. Two parame-
ter sets are recommended: MQDSS-31-48 offering L1-L2 security and MQDSS-31-64 offering
L3-L4 security. In contrast to other schemes the public key is very small, however the sig-
natures tend to be large, see Table 6. This is achieved by using pseudo random functions to
generate the keys, so they actually only require a seed for these functions.

In 2019 an attack on MQDSS was suggested [56] that also has been confirmed by the
MQDSS team but requires further investigation.

Table 6: Key and signature sizes of MQDSS in bytes.

Security Level Public-key Private-key Signature
L1-L2 (min. 128 bit) 46 16 20854
L3-L4 (min. 192 bit) 64 24 43728

Rainbow The Rainbow signature scheme [57] comes with three parameter sets: Ia, IIIc, Vc
and has versions that compress the keys. Table 7 considers the compressed versions.

Table 7: Key and signature sizes of Rainbow in bytes.

Security Level Public-key Private-key Signature
L1 (128 bit) 68 100 93 000 64

L3-L4 (min. 192 bit) 206 700 511 400 156
L5 (256 bit) 491 900 1 227 100 204
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2.5.5 Lattice Based Methods

NTRU is one of the widely known public key crypto systems that is based on lattice problems.
As an example, this section gives a high level overview of the system.

All mathematical operations in NTRU are based on the truncated polynomial ring

R = Z[X]/(XN − 1) (14)

Thus, all the coefficients are integers and the highest possible degree is N − 1. Multi-
plication in the ring with symbol * is defined as a cyclic convolution with f and g being
polynomials, fi and gj being the coefficients of these polynomials and k being the coefficient’s
index of the result.

f ∗ g =

i,j∑
i+j≡k modN

fi · gj mod q (15)

All operations on the coefficients are performed modulo q, meaning the coefficients are
fk < q for all fk.

The parameters for the crypto systems are N, q, p for which q > p and gcd(p, q) = 1,
implying that q and p are coprime. In order to create a key pair, the parameters N, q, p has to
be selected and a polynomial f with coefficients {−1, 0, 1} have to be chosen at random, such
that the inverse of f modulo p, called fp, and the inverse modulo q, called fq exist. Hence

f ∗ fq ≡ 1 mod q (16)

f ∗ fp ≡ 1 mod p (17)

The Euclidean algorithm can be used to calculate the inverses. Subsequently, another
random polynomial g with coefficients {−1, 0, 1} has to be chosen. The private key is f , the
public key h is computed as

h ≡ pfq ∗ g mod q (18)

To encrypt a message it has to be converted to a polynomial m. Since the possible
coefficients are {−1, 0, 1}, some kind of ternary encoding of the message comes to mind.
Then a random polynomial r with coefficients {−1, 0, 1} has to be chosen and the encrypted
message is calculated as

e ≡ r ∗ h+m mod q (19)
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In order to decrypt the message, it is multiplied by the private key f .

a ≡ f ∗ e mod q

a ≡ f ∗ (r ∗ h+m) mod q

a ≡ f ∗ (r ∗ pfq ∗ g +m) mod q

a ≡ f ∗ pfq ∗ r ∗ g + f ∗m mod q

a ≡ p · r ∗ g + f ∗m mod q

(20)

where f ∗fq cancels out. Because the coefficients of the polynomials except fp were selected
to be small, mod q has no effect on them. Next a is written mod p instead of mod q.

b = a mod p

b = p · r ∗ g + f ∗m mod p

b = f ∗m mod p

(21)

Note that p · r ∗ g ≡ 0 mod p because any multiple of p mod p is 0. From here on, only a
multiplication by fp is needed to recover the message.

c = fp ∗ b mod p

c = fp ∗ f ∗m mod p

c = m mod p

(22)

Note that the coefficients of m are in the range [0, p) but they were originally selected
from {−1, 0, 1}. Thus it is necessary to represent the coefficients in the range [−p/2, p/2) to
obtain the correct message.

qTESLA One lattice based signature scheme among the NIST submissions is qTESLA [58].
It is based on the Ring Learning With Errors (R-LWE) problem and offers a tight security
reduction which means that it is provably secure. However the two available parameter sets
impose large public keys as can be seen in Table 8.

Table 8: Key and signature sizes of qTESLA in bytes.

Security Level Public-key Private-key Signature
L1 (128 bit) 14880 5184 2592
L3 (192 bit) 38432 12352 5664

Dilithium Dilithium [59] is a signature scheme based on the hardness of the module learning
with errors problem. Table 9 shows key and signature sizes. Note that the bit security is lower
than specified by the NIST for each level [60]. But the authors claim that their calculation
of the bit levels follows a very conservative approach and therefore categorize their algorithm
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in the security categories as shown in the table. However this is still an ongoing discussion in
the PQ project.

Table 9: Key and signature sizes of Dilithium in bytes.

Security Level Public-key Private-key Signature
L1 (100 bit) 1184 2800 2044
L2 (141 bit) 1472 3504 2701
L3 (174 bit) 1760 3856 3366

FALCON The third lattice based signature scheme among the NIST round two candidates
is FALCON. It is a derivate of NTRUsign and focuses on a small public key and signature
size. It achieves this by using NTRU lattices; lattices of a certain structure that allow to
be described with very little data. The key and signature sizes, shown in Table 10, are the
smallest compared to other submissions in the NIST PQ project remaining in round two.

Table 10: Key and signature sizes of FALCON in bytes.

Security Level Public-key Private-key Signature
L1 (114 bit) 897 1281 690
L5 (263 bit) 1793 2305 1330

2.5.6 Available Open Software Libraries

This section discusses the available implementations of the schemes that are currently in round
2 of the NIST’s PQ challenge.

Reference Implementations Every algorithm that is submitted to the NIST PQ project
must include a platform independent ANSI C reference implementation. The purpose of
these implementations is to have a ’fair’ performance comparison. A common interface for all
algorithms is defined in form of a api.h file. All the reference implementations are available
on the NIST’s website, however most of them do not mention any kind of licensing. Some
reference implementations, such as Falcon, are published under the MIT license.

These implementations are mainly for the purpose of demonstrating the algorithms and
are not meant for productive usage.

Open Quantum Safe The Open Quantum Safe project [61] is an open source software
library, available on Github, that implements selected algorithms mainly from the NIST PQ
project. Currently 9 out of the 17 remaining KEMs and 7 out of 9 signature schemes of round

37



two are implemented. Even though it is a C library, wrappers for C#, Go, C++ and Python
are available. The project is published under the MIT license.

The OQS library was also included in an openSSL fork that allows to generate certificates
using some of OQS’ algorithms.

PQClean PQClean [62] is an open source project, also available on Github, that takes
the reference implementations from the NIST project and provides clean implementations of
them. They all have a consistent interface. All the algorithms are organized in folders and do
not require any dependencies. When using PQClean, it is possible to only select the required
algorithms and copy their folders and a common folder directly into a C project. Thus it is
not meant to be build into a library binary but is meant to be used directly as the C source
files.

Each algorithm is individually licensed, where most of them are public domain or under
a MIT license.

PQM4 The PQM4 project [63] uses the implementations from PQClean and additionally
provides optimized versions for the instruction set of the ARM Cortex-M4 CPU family. They
also provide cross-platform optimized versions of some algorithms. Each algorithm included
has the same license as in the PQClean project (either public domain or MIT).

2.6 Hybrid Key Exchange Mechanisms

In this section we define a KEM formally and explain the relevant security notions. A KEM
is defined as a set of three algorithms

1. Key Generation
(pk, sk)← KeyGen()

2. Encapsulation
(c, k)← Encaps(pk)

3. Decapsulation
k ← Decaps(sk, c)

The key generation algorithm returns a key pair consisting of a public key pk and a secret
key sk and has no input. The input to the encapsulation function is a public key pk and
it returns a ciphertext c and a shared secret key k. The decapsulation function receives
a secret key sk and a ciphertext c as inputs and returns the shared secret key k or failed
decapsulation. A client would call the KeyGen function and then send the public key pk to
the server. Subsequently the server calls the Encaps function with the public key it received
from the client, stores the shared secret key k for later symmetric encryption and sends the
ciphertext c to the client. The client uses his private key sk and the received c as input to
the Decaps function to obtain the shared secret key k that it now shares with the server.
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2.6.1 Security Notions

The most common security notion for KEMs is indistinguishability under a certain attacker
model, where indistinguishability is defined as an experiment or game that is played between
a challenger and an attacker:

1. The challenger generates a key pair using (pk, sk)← KeyGen()

2. The system calls (c, k0)← Encaps(pk)

3. The challenger samples k1 uniformly random from the key space.

4. The attacker receives c and either k1 or k0 selected at random.

5. The goal for the attacker is now to be able to tell if he received the correct k0 which
corresponds to c or if he received k1 which was selected at random. The attacker wins
as soon as his probability of being correct is higher than simple guessing (12).

The attacker models define the abilities an attacker has during the above game. The
most important models are the chosen-plaintext-attack (CPA) and the chosen-ciphertext-
attack (CCA).

CPA The experiment is performed as above and the attacker has no additional information.
He can see the secret key k0/1 provided by the challenger and has to decide if it was the correct
one, i.e. the one that was used to encrypt c. He is also able to call the Encaps function by
himself using the public key pk generated by the system.

CCA In the CCA case the attacker has the additional ability to query an oracle to decrypt
any ciphertext except for c (in this case winning would be trivial). For example the attacker
could flip one bit in c→ c′ and the oracle would return him Decaps(sk, c′).

Since there are no powerful quantum computers available today it is useful to specifically
model the additional abilities of a quantum attacker. There is a classical attacker, that is
implicitly implied in the current models. Then there is an attacker that stores data today and
uses a quantum computer in the future. And there is a scenario where a quantum computer
is available and the attacker uses it during the whole attack. And in the far future there is the
possibility that end users also use quantum computers and therefore the attacker can query
the decapsulation oracle in superposition [64].

Bindel et. al. [65] introduced a new notation for the different kinds of attackers: XyZ with
X,Z ∈ {C,Q} and y ∈ {c, q} where C stands for classical and Q for quantum. X describes
the ability of an adversary during the interaction with the oracle, y specifies if the adversary
can interact with the oracle in superposition and Z indicates if the attacker has quantum
capabilities after interaction with the oracle. Note that this fine distinction is only useful in
the CCA case, for the CPA case it is sufficient to specify if the attacker can use a quantum
computer or not. The practical attacker models are [66]:
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CcC The attacker is purely classical, this is the traditional scenario.

CcQ The attacker is classical but will gain access to a quantum computer in the future, after
he finished interacting with the decapsulation oracle.

QcQ The attacker has a quantum computer available, but can only interact classically with
the decapsulation oracle. This scenario is applicable when only the attacker is quantum
and the other parties use classical computers and is commonly referred to as the post-
quantum setting [67, p. 365] [66].

QqQ This is a full quantum attacker that can also query the decapsulation oracle in super-
position.

This thesis will focus on the first three models, leaving the full quantum attacker for future
investigation. This is reasonable since we do not have any quantum computer in our system
that an attacker could possibly query in superposition.

2.6.2 Combiners

Section 1.4 of the introduction motivated the use of hybrid crypto schemes: Hedge the bets
when transitioning to new cryptographic primitives. The remaining question is how algorithms
can be combined such that the overall security is not reduced.

To obtain a hybrid KEM, two normal KEMs shall be combined. The new hybrid KEM
consists of the three algorithms GenKeyh(), Encapsh(pkh) and Decapsh(skh, ch). Each of the
hybrid algorithms will make use of the two inner KEM’s functions KeyGen0(), KeyGen1(),
Encaps0(pk0), Encaps1(pk1), Decaps0(sk0, c0) and Decaps1(sk1, c1).

Following we introduce two different methods of combining KEMs, typically called "com-
biner". The security of each of the methods has been proven in [66]. All combiners guarantee
the same security promises as the strongest of the two used KEMs. For example using a CcC-
IND-CCA secure and a QcQ-IND-CCA secure scheme will guarantee QcQ-IND-CCA security
for the hybrid KEM. If, after further cryptanalysis, it turns out that the second KEM is not
secure at all, the hybrid KEM still guarantees CcC-IND-CCA security.

XORthenMAC The XOR then MAC combiner is an enhancement of the simple XOR com-
biner, which generates two ciphertexts c0, c1 using the two KEMs and combines them as
a tuple to the hybrid ciphertext c∗ = (c0, c1). The decapsulation will return two shared
secrets k∗ = (k0, k1) which will be combined by XORing them. However, even if both
KEMs are IND-CCA secure, the resulting hybrid KEM is only IND-CPA secure [68,
p. 198]. In the IND-CCA case the adversary has access to a decapsulation oracle that
will decapsulate any ciphertext but c∗. The attacker simply can call the oracle with
(c0, c

′
1) 6= c∗ and (c′0, c1) 6= c∗ and receives k0 ⊕ k′1 and k′0 ⊕ k1. He can select c′0 and c′1

such that he knows the corresponding key and then reconstruct kh.

The XOR then MAC combiner prevents this kind of attack by attaching a MAC to the
ciphertext. Algorithm 1 shows the procedure: In line 2, the public key is split up into
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two individual public keys for the inner KEMs. Each KEM’s encapsulation function
is called separately (line 3 and 4). Both secret keys are split up into a secret key and
a MAC key (line 5, 6). This is done by simply splitting at a certain byte position,
e.g. 16 bytes for ki,mac and 16 bytes for ki,secret in case k0 was 32 bytes long. The
two MAC keys are then concatenated in line 7 and the secret keys are combined using
XOR. Finally a MAC is calculated over the two ciphertexts (line 10). Thus the returned
hybrid ciphertext is ch = (c∗, τ) = ((c0, c1), τ).

Algorithm 1 XORthenMAC combiner
1: procedure Encapsh(pkh)
2: (pk0, pk1)← pkh
3: (c0, k0)← Encaps0(pk0)
4: (c1, k1)← Encaps1(pk1)
5: (k0,mac, k0,secret)← k0
6: (k1,mac, k1,secret)← k1
7: kmac = k0,mac||k1,mac
8: ksecret = k0,secret ⊕ k1,secret
9: c∗ ← (c0, c1)
10: τ ← MAC(c∗, kmac)
11: return ((c∗, τ), ksecret)
12: end procedure

The hybrid decapsulation function then uses the two ciphertexts c0 and c1 which it
can obtain from ch, decapsulates each using Decaps0(c0,sk0) and Decaps1(c1,sk1) and
verifies the MAC using the decapsulated secret keys. Only if the MAC is correct, the
secret kh is returned. If at least one of the inner KEMs is IND-CCA secure, the attacker
can not obtain kmac. This is because for the decapsulation oracle to work, the attacker
has to pass ((c′, c1), τ) while it is not feasible to compute the correct τ without knowledge
of kmac, assuming an ideal MAC function.

dualPRF A dual PRF (dPRF) is a Pseudo Random Function (PRF) if at least one of its two
inputs are random, i.e. dPRF(k, ·) and dPRF(·, x) are PRFs if k and x are random.
The hybrid shared secret can be calculated from the kh = dPRF (k0, k1). Thus even
if the attacker knows k0 he cannot reconstruct k1 from kh. Attacks equivalent to the
attack on the plain XOR combiner are not possible and therefore no MAC is required
here.

However in the hybrid scenario we made the assumption that one of the two inner KEMs
might be completely broken. Lets say KEM1 is completely broken in such a way that
the attacker is able to retrieve k1 from ch = (c0, c1). Now it is conceivable that the
attacker is able to find a c∗1 6= c1 that decapsulates to the same k1. Querying the oracle
with (c0, c

∗
1) is allowed and will return the correct kh.

In order to mitigate this attack surface, the final shared secret is calculated as kh =

PRF (dPRF (k0, k1), (c0, c1)). This has been suggested and proven to be secure by [66,
p. 15].

41



2.7 Certificates and Signatures

In this section, the security notions for signatures are discussed. Since the security of certifi-
cates, as described in Section 2.2, solely relies on signature algorithms, the same notions can
be applied to certificates as well.

A signature scheme consists of three functions [65]:

• (sk, vk)← KeyGen(): Returns a secret signing key sk and a public verification key vk.

• σ ← Sign(sk, m): Takes a message m and the signing key sk as input and returns a
signature σ.

• {0, 1} ← Verify(vk, m, σ): Takes the verification key vk, the message m and the
signature σ as input and returns 1 (true) or 0 (false) depending if the signature can be
verified or not.

2.7.1 Security Notions

Existential Unforgeability under Chosen Message Attack (EUF-CMA) This no-
tion of security is defined as an experiment in which the challenger generates a public/private
key pair. The attacker gets access to the public key and then is allowed to query an oracle that
will sign any message of the attackers choosing under the generated private key. At one point
the attacker has to generate a signature for a new message that he didn’t query previously
from the oracle. If the signature can be verified under the previously generated public key
the attacker wins the experiment. EUF-CMA security requires that no attacker exists that
can win this experiment within a reasonable time.

Analogous to Section 2.6 the quantum capabilities can be modelled for the attacker, de-
pending at which stage of the experiment he has access to a quantum computer and if the
oracle can be queried in superposition. Using the XyZ notation, X ∈ {C,Q} determines if the
attacker has access to a quantum computer when he can query the signing oracle, y ∈ {c, q}
describes whether the attacker can query the oracle in superposition and Z ∈ {C,Q} indicates
if the attacker can access a quantum computer after losing access to the oracle.

In order to query a signing oracle in superposition it is necessary that the oracle is im-
plemented on a quantum computer. This thesis assumes that none of the components of a
system is implemented on a quantum computer, therefore quantum access to the oracle is not
considered.

Non-Separability When two signature schemes are combined to a hybrid scheme the new
security notion of non-separability can be defined [65]. It describes if it is possible for an
attacker to use a hybrid signature to produce a valid signature for one of the schemes the
hybrid scheme was constructed of. For example let Σ′ be a hybrid signature scheme composed
of the two schemes Σ1 and Σ2. If a verifier accepts messages that are signed with Σ′ or Σ1 but
acts differently, depending on what signature scheme has been used, an attacker could try to
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transform a message that was signed using Σ′ into a message that was signed by Σ1. If the
attacker is not able to do that, Σ′ is said to be 1-nonsep, and 2-nonsep if the same applies for
Σ2. More formally this can be defined in an experiment for τ -non-separability: The challenger
generates a hybrid key pair and the attacker gets access to the public hybrid verification key
vkh. Then the attacker can query hybrid signatures for messages of his choosing from an
oracle. Finally the attacker has to output a message m and a signature σ such that

1. The inner verify function Verifyτ () of scheme Στ returns 1 (i.e. verification passed).

2. The hybrid verify function cannot distinguish the signature from a signature that was
created using Στ i.e. can be tricked into believing it deals with a legacy signature.

This property is especially important to avoid downgrade attacks.

2.7.2 Combiners

All methods of combining signature schemes that are described below use the same key gen-
eration method; The keys are concatenated: skh ← (sk0, sk1) and vkh ← (vk0, vk1). The
EUF-CMA security of each scheme has been proven under the condition that at least one of
the underlying schemes is EUF-CMA secure [65].

Concatenation The most trivial way of combining signatures is to compute signatures for
the message using the two underlying schemes and concatenate them: σ0 ← Sign0(sk0,m),
σ1 ← Sign1(sk1,m), σh ← (σ0, σ1).

This method does not provide any non-separability. An attacker can use σ0 or σ1 as valid
signatures of m for each underlying scheme, without the possibility for a verifier to notice
that the signature was extracted from a hybrid scheme and not generated by an underlying
scheme.

Nesting In this combiner scheme, the message m is first signed by the first inner sign
function: σ0 ← Sign0(sk0,m). The second inner sign function takes the message plus the first
signature as input: σ1 ← Sign(sk1, (m,σ0)). The hybrid signature again is the combination of
both inner signatures σh ← (σ0, σ1). This scheme is 1-non-separable but not 0-non-separable
because σ1 is not a valid signature for the message directly (without σ0).

2.8 Authenticated Key Exchange

2.8.1 Bellare-Rogaway Model

Most pure KEMs are only designed to be secure against a passive attacker, who is only able
to eavesdrop on communication but cannot interfere in message transmission. This attacker
model is not realistic in most cases. In the internet for example, data packets are routed
through many different networks, operated by untrusted third parties.

Bellare and Rogaway introduced a detailed model for key exchange protocols including
an active attacker [69]. The model first defines a set of participants U , and each participant
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U ∈ U has a key pair (pkU , skU ) assigned. The model assumes that every participant knows
the public key of all other participants. When a participant wants to exchange a key he runs
a session of the protocol denoted as Πj

U,V . This represents the j th run of a session for user
U and intended communication partner V . Every participant can run multiple sessions in
parallel. Each session has six associated variables:

1. role ∈ {initiator, responder}

2. status ∈ {running, accepted, rejected}

3. sid can be a number or undefined

4. key_status ∈ {fresh, revealed}

5. K is the stablished session key or undefined

6. tested ∈ {true, false}

When a key is to be established between two participants, both run a session of the
protocol. Let the two sessions be Πi

S,T for participant S and Πj
U,V for participant U . Then

S = V , T = U and the sid of both session matches. After running the protocol the session
key K of both sessions also match.

The adversary has full control over the network and has additional influence on the sessions
of all honest parties. He specifically can use the following functions:

NewSession(U , V , role) Create a new session running in U with intended partner V with
U in the specified role (initiator or responder).

Send(Πj
U,V , m) Sends a message to the session. The session will react as if it had received

the message from V . If the session’s status changes to "accepted" and partner V ’s key
has been revealed, this session is also marked as "revealed".

Reveal(Πj
U,V ) If the session has the status "accepted", the session key K is returned and the

session is marked as "revealed". If the status is not "accepted", "undefined" is returned.

Corrupt(U) Returns the long term secret key of U , skU . Also sets all sessions where U is
involved to "revealed".

Test(Πj
U,V ) This function returns either the session key K of the session or a key randomly

sampled from the key space. It is used at the end of an experiment when the attacker
has to distinguish the session key from a random key. Therefore it may only be called
once.

Based on this model two security experiments can be defined [66], [70], [71]:
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2.8.2 BR-Match security experiment

First the long term key pairs for each participant U is generated. Then the adversary receives
all the public keys and has access to the five functions defined above. Subsequently the
attacker looses access to the functions NewSession, Send, Test and only can use Reveal and
Corrupt. At some point the adversary stops. He wins if any of the following is true:

• He was able to trick the participants in such a way that there are two paired sessions(Π.sid =

Π′.sid) that both are not in status "rejected" but that have derived different session keys
(Π.K 6= Π′.K)

• There exist two paired sessions with different intended partners, i.e. Πj
U,V and Πi

U ′,V ′

that both have the same sid, one has the role "initiator" and the other has the role
"responder" but U 6= V ′ or V 6= U ′.

• More than two sessions share the same sid.

2.8.3 BR-key-secrecy experiment

As in the previous experiment, key pairs for all the participants are generated and the ad-
versary gets access to all the public keys. Then it is decided randomly if the test function
shall return a random key or the correct key of the session when queried. The attacker does
not know what was decided for obvious reasons. Then the adversary is granted access to
the functions NewSession, Send, Reveal, Corrupt, Test. After a while, the attacker enters
a second stage of the experiment and loses access to the functions NewSession, Send and
Test. The adversary now has to say if the key that would be returned by the test function
is correct or if it was a random key. The attacker is not allowed to test the key of a session
that was revealed or that he will reveal later, i.e. if there is a session that has tested=true
and key_status=revealed the adversary looses the experiment.

In summary, both experiments are divided into two stages: In the first stage the attacker
can use all the oracle functions, in the second stage he can only use corrupt and reveal. This
allows to define attackers that have access to quantum computers only in the second stage
of the experiment. They correspond to real active attackers that do not have access to a
quantum computer yet, but might have in the future. The two stages allow to model two
stage attackers (CcC, CcQ, QcQ) that have different quantum capabilities in each stage.
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3 Methodology

The methodology section explains how hybrid quantum resistant certificates are designed
and how a Python software, that can create these certificates, was implemented. Then, two
modified versions of the OPC UA key exchange protocol, named ’Variant One’ and ’Variant
Two’, are shown and we argue why these changes are necessary to make them secure against a
QcQ attacker while maintaining at least the security of the already used classical key exchange
method. We describe the implementation of both methods and explain how the performance
of the schemes was measured.

3.1 PKI

All hybrid schemes proposed in the following rely on the exchange of multiple public keys per
entity by the means of certificates, where entity refers to the server’s or the client’s identity.
In particular following issues have to be addressed:

1. Two instead of one public key has to be bound to each entity.

2. The certificate has to be signed by a CA using a hybrid signature scheme.

3. Since the certificates are going to be used in the transition phase from conventional to
PQ cryptography it is desired that the conventional signature is non-separable in order
to mitigate the risk of downgrade attacks.

4. Certificates should be backwards compatible such that a legacy software can still make
use of the conventional public key and verify the conventional signature.

The straight forward solution is to define a new certificate format that includes the entity’s
data, the conventional public key, the PQ public key and is signed with a PQ signature scheme.
Over all these data fields including the PQ signature, the conventional signature is computed
and added as shown in Figure 12. Both signatures are generated using the CA’s hybrid private
key, which consists of a quantum resistant and a classical private key.

The PQ signature is directly a valid signature for the data that is signed. However, the
conventional signature is only valid for the data and the PQ signature and thus cannot be
used for just the data, i.e. when an attacker removes the PQ signature, the conventional
signature becomes invalid. Hence, we say the conventional signature is non-separable. This
hybrid signature scheme corresponds to the nested combiner introduced in Section 2.7.2.

In a typical legacy scenario we can assume two types of systems:

1. Updated systems that are aware of hybrid signatures. They will expect either the
combination of two signatures (hybrid) or a signature using only a classical scheme
coming from legacy systems. They are equipped with hybrid certificates.

2. Legacy systems that are not aware of the hybrid scheme and that use conventional
certificates.
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entity data

conventional public key

PQ public key

PQ signature

conventional signature

Figure 12: Straight forward approach to hybrid certificates

If an attacker removes the conventional signature and presents this forged certificate to
system 1, it will detect that only the PQ part of the hybrid signature is present and will reject
the certificate, since there are no systems that use PQ only signatures. System 2 will reject
the certificate because it cannot make sense of the PQ signature. Hence we conclude that
non-separability of the PQ signature is not important in our transition scenario.

On the contrary, if it was possible to separate the conventional signature, i.e. to remove
the PQ signature, system 1 could be tricked into believing that it was presented with a legacy
certificate and thus would accept it. This opens the possibility of downgrade attacks and
justifies the need for non-separability of the conventional signature.

3.1.1 Hybrid X.509 Certificates

The certificate format described above is not compatible with the X.509 certificate format [25]
as described in Section 2.2; X.509 was designed to strictly bind one public key to the subject
and to be signed with exactly one signature scheme by the CA. Only the extension field within
the tbsCertificate data allows to add custom data. Following we introduce and compare four
possible designs for hybrid certificates that maintain compatibility with the X.509 certificate
format.

Dual Certificates The most basic method is to issue two certificates, one using a conven-
tional and the other using a quantum resistant public key [65]. Each of them is signed
by the same CA but using a different signature scheme (conventional and PQ respec-
tively). This method has the disadvantage that the two certificates can have different
validity dates as well as that they have to be handled individually. All systems need
to maintain both certificate versions and have to know when to use only a conventional
certificate for legacy systems and when they have to use both. Also the file size of
both certificates combined is larger than necessary because all the subject and issuer
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information is duplicated. It does not provide any non-separability.

One advantage is that after a transition to PQ-only cryptography, it is very easy to
discard the conventional certificates.

Concatenation The Open Quantum Safe project concatenates keys and signatures [17].
Therefore a new hybrid algorithm is defined with a new Object Identifier (OID), for
example the combination of RSA and Dilithium would get its own OID assigned. Then
the two public keys are byte wise concatenated and now represent a "single" key of the
new scheme and therefore can be added to a X.509 certificate. Software that processes
these certificates must be aware of the new OID and would then know the signatures and
public key lengths. With this information they could retrieve each individual key/signa-
ture. This approach does not offer any non-separability in a strict sense, both signatures
are valid for the tbsCertificate data. However, the data contains two public keys which
could be used to detect a missing signature. While this approach is compatible with
X.509, it is not backwards compatible since legacy systems can not recognize the new
OID.

Nested Certificates A derivate of the dual certificates is to embed one certificate into an-
other certificate as a custom extension [65]. First, a certificate with a PQ public key
and a PQ signature is generated, which we consider the inner certificate. Then a second
certificate with a conventional public key is created, called the outer certificate. The
byte representation of the inner certificate is stored in a custom extension of the outer
certificate. Figure 13a illustrates the resulting hybrid certificate.

In this approach the, subject data is still duplicated. However the whole certificate is
backwards compatible if the extension is flagged non-critical. A legacy software would
ignore the custom extension with the inner PQ certificate and verify the outer conven-
tional certificate. The inner certificate can be separated and used by itself, however the
outer certificate is non-separable because the inner certificate is part of the signed data.

Custom Extension To avoid the overhead of the duplicated subject fields, it has been pro-
posed to only store the additional public key and the additional signature in two custom
extensions [72] as can be seen in Figure 13b. This leads to the problem that the addi-
tional signature must be computed over tbsCertificate but is part of the tbsCertificate
data block itself. We consider finding such a signature impractical4. An experimental
openSSL fork for hybrid certificates [73] solves this issue by filling the inner signature
with zeros first. Then the inner signature is computed and replaces the zeros before the
whole certificate is signed in the conventional way. When the inner PQ signature shall
be verified, first the inner signature data is copied into a temporary buffer and then the

4 This reduces to an interesting problem: Find a bit string x such that

sign(data||x) = x.

It is not clear if such an x exists how it can be found. For this thesis we prefer to go the ’engineer’ way as
proposed in this section.
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(a) Nested Hybrid Certificate

signatureAlgorithm
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conventional certificate

PQ Signature

(b) Hybrid Certificate with extension fields

Figure 13: Two methods of using extension fields to created X.509 compatible hybrid certifi-
cates.

data in the certificate is replaced with zeros. Now the tbsCertificate data looks the same
as when the signature was calculated. By flagging the extensions non-critical, a legacy
system can verify the certificate as a conventional certificate. The inner signature can
not be removed and therefore the conventional outer signature is non-separable.

Table 11 compares the four schemes. PKI Management describes the expected overhead
due to having duplicated subject, issuer and validity information. The last proposed method
of embedding the second public key and signature into a custom extension comes very close
to the ideal hybrid certificate described in the introduction to this section and therefore was
selected to be used in experiments in the scope of this thesis.

Table 11: Comparison of hybrid X.509 certificate schemes.  = good; #= bad; G#= acceptable.

Backwards Size Non-Separability PKI
Compatibility Management

Dual Cert. G# # # #
Concat. #  G#  
Nested  #  G#
Custom Ext.  G#   
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3.1.2 Implementation

Within the scope of this thesis, two available open source hybrid certificate software packages
were investigated. However, as the following shows none of them are flexible enough to be
used in this project.

The open quantum safe (OQS) project [17] offers an integration into openSSL. It can also
create hybrid certificates, but it uses the ’Concatenation’ method only. A fork of the OQS
openSSL project [73] uses the preferred ’Custom Extension’ method but is limited to the
Picnic and qTesla signature algorithms that produce very large key and signature sizes (see
Figure 20). Both projects are implemented in C and the last one also has a version in Java
using the Bouncy Castle crypto library.

Due to these limitations we decided to create a new software package that can create hybrid
certificates as needed for the thesis’ experiments. For rapid implementation, the software is
written mostly in Python 3.6. Figure 14 shows the components of the program that we named
ccreator. A library that contains all the needed PQ cryptography functions was written in C
by including the sources of the PQClean project. These C-files were compiled and linked into
a shared object binary called libhybrid_crypto.so. To use it in Python, a ctypes wrapper was
created that exposes a class for each of the algorithms Dilithium2, Dilithium3, Dilithium4,
Falcon512 and Falcon1024 (see Section 3.3 for the selection of cryptographic primitives). Each
class provides three methods to generate key pairs, to generate a signature and to verify a
signature.

libhybrid_crypto.so
(written in C)

hybrid_crypto.py
(ctypes wrapper)

additionalDERObjects.py

pyCryptodome ccreator.py

import

import

import

PQClean
c source files
header files

include

C source file

Binary file

Python file

PQClean
c source files
header files

Figure 14: Architecture of the hybrid certificate creation program

The software must be able to create the X.509 certificate structure (as shown in Figure 5)
from scratch and freely manipulate all the fields. For example, we want to be able to set
the subject and issuer field. It is also required to represent a certificate as well as each field
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in its binary form according to DER. All reviewed cryptography libraries that are able to
create X.509 certificates do not offer this flexibility5. Therefore classes for each constructed
field were created. For instance a certificate is represented by the class DerCertificate and has
the attributes tbsCertificate, signatureAlgorithm and signatureValue which in turn are also
represented by their corresponding class. All the classes are inherited from the virtual class
DerObject. Figure 15 shows a detail of the class diagram.

The base class DerObject has the virtual method Encode() that returns a byte-string
representing the object. In the case of the DerCertificate, the Encode() method calls the
implementation of the Encode() method of all of its attributes and concatenates them to a
DER sequence6.

DerObject

+Encode(): byteString
+Decode(byteString): void

DerCertificate

-tbsCertificate: DerTbsCert
-signatureAlgorithm: DerSigAlgo
-signatureValue: DerBitString

DerTbsCert

-serialnumber: DerInteger
-version: DerInteger
…
-publicKey: DerPublicKey
-extensions: DerExtensions

Figure 15: Simplified class diagram of the DER classes

For example, to compute the signature of a certificate, we could call the Encode() method
of the tbsCertificate to retrieve the binary data that we want to sign, then pass this to the
signature algorithm and write the result to the value attribute of the certificates signatureValue
attribute as sketched out in Algorithm 2. Some of the more basic DER objects could be
used from the publicly available pyCryptodome library and the additional DER objects were
implemented in the file additionalDERObjects.py.

Algorithm 2 Signing a certificate object
1: binaryMessage = certificate.tbsCertificate.Encode()
2: signAlgo = Dilithium2()
3: signature = signAlgo.sign(binaryMessage, secret_key)
4: certificate.signatureValue.value = signature

Each algorithm is identified in X.509 by its unique OID. The OID is a hierarchical naming
scheme managed by the International Telecommunications Union (ITU) and the International
Organization for Standardization (ISO) [74]. Since no OIDs are specified yet for the algorithms
in the NIST PQ project, we use arbitrary values for experiments within this thesis. They have

5N.B.: The Java library Bouncy Castle was found to offer the best functionality when dealing with low
level certificate manipulation. However due to a lack of Java coding practice we decided against using this
library.

6A DER sequence consists of a header byte that identifies it as a sequence, plus a few bytes indicating the
length then followed by the binary representation of the objects in the sequence
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to be replaced as soon as they are officially specified.
When the extension fields of an X.509 certificate are parsed, the extension is also identified

by their OID. If a system does not recognize the OID of an extension, it will check another
field that specifies if the extension is critical. If this is false, i.e. the extension is non-critical
the system will ignore the extension. This will happen for example if a legacy system tries to
parse any of the new extension OIDs of Table 12. Figure 16 illustrates where the extension
OID and the algorithm OID is used.

Table 12: Additional OIDs used in this thesis.

OID Object
Extension Identifier 1.2.3.413 Hybrid Public Key Info

1.2.3.412 Hybrid Signature
Algorithm Identifier 1.3.6.1.4.300.1 Dummy

1.3.6.1.4.100.2 Dilithium 2
1.3.6.1.4.100.3 Dilithium 3
1.3.6.1.4.100.4 Dilithium 4
1.3.6.1.4.200.1024 Falcon 1024
1.3.6.1.4.200.512 Falcon 512
1.3.6.1.4.300.1 Kyber 512
1.3.6.4.300.3 Kyber 768
1.3.6.4.300.5 Kyber 1024

Extensions

Extension 1

isCritical: Boolean

identifier: OID

value: byteString

Extension 2

isCritical: Boolean

identifier: OID

value: byteString

...

hybrid public key

algorithmId: OID

publicKeyValue: byteString

hybrid signature

algorithmId: OID

signatureValue: byteString

currentExt = getNextExtension()

knownOID(currentExt.identifier)

process(currentExt.value)

currentExt.isCritical

reject certificate

false

false

true

true

Figure 16: Shows the extension object that resides inside the tbsCertificate object. The value
of an extension is just binary data. However with the knowledge of the extension identifier
we know how to decode that data.

The following set of 7 certificates has been created for each signature algorithm that was
tested.

• A self signed certificate for the root CA called root
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• Two application certificates that are signed by root and are called root_signed_1 and
root_signed_2.

• Two intermediate CA certificates, called intermediate_1 and intermediate_2 each of
them signed by root.

• Two application certificates signed by intermediate_1 and intermediate_2 called inter-
mediate_signed_1 and intermediate_signed_2.

3.2 Key Exchange Mechanism in OPC UA

In order to simplify the security analysis of the secure channel, we divided it into the key
establishment phase and the data transmission phase. The goal of the first step, the key
establishment, is to derive a secret key, shared by both parties while providing BR-Match and
BR-Key-Secrecy security. In the second step this shared secret is used to provide authenticity
and confidentiality to the data transmission. Figure 17 illustrates the two phases. Both steps
are assumed to be secure against conventional attackers (CcC) which was the initial design
goal of OPC UA and which has been shown by several studies [13], [14], [75].

Another simplification is the assumption that as soon as an adversary becomes quantum,
he has access to RSA private keys. This is reasonable since via factorization using Shor’s
algorithm the attacker calculates the private key from the public key.

open secure channel
(key establishment)

data transmission
using AES and HMAC

shared secret

already
quantum resistant

make this
quantum resistant

Figure 17: The secure channel can be seen as a two step process: First a shared secret key is
established and then it is used in the secure channel.

First we analyse the second step, the data transmission through an established secure
channel. ’Established’ means that both parties already share the same secret key. When
using the security policy Basic256Sha256, the following symmetric cipher suite is used:

• AES with 256 bit key length to encrypt and sign messages.

• Sha256 for hashes and as basis for Keyed Hash Message Authentication Code (HMAC).

Shor’s algorithm is not applicable to symmetric schemes and Grover’s algorithm is only
able to half the bit level security. Therefore, the above primitives still provide 128 bit of
security against a QcQ quantum attacker, which we consider sufficient. Hence, we can use the
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data transmission part of the secure channel as provided by OPC UA in a PQ scenario, given
we select the proper protocol parameters. Hence, from here on we will focus the analysis on
the key establishment process only.

The key establishment as described in Section 2.1.3 is based on the security of RSA. CcQ-
BR-Key-Secrecy is completely broken as following shows. In the experiment we have two
parties that participate in the protocol: The client denoted as C and the server denoted as S.
During setup of the experiment, public and private keys are generated for both parties. The
server’s key pair is denoted as (pkS , skS) the client’s key pair as (pkC , skC).

The attacker will call NewSession(C, S, "initiator") which will cause C to generate
a random value called NonceC , encrypt it using pkS , sign it using skC and send it to S.
The adversary stores the encrypted message for later. Upon reception the server will start
its own session of the protocol, paired with C’s session. He will generate a random number
NonceS , encrypt it using pkC , sign it using skS and send it to the client. Again the adversary
intercepts and stores the message for later use. At this point the attacker is not quantum
yet, therefore cannot decrypt the messages. The two sessions of the server and the client
have become paired sessions. They both are using the same session identifier sid and have
derived the same key K. The attacker finally calls TEST() on any of the two sessions and
stores the resulting key. Now we enter the second stage of the experiment, where the attacker
gains access to a quantum computer and therefore gains knowledge of skS and skC . He then
proceeds to decrypt the two previously stored messages and uses NonceC and NonceS to
derive the key. The attacker easily wins the experiment by comparing the derived key with
the stored result from the test function.

CcQ-BR-Match security is still given. The access to a quantum computer in the second
stage does not give any advantage to the attacker since he is not allowed to interfere with
the protocol any more because this would require access to the functions NewSesssion()
and Send(). This insight becomes trivial considering that authentication cannot be broken
retroactively.

A QcQ attacker however can also break BR-Match security. With knowledge of the private
keys in the first stage of the experiment, he can decrypt, alter, re-encrypt and sign any message
he wants. Thus he could for instance answer to all messages of a client pretending to be the
server. Finally the client would have a session Πj

C,S while there is no corresponding session
in the server, but the attacker would have a paired session Πi

A,C .

Next, we propose two different additions and changes to the original OPC UA secure
channel establishment mechanism in order to gain resistance to quantum attackers. The first
version is very close to the original OPC UA approach and achieves BR-Key-Secrecy and BR-
Match security. The second variant uses a generic authenticated key exchange method and
achieves BR-Key-Secrecy, however BR-Match security can only be guaranteed under certain
conditions. Both methods rely on a QcQ-IND-CPA KEM. The evaluation and selection of
such a KEM was done in previous work and both variants are based on the results of this
work [42].

54



Before the schemes are explained we introduce the notation used:

certVU Describes a certificate where V ∈ {H,Q,C} specifies if it is a classical certificate (C),
a PQ certificate (Q) or if it is a hybrid certificate (H). U states the subject of the
certificate, usually S for server or C for client, but is not limited to those.

(pkVU , sk
V
U ) Public/private key pair, where V ∈ {Q,C} indicates if the key is used in a con-

ventional or in a PQ scheme and U ∈ {S,C,E} describes if the key is associated with
the server (S), the client (C) or if it is an ephemeral key (E) that was just generated
for a single connection.

cVU Cipher text that is generated by a KEM, where V ∈ {Q,C} indicates if it is a classical
or PQ scheme and U indicates who’s private key was used to generated the ciphertext
(client C or server S), i.e. who the intended recipient of the ciphertext is.

H(·) Cryptographic hash function.

σVU (·) Signing function. V ∈ {Q,C} determines if it is a conventional or a quantum resistant
signing function and U specifies who’s private key was used, i.e. who signed the message.

3.2.1 Variant One

In the previous work, it was proposed to add a quantum resistant KEM. Therefore, following
steps are added to the original key establishment process.

• The client C generates a quantum resistant ephemeral key pair (pkQE , sk
Q
E ).

• C creates the openSecureChannelRequest message and includes pkQE . The public key is
also signed with the conventional signature scheme, because it is inside the message.

• The server S receives the openSecureChannelRequest and extracts pkQE .

• S calls the Encaps(pkQE ) function of the KEM which will return a ciphertext cQE and a
secret value s. s serves the same purpose as the OPC UA nonces as they will be used
to derive the shared key later on.

• S calculates a MAC in order to implement the XORthenMAC hybrid scheme and adds
cQE and the MAC to the openSecureChannelResponse. Both are included in the data
that is signed using the classical scheme.

• C decapsulates cQE and retrieves s, verifies the MAC and now knows the additional input
for symmetric key derivation.

This scheme protects against a CcQ attacker: In the first stage where the attacker is
allowed to interact with the participants and their messages, the attacker has no access to a
quantum computer and therefore conventional primitives are considered secure. In the second
stage the attacker cannot interact with the messages any more and must rely on data collected
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in the first stage, however he has access to a quantum computer and can break conventional
primitives which can be simplified as giving the attacker access to the conventional private
keys. Since the Open Secure Channel Request (OSCRq) and the Open Secure Channel Re-
sponse (OSCRp) are both secured with conventional signatures, the attacker can not alter or
spoof messages in the first stage. But he can store all the messages that are exchanged and
pass it to the second stage of the experiment. In the second stage the attacker can decrypt
the server and client nonce but cannot decipher cQE . Therefore, he is missing one input for
the Key Derivation Function (KDF) and cannot obtain the shared secret and therefore CcQ-
BR-Key-Secrecy is provided. Since BR-Match security can only be broken in the first stage,
the CcQ has no advantage over a conventional CcC attacker for whom the secure channel key
establishment was designed and which is already assumed to be secure.

Next, we show that this scheme does not provide any BR-Match or BR-Key-Secrecy
security against a QcQ attacker: Here the attacker has knowledge of the conventional private
keys even in the first stage of the experiment using his quantum computer. This means that
he can alter any message and recompute a valid signature. In the first stage, the attacker

intercepts the OSCRq message. He then replaces pkQE with p̃kQE , a new public key that the
attacker has generated himself and thus knows the corresponding private key. The server

then continues to create a secret s̃ and a ciphertext c̃QE using p̃kQE . The attacker intercepts the

OSCRp and is able to decrypt c̃QE and thus can compute the same session key K̃ as the server.
Then he uses the original public key pkQE to encapsulate a new secret s in the ciphertext cQE
and sends this ciphertext within the OSCRp back to the client. The client will use s to derive
a secret K that the attacker also can compute because he knows all the inputs to the KDF.
Both sessions in the client and server will reach the status ’accepted’ but the session keys are
different, i.e. K 6= K̃. Therefore the attacker has broken BR-Match security. The attacker
passes K and K̃ to the second stage of the experiment and calls the test() function. He can
now compare the returned key to K or K̃ depending on which session he called the test()
function and can always win the experiment. Thus BR-Key-Secrecy is also broken.

Following we propose a modification of the above protocol in order to achieve BR-Match
and BR-Key-Secrecy security against a QcQ adversary. Therefore we analyse how the possi-
bilities for an attacker change when we switch from CcQ to QcQ. The important difference
is that the CcQ attacker cannot act actively because he is not able to break the conventional
signature scheme. Thus if we replace this signature scheme with a QcQ-EUF-CMA secure
scheme, the QcQ would find himself in the same situation during the first stage of the ex-
periment as the CcQ attacker in the unmodified protocol. To achieve that we propose to
use a hybrid signature scheme to sign the OSCRq and the OSCRp utilizing a concatenation
combiner. This combiner does not provide non-separability, however this security feature does
not bring any advantage here. The additional quantum resistant signature is calculated over
the original message and is then appended after the conventional signature. The additionally
required public key for the quantum resistant signature scheme is transported by the means of
a hybrid certificate as detailed in Secction 3.1. Figure 18 shows this approach schematically.
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Figure 18: Keeping the addition of a hybrid KEM and adding quantum resistant hybrid
signatures to the messages. The conventional certificates are replaced by quantum resistant
certificates.

Summarizing the rational behind the protocol modification: On an abstract level we keep
the protocol how it is, but replace the conventional primitives with hybrid primitives and
therefore gain confidence that the protocol is still secure.

As Figure 18 also shows, each message contains a hash over the receiver’s certificate, in
OPC UA terminology called a thumbprint. This measure thwarts a specific identity mismatch
attack [76]: Consider a client C, a legitimate server called S and a malicious server called
M . M can use his identity and S’ public key to obtain a certificate from a RA. This would
work if we assume that the RA does not request a proof of possession of the corresponding
private key. The attacker could now trick the client into connecting to him and present him
his certificate with S’ public key. C would think he is talking to M . M however can forward
all traffic to S. Eventually C and S would agree on a shared secret, however C would think
that he speaks toM7. However if the server S compares the thumbprint to his own certificate
he would notice the attack and would reject the connection.

3.2.2 Variant Two

An alternative way of creating a hybrid authenticated key exchange protocol that only relies
on a KEM [77] and does not require hybrid signatures is depicted in Figure 19. This is a
generic key exchange protocol, where the hybrid certificate’s PQ public key is actually the
public key for the KEM and not a signature scheme key, as in the previous protocol. Once

7 In the context of OPC UA this poses a real life risk: Imagine two companies A and B that run industrial
systems and are competitors. Both companies are customers of a third company C which offers remote support
services. A and B grant access for C to all their systems because they trust C. Now A calls C and asks them
to remotely log into his system and issue a shutdown command. However, A forwards all commands to the
system of company B. In summary, A has successfully tricked C to shutting down B ’s system.

57



the client has received and verified the server’s certificate, he uses the server’s public key to
encapsulate the secret value sC into the ciphertext cQS . The server does the same with the
client’s public key pkQC which he retrieves from the client certificate certHC . Additionally, as
in the previous protocol, an ephemeral secret is exchanged and the steps of the conventional
OPC UA protocol, such as client nonce and server nonce creation and encapsulation into cCS
and cCC , are performed (not shown in Figure 19).

Client Server

cert S
H

m0=[certC
H ,H (certC

H) , cS
C , cS

Q , pk E
Q ,MAC ] ,σC
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Q , cS
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openSecureChannelRequest

openSecureChannelResponse

getEndpointsResponse

Figure 19: Additional steps in variant two of the key exchange protocol.

The combination of conventional and quantum resistant keys is done by utilizing the XOR
then MAC technique. Therefore a MAC over the ciphertexts is computed. For the OSCRq,
this is MAC(cCS ||c

Q
S , kmac,C) and for the OSCRp it is MAC(cCC ||c

Q
C ||c

Q
E , kmac,S), where ||

denotes byte wise concatenation. The symmetric MAC keys kmac,C and kmac,S are derived
from the symmetric keys that are encapsulated. They are combined using XOR.

The main changes in this variant of the key establishment are:

• The size of hybrid certificates changes: Instead of the public key of a quantum resistant
signature scheme it now contains the public key of a quantum resistant KEM.

• The messages that are exchanged between client and server do not have to be signed by
a hybrid scheme. Thus we do save the bytes that were used for the quantum resistant
signature part and save the computing time for hybrid signature generation.

• But we add an additional ciphertext from the KEM in each message.

• And we have to perform an extra encapsulation and decapsulation operation on server
and client each.

As the results section will show this can lead to a gain in performance depending on the
actually used schemes.

While the security of this key exchange is guaranteed in the Canetti-Krawczyk model [77]
it is easy to see that it cannot hold BR-Match security against an QcQ attacker. Let’s assume
that in the first stage of the experiment, the adversary alters the ephemeral public key pkQE
to p̃kQE in the OSCRq. In the OSCRp the adversary replaces c̃QE with cQE = Encaps(pkQE ).
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This would lead to server and client deriving different shared secret keys Π1
C,S .K 6= Π1

S,C .K

without them noticing, subsequently changing their status to ’accepted’ and thus breaking
BR-Match security. Note that this does not break BR-Key-Secrecy, because the attacker is
still missing the secret values that were generated using client and server’s long term public
keys pkQS and pkQC .

3.3 Selection of Cryptographic Primitives

The described protocols rely on the following generic quantum resistant primitives:

• A KEM

• A signature scheme

In order to implement prototypes and to conduct experiments it is necessary to select
concrete primitives. As mentioned in Section 2, the algorithms proposed in the NIST PQ
project round 2 were considered.

For the KEM we did not do a separate evaluation and relied on the results of the pre-
decessor project [42] that implemented and evaluated an unauthenticated key exchange in
OPC UA. The Kyber KEM [77] with the parameter sets Kyber-512, Kyber-768 and Kyber-
1024 were used. Each parameter set was selected to match with the security level of the used
signature scheme.

As a primary selection criterion for the signature scheme we used the public key size
and signature size of the scheme. This decision is based on a peculiarity of the OPC UA
protocol that requires the messages in the openSecureChannel key establishment process to
be transmitted in one message chunk [23, p. 48]. This means that no fragmentation in the
OPC UA TCP transport layer can occur. Note that this effect is limited to the transport layer
that is defined by OPC UA and thus fragmentation on any lower layer (such as the TCP or
Ethernet layer) is allowed. However the standard does not specify the maximum size of such
a chunk, it only requires the implementations to provide a chunk size of at least 8192 bytes
but it could be more depending on the lower networking layers used. For the measurements
we relaxed this hard criterion and assumed a chunk size of at least 16 kiB. However this 16 kiB
also accounts for the payload data, the conventional signature data as well as the public key
and ciphertext of the Kyber KEM. This allows a future work to also see which cryptographic
schemes are only slightly above the maximum size and might be useful in combination with
other protocol changes.

In proposed ’Variant One’, adding a quantum resistant signature scheme requires an addi-
tional signature in each exchanged message and an additional signature as well as an additional
public key in the certificate. Hence for the size comparison following metric was used:

publicKeySize+ 2 · signatureSize (23)

Figure 20 clearly shows that Dilithium and Falcon are best suited considering their pub-
lic key and signature size. Additionally a performance investigation study for authenticated
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PQ handshakes in TLS comes to the same conclusion [78]. The L1 variants of MQDSS and
SPHINCS+ have sizes that would fall within the 16 kiB limit, however, it was decided to
exclude them from the experiments because they don’t allow a margin for additional data
and conventional signatures and public keys which also have to be included in the openSe-
cureChannel messages. Table 13 shows the corresponding sizes in bytes.

Additional Data for PQ Schemes

Magnifier 1

Magnifier 2

Figure 20: Additional data needed per PQ signature scheme and security level. Note that for
each scheme only parameters for certain security levels are available.

Table 13: Additional data required per signature scheme. Size in bytes. Note that not all
schemes offer parameters for all security levels.

Dil. Falcon GeMMS LUOV MQDSS Picnic qTESLA Rainbow SPHI.
L1 5 272 2 112 352 446 23 239 13 004 27 636 20 064 58 272 16 192
L2 6 874 – – 71 137 – – – – –
L3 8 492 – 1 238 786 164 440 23 892 59 548 49 760 207 056 34 176
L5 – 4 453 6 081 835 – – 109 528 – 492 344 59 648

Our conclusion is to use Dilithium and Falcon with all their available parameter sets to
build prototypes for the above presented key exchange protocols and conduct the performance
evaluation based on them. The parameter sets that provide higher security levels than needed
(>128 bit) are investigated because the NIST PQ project is still ongoing and it can be possible
that the security levels might change in the future.

3.4 Prototype Implementation

3.4.1 Variant One

The authenticated hybrid key establishment scheme was implemented into the open source
OPC UA library open62541, which is available on Github. The source code contains an
example folder which in turn contains an encrypted server and client. The client establishes a
secure channel with the server, opens a new session and retrieves the current time and date.
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Then the client closes the secure channel and terminates. This setup was used for all the
conducted experiments.

The unauthenticated quantum resistant key exchange was already implemented and only
had to be merged into the most current version of open62541. Modifications that were imple-
mented within the scope of this thesis are:

• Handling of hybrid certificates. For this we can take advantage of the modular structure
of open62541. Internally, a function pointer references a single method that verifies
certificates. The function itself resides in a plugin, which is realised in an external c-file.
A new function to verify hybrid certificates was created and the function pointer was
adjusted accordingly.

• All secure channel related functions are organized in a security policy. Therefore, a
security policy data structure object acts as an interface providing function pointers to
signing, verify, encryption, etc. functions and additionally stores context data such as
private and public keys. In the concrete implementation this is a C-struct with function
pointers and context data variables. The server can support multiple security policies.
The OSCRq sent by the client contains a field that specifies the security policy the client
wants to use and the server selects the matching security policy and from there always
uses the callback functions associated with the policy when cryptographic functions are
needed. We copied the existing security policy Basic256Sha256, renamed it to Hybrid
and modified some of the function pointers to point to new functions that are described
in the following.

• Open62541 makes use of a data structure that represents a channel. A pointer to this
data structure is passed as a parameter to all relevant functions. The channel stores all
context data of a channel such as the exchanged certificates, derived symmetric keys, a
pointer to the used security policy, etc.

• A function that signs messages. The original asymmetric function was copied and
modified in such a way that it adds another quantum resistant signature at the end of
the message buffer. The size of the message buffer, located in the security policy was
adjusted accordingly.

• Analogue to the signing function, a verification function that recognizes hybrid signa-
tures and verifies them had to be implemented and referenced in the Hybrid security
policy.

• Minor changes in the core source code due to changed interfaces, for example to support
two private and public keys.

• All cryptographic functions were implemented in a separate library file, that was also
used by the certificate creation Python program (see Section 3.1.2).
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Figure 21 shows an overview of the modular design. The library libhybrid_crypto.a is the
same as the one used for the certificate creator Python software but it is statically linked into
the OPC UA server and client. The plugins have access to certain secure channel context
objects that contain data such as the root certificates and the private keys that are needed,
however, this is not shown in Figure 21.

Plugins

Hybrid

Core open62541 code

Security Policy...

verify*()

sign*()

verify_hybrid(data)verify_hybrid(char* data)

sign_hybrid(char* data)

...

PKI

verify_cert_hybrid(char* cert)

...

verify_certificate*()

libhybrid_crypto.a

include

channel

securityPolicy*

...

Figure 21: Modular structure of open62541.

libhybrid_crypto.a This library is mainly an interface wrapper around the signing func-
tions from the PQClean library. The relevant source code of PQClean was directly copied
into the libhybrid_crypto project folder.

The listing shows the interface of the library, exposing a keypair generation, a verify and
a sign function for each signature scheme in each parameter set.

int dilithium2_keypair(uint8_t *pk, uint8_t *sk);

int dilithium2_sign(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t

↪→ mlen, const uint8_t *sk);

int dilithium2_verify(const uint8_t *sig, size_t siglen, const uint8_t *m,

↪→ size_t mlen, const uint8_t *pk);

int dilithium3_keypair(uint8_t *pk, uint8_t *sk);

int dilithium3_sign(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t

↪→ mlen, const uint8_t *sk);

int dilithium3_verify(const uint8_t *sig, size_t siglen, const uint8_t *m,

↪→ size_t mlen, const uint8_t *pk);
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int dilithium4_keypair(uint8_t *pk, uint8_t *sk);

int dilithium4_sign(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t

↪→ mlen, const uint8_t *sk);

int dilithium4_verify(const uint8_t *sig, size_t siglen, const uint8_t *m,

↪→ size_t mlen, const uint8_t *pk);

int falcon1024_keypair(uint8_t *pk, uint8_t *sk);

int falcon1024_sign(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t

↪→ mlen, const uint8_t *sk);

int falcon1024_verify(const uint8_t *sig, size_t siglen, const uint8_t *m,

↪→ size_t mlen, const uint8_t *pk);

int falcon512_keypair(uint8_t *pk, uint8_t *sk);

int falcon512_sign(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t

↪→ mlen, const uint8_t *sk);

int falcon512_verify(const uint8_t *sig, size_t siglen, const uint8_t *m,

↪→ size_t mlen, const uint8_t *pk);

Open62541 uses the cryptographic library mbedtls [79] for all security relevant operations
including the conventional verification of certificate chains. Therefore, the certificate chain
and the trusted root certificates are passed to a verification function provided by mbedtls.
The verification function of mbedtls allows to provide a callback function as a parameter
that will be called after each certificate in the chain was verified. We use this mechanism
to implement the hybrid signature verification functionality. Inside the callback function we
have access to the current and the previous certificate in the chain. To verify a certificate we
have to retrieve the public key from the previous certificate and verify the PQ signature in the
current certificate. Note that we do not need to check if issuer and subject match since these
kind of checks were already performed by mbedtls when the callback function is called. When
there is no previous certificate we arrived at the end of the chain and have to decide whether
we are dealing with a trusted root certificate. This is also done by mbedtls. The flowchart in
Figure 22 shows the chain verification process.

Hybrid Signature Verification Whenever open62541 receives a message on the network
socket that was signed using an asymmetric method (i.e. during secure channel establishment),
the signature size is retrieved from the security policy object and the message is divided into
message part and signature part on byte string level. Then those two byte strings are passed
as parameters to the asymmetric verification function of the current security policy. In this
function, we separate the concatenated signature into the conventional and PQ signature
based on fixed offsets and call the corresponding verification function for each signature on
the message. Only if both verification functions return true, the hybrid verification function
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Figure 22: Process of verification of a certificate chain. Note that comparing issuer of the
current certificate matches the subject of the previous certificate is performed by mbedtls
automatically.

returns true. Figure 23 illustrates the process, which relates to the concatenation combiner
explained in Section 2.7.2.

Appendix E shows the implementation in detail.

3.4.2 Variant Two

The basis for the implementation of our ’Variant Two’ of the key establishment is the open62541
code with the modifications for an unauthenticated quantum resistant key exchange from the
predecessor project [42] which uses Kyber [77]. The code modifications can be divided into
following parts:

Modified Certificates While in RSA the same public key can be used for signatures and
the key exchange, this is in general not possible for the used PQ schemes. A key pair is
specifically dedicated for a signature scheme or a KEM. Thus, the quantum resistant part of
the hybrid device certificate must contain a KEM public key. However the CA certificates, that
sign the device certificate, must contain a PQ public key for a signature scheme. Figure 24
illustrates this. These new device certificates are created using the ccreator Python tool
described in Section 3.1.2.

Access to Key Pairs The functions in open62541 that create and process the OSCRq
and the OSCRp need access to the new quantum resistant key pairs. In particular, the
functions that create the OSCRq and OSCRp have to access the long term private key and
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Figure 23: The hybrid signature verification function receives the message and the signature as
parameters. The signature is then separated into the conventional and the quantum resistant
part. Each signature is passed to their corresponding verifier function together with the
message. Both have to return true.
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Figure 24: The PQ part of the device certificate contains a KEM public key. The issuer
certificates that signs the public key use public keys of a signature scheme.

the functions that process the received messages need access to the long term public key
of their communication partner. The function names and where they are located in the
open62541 source code are listed in Table 14.

All of these functions have access to the remote certificate8 via the channel data structure:
channel->remoteCertificate. The public key for encapsulation can be extracted from this
certificate.

To access the private key, a new variable in the security policy data structure was intro-
duced. Then, the local private key for the KEMs is passed to the program as a command line
argument and assigned to the variable in the security policy. All of the functions in Table 14
have access to the current security policy and thus to the private key via the channel data
structure: channel->securityPolicy->postQuantumModule->privateKey.

8For the client, the server certificate is considered the remote certificate. Analogous, for the server, the
client certificate is considered the remote certificate.
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Table 14: Functions in open62541 that need access to private or public keys of the PQ KEM.

File Function Side Purpose
ua_client_connect.c openSecureChannel(...) Client Create OSCRq
ua_securechannel_manager.c UA_SecureChannelManager_open(...) Server Process OSCRq
au_securechannel_manager.c UA_SecureChannelManager_open(...) Server Create OSCRp
ua_client_connect.c processDecodedOPNResponse(...) Client Process OSCRp

Additional Channel Properties The channel data structure requires additional proper-
ties. These are the additional long term shared secrets that are set after decapsulation in the
functions that process the OSCRq and OSCRp. Also the new data fields in the OSCRq and
OSCRp messages are represented by variables in the channel data structure. The functions
in Table 14 do not create the messages directly but just compute the value for the additional
fields, store them in the channel data structure and before transmission, the data is copied
from the channel data structure.

Asymmetric Security Header Before transmission of the OSCRq and the OSCRp, the
asymmetric security header is added to the message [23]. In our implementation we decided
to store additional data that is required for the quantum resistant key exchange in this header
since it requires less changes in the open62541 source code. Figure 25 shows the additional
fields.

SecurityPolicyUriLength

SecurityPolicyUri

SenderCertificateLength

SenderCertificate

ReceiverCertificateThumbprintLength

ReceiverCertificateThumbprint

clientPublicKey

ciphertext

authenticityMAC

ciphertext2

additional header fields

Figure 25: Modified asymmetric security header.

The asymmetric security header of theOSCRq contains the ephemeral public key and the
ciphertext that was created using the encapsulation function with the server’s public key.
AuthenticityMAC is a MAC over the ciphertext and the conventional client nonce, using
the XOR of the client nonce and the shared secret as the key as described in Section 3.2.2.
Ciphertext2 remains empty.

The OSCRp’s asymmetric security header contains a ciphertext that was created using
the clients public key and a second ciphertext based on the ephemeral public key. The
authenticityMAC is computed over the concatenation of both ciphertexts and the server
nonce. The MAC key is the XOR of the local and remote symmetric signing key. These keys
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are derived from classical client and server nonce, the ephemeral shared secret and both long
term secrets.

Appendix F shows the implementation in detail.

3.5 Measurement Setup

One part of this thesis’ result is to show the feasibility of hybrid quantum resistant cryptog-
raphy within the OPC UA protocol. While it is easy to theorize about packet sizes and CPU
cycles it is still reassuring to build a running system, proofing that no pitfalls in the protocol
or in the used implementation were overlooked.

In addition to that, we want to perform measurements that allow a closer look at our
system, especially to see where it differs in resource requirements from the current implemen-
tation without any quantum resistant algorithms in place. This will help future implementers
to identify weak points that can potentially cause problems when ported to other platforms.

Especially two criteria are evaluated: Sizes of certificates/sizes of network packets and the
CPU requirements to execute signing and verification.

3.5.1 The Test System

The performance measurements are conducted using two Raspberry Pi 3 Model B that are
connected via a 100Mbps Ethernet connection and are utilizing an ARM Cortex-A53 micro-
processor with 1.2GHz. Both systems run the Raspbian Buster Linux distribution with kernel
version 4.19. The operating system is expected to have a slight effect on the measurements,
however this reflects a real world scenario that we can also expect when using an OPC UA
server in practice since embedded systems on PLCs often also run Linux.

3.5.2 Software Under Evaluation

The implementation of the hybrid quantum resistant version of open62541, described in Sec-
tion 3.4, produces two binary files when compiled: The server and the client executables. Via
compiler flags, different versions of each, the server and client, can be compiled. For the test
following versions were created:

1. Original, unmodified implementation to achieve some baseline measurements for later
comparison.

2. Only the unauthenticated quantum resistant KEM is in place. No hybrid signatures are
used. This is the variant that is only secure against passive CcQ attacker and was used
in the predecessor project [42].

3. A version for each signature scheme and ’Variant One’ of the modified key establishment
protocol:

(a) Dilithium 2
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Table 15: Versions of the built executables.

Label PQ KEM Hybrid Sign Scheme Certificate
EXE_01 – RSA RSA

’Variant One’ EXE_02 Kyber 512 (unauth.) RSA RSA
EXE_03 Kyber 512 (unauth.) RSA+Dilithium 2 RSA+Dilithium2
EXE_04 Kyber 512 (unauth.) RSA+Dilithium 3 RSA+Dilithium3
EXE_05 Kyber 512 (unauth.) RSA+Dilithium 4 RSA+Dilithium4
EXE_06 Kyber 512 (unauth.) RSA+Falcon 512 RSA+Falcon512
EXE_07 Kyber 512 (unauth.) RSA+Falcon 1024 RSA+Falcon1024

’Variant Two’ EXE_08 Kyber 512 RSA RSA+Dilithium2
EXE_09 Kyber 768 RSA RSA+Dilithium3
EXE_10 Kyber 1024 RSA RSA+Dilithium4
EXE_11 Kyber 512 RSA RSA+Falcon512
EXE_12 Kyber 1024 RSA RSA+Falcon1024

(b) Dilithium 3

(c) Dilithium 4

(d) Falcon 512

(e) Falcon 1024

4. A version for each signature scheme and ’Variant Two’ of the key establishment.

Table 15 assigns a label to each executable for later reference in test cases.
All binaries were build directly on the Raspberry Pi systems using the gcc compiler and

cmake. Following optimization flags have been applied:
-O3 -mcpu=cortex-a53 -mfpu=neon-fp-armv8 -mfloat-abi=hard

-funsafe-math-optimizations

A detailed description of the compilation process is given in Appendix A.

3.5.3 CPU Cycle Counter

The runtime of certain parts of a program can be evaluated by reading the Cycle Counter
Register of the CPU [80]. The register is automatically incremented with each clock cycle.
Thus before we run a function (or part of a function) that we want to measure, we read this
register and store the value in memory. After the measurement, subtracting the current value
of the register from the stored value yields the passed clock cycles, which we can print out on
the terminal for later evaluation. Since we know the clock speed of the CPU (1.2GHz), we
can calculate the run time in seconds as

t =
n

fC
(24)

where n is the cycle count and fC being the clock frequency in GHz. To keep the interfer-
ence from the operating system as low as possible, the processes of the server and client are
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given the highest possible priority (-20) using the nice command.
Additionally to avoid effects of multiple CPU cores the taskset command was utilized to

ensure that the whole process always runs on a single CPU core.

3.5.4 Measurement Points

Figure 26 shows at which steps in the secure channel establishment timing measurements were
taken according to the methodology explained in Section 3.5.3. Following the measurements
are further detailed.

1© At first, the client verifies the server certificate, which is either pre-installed or was
obtained in the previous getEndpoints step.

2© Then the OSCRq is created. This includes ephemeral key pair generation for the PQ
KEM.

3© Then the OSCRq is signed.

4© The transmission time of the OSCRq is expected to increase due to the larger included
client certificate as well as the longer PQ signature.

5© The server first verifies the client’s certificate.

6© Then the retrieved public key is used to verify the OSCRq’s signature.

7© The server then creates the OSCRp, which includes the encapsulation process of a shared
secret.

8© Before transmission the message is signed (either hybrid or conventional, depending on
the test setup).

9© The OSCRp is transmitted with a higher packet size as in the conventional case due to
the additional signature and the encapsulated shared secret.

10© The received message signature is verified.

11© To eventually open the secure channel, the shared secret has to be extracted by the KEM.

All the measurements were averaged over 100 runs. Therefore a test script was deployed,
see Appendix B for further details.

3.5.5 Software Configuration

The set of measurement points described above was measured for 17 combinations of different
versions of the executable and different certificates.

1. The "Baseline" setup uses the unmodified version of open62541 (EXE_01) with con-
ventional RSA certificates.
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Figure 26: The steps of secure channel establishment. The runtime will be measured at the
numbered points.

2. The "Only KEM" setup uses executable EXE_02 with the hybrid KEM in place but
without any hybrid certificates or signatures.

3. Then five setups follow, where the unmodified open62541 (EXE_01) was used, but
all the different versions of hybrid certificates were provided. This resembles a test to
see if the hybrid certificates are actually backwards compatible and if they cause any
unexpected effects on legacy systems. These setups are called

• Compatibility Dilithium 2

• Compatibility Dilithium 3

• Compatibility Dilithium 4

• Compatibility Falcon 512

• Compatibility Falcon 1024

4. The next five setups use the hybrid certificates and ’Variant One’ of the quantum resis-
tant authenticated key establishment and their corresponding executables (EXE_03 -
EXE_07). They are named:

• Dilithium 2 – Var 1

• Dilithium 3 – Var 1

• Dilithium 4 – Var 1

• Falcon 512 – Var 1

• Falcon 1024 – Var 1
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5. The last five setups use the ’Variant Two’ key establishment also in combination with
the five different hybrid certificates:

• Dilithium 2 – Var 2

• Dilithium 3 – Var 2

• Dilithium 4 – Var 2

• Falcon 512 – Var 2

• Falcon 1024 – Var 2

In summary we have 17 different test setups and measure 11 measurement points in each
setup. Each test result is the average over 100 runs of the test.
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4 Results

This sections shows the test results. While one goal of the work was to provide an actual
prototypical implementation of hybrid quantum resistant cryptographic schemes in OPC UA,
the other part was to show the performance impacts. Therefore the runtime of different
elements of the protocol stack is reviewed in detail. Additionally, sizes of certificates and
messages are compared.

4.1 CPU Cycles

Firstly it is interesting to compare the total runtime of the key establishment process of
the secure channel. The chart in Figure 27 shows the overall runtime for each setup in
milliseconds. The first thing to notice is that the ’Only KEM’ setup takes just 6.9% longer
than the ’Baseline’ setup.

All the ’Compatibility’ setups differ less than 0.5% from the ’Baseline’ setup. This proves
that, considering CPU cycle time, the hybrid certificates can be used for legacy systems
without noticeable negative effects9.
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Figure 27: The total time consumed for the key establishment. Only a single certificate
directly signed by the CA and no chains were used (chain length 1).

Figure 28 shows the proportion of each measurement point with respect to the total run-
time. In the ’Baseline’ setup, the majority of the time is consumed for signature generation.
’Variant One’ (Dilithium 4 and Falcon 1024 are shown in the chart) shows the same charac-
teristic: The most time is consumed during signature generation. For ’Variant Two’, creation
of the OSCRq and OSCRp as well as ’Open Secure Channel, Client’ steps take up a larger
portion of the time. In those steps, the KEM key generation, encapsulation and decapsulation
happens. The transmission times of the network packets take up such a small portion of the
time (0.028% in the ’Baseline’ setup and 0.046% in the ’Falcon 1024 - Var 1’ setup) that they
cannot be shown in the chart.

The full data that was measured can be found in Table 16 in Appendix C and the pro-
portions of all setups are shown in Figure 40 in Appendix D.

9This is only true regarding the CPU requirements. The size limits for the larger certificates have to be
evaluated separately
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Figure 28: Proportion of the single steps in the key establishment for 5 exemplary setups.
Sending of messages takes up such a small percentage that it is not shown in this chart.

4.1.1 Verification of Certificates
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Figure 29: Verification of the server certificate at the client (measurement point 1©). Average
over 100 measurements.

Figure 29 shows the time that a client needs to verify the server certificate. This corre-
sponds to measurement point 1©. The results show the sets of measurements for a certificate
that is directly signed by a root CA (Chain length: 1) and with an intermediate CA (chain
length: 2), where two certificates were transmitted and verified. As expected, verifying a
chain with two certificates takes about twice as long as verifying a chain with only a single
certificate. We can observe that Falcon performs here better than Dilithium, i.e. is faster at
signature verification, but we also have to consider that the impact of the verification process
on the overall time for a key exchange is rather small (3.8% in case of Dilithium 4 and ’Variant
One’).

We also observe that the "compatibility" setups have no more than 2.2% difference from
the "Baseline" setup. The only additional computational work in the "compatibility" mode is
that the conventional signature signs the inner quantum resistant signature as well, therefore

73



longer certificates have to be verified. For the legacy verifier, the message that has to be
verified simply contains more generic data.

The only difference between ’Variant One’ and ’Variant Two’ regarding this measurement
is that the certificates contain different public keys, but are signed with the same hybrid
methods. Thus we cannot see any difference in Figure 29 between the variants when the same
hybrid signature scheme was used.

At measurement point 5© the client certificate is verified by the server. There is no
difference in the way the certificate is verified, thus the diagrams look almost the same. It
can be seen in Figure 41 in Appendix D.

4.1.2 Creation of Messages

Figure 30 shows the time that the client needs to create a OSCRq, without computing the
signature, which corresponds to measurement point 2©. At the ’Baseline’ and the ’Compati-
bility’ measurements this is done in about 0.05ms since here only the client nonce has to be
generated.
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Figure 30: Measurement point 2©

In the ’Only KEM’ and all of the ’Variant One’ setups the ephemeral key pair of Kyber-
512 is generated, which increases the runtime to almost 3ms. In the ’Variant Two’ setups,
additional to the ephemeral key pair generation, a shared secret is encapsulated. And different
parameters for Kyber are used according to Table 15, which increases the runtime as well.

Figure 31 shows the equivalent measurement point at the server, where the OSCRp mes-
sage is created, also without the signature. All the runtimes are higher than on the client. In
’Variant One’ the server has to encapsulate a shared secret instead of creating a key pair. In
’Variant Two’ the server has to perform two encapsulations and has to create a MAC.
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Figure 31: Measurement point 7©

4.1.3 Signing of Messages

The signing of the OSCRq 3© and of the OSCRp 8© is already very CPU intensive when
classical RSA is used. The overhead that is introduced by Dilithium is 19.5% compared to
the "Baseline" measurement. Falcon 1024 introduces a significant overhead of 140% more
runtime. Figure 32 shows a chart of the results. As expected, there are only small differences
regarding the chain length of the certificates. The only effect of the chain length is that more
data has to be signed.
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Figure 32: Runtime of the signing of a OSCRq.

Signing with the Dilithium variants has a high standard deviation due to the non deter-
ministic algorithm. This has to be taken into account when it shall be applied for real time
applications.

The ’Variant Two’ measurements only use the same RSA signatures as the baseline mea-
surement and therefore we don’t see any difference.

On the server side at measurement point 8 there are no differences as can be seen in
Figure 42 in Appendix D.
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4.1.4 Transmission Times
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Figure 33: Measurement point 4©

The chart in Figure 33 shows the transmission times of the OSCRq for all the setups
and chain lengths at measurement point 4©. We can see that the ’Compatibility’ setups are
affected due to the larger certificates that are included in the OSCRq. ’Variant Two’ performs
slightly better than ’Variant One’ because the encapsulated KEM secrets are smaller than the
additional quantum resistant signatures of ’Variant One’. In general, the transmission time
rises depending on the signature size of the used PQ scheme.

However as it was shown in Figure 27, the overall effect on the key exchange process is
small: Between 0.2% and 0.01% depending on the used signature scheme. This is still an
interesting result if you consider that there might be other systems that have more limited
data rates, such as long distance radio links.

The transmission of the OSCRp from the server to the client at measurement point 9©
(Figure 43 in Appendix D) shows the same characteristics as Figure 33, considering the
standard deviation illustrated by the error bars.

4.1.5 Verification of Messages

The verification time for an OSCRq as seen in Figure 34 is only indirectly dependent on the
chain length. In either case only one signature (hybrid in the case of ’Variant One’) has to
be verified, but in case of chain length 2, there is more data in each message to be verified.
The verification time for the Dilithium 4 parameter set in ’Variant One’ is 301% longer than
for the baseline measurement. In contrast to signature generation, the effect on the overall
process is small (83ms for signing a message compared to 6.8ms for verification in case of
Dilithium 4 and ’Variant One’).

’Variant Two’ does not use hybrid signatures but still keeps the conventional RSA sig-
natures. Thus the verification times only differ slightly from the ’Baseline’ setup. Small
variation come from the changed sized of the messages that are signed.

The verification time for the OSCRq is equivalent to the OSCRp, plotted in Figure 44 in
Appendix D, since both messages have roughly the same byte size.
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Figure 34: Measurement point 6©.

4.1.6 Derive the Shared Secret Key at Client

In Figure 35 we see the time it takes for the client to derive the shared secret after the OSCRp
arrived (measurement point 11©). In the ’Baseline’ and ’Compatibility’ setups this process
only involves key derivation using server and client nonce.
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Figure 35: Measurement point 11©.

In ’Variant One’ and the ’Only KEM’ setup, Kyber-512 is used and a shared secret has to
be decapsulated. Signatures are not verified here and therefore no correlation with the used
PQ signature scheme shows.

’Variant Two’ involves two decapsulation processes: Decapsulation of the ephemeral shared
secret and decapsulation of the long term server shared secret. The ’Dilithium – Var 2’ and
’Falcon – Var 2’ use Kyber-512 and therefore take about twice the time of ’Variant One’. The
other signature schemes in ’Variant Two’ are combined with other parameter sets of Kyber,
thus the decapsulation process is longer.
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4.2 Sizes

4.2.1 Certificate Sizes

Firstly we compare the sizes of hybrid certificates in Figure 36. For comparison, it contains
a conventional RSA certificate with 906 bytes. The actual sizes of certificates can vary in
practice, depending on the length of the subject and issuer data. However we assume this
effect to be in the range of ±100 bytes. For the chart, every certificate has exactly the same
issuer and subject information.

Figure 36: Sizes of hybrid certificates. RSA is a conventional RSA with 2048 bit key, non
hybrid, certificate for comparison. The others are the quantum resistant schemes combined
with RSA 2048.

The certificates marked with KEM contain a quantum resistant KEM public key instead
of the public key of a quantum resistant signature scheme and are used in ’Variant Two’.
Because the public keys of Kyber are slightly smaller than the public keys of the used signature
schemes, these certificates are a little bit smaller than their counterparts.

Considering that a message chunk in OPC UA allows at least 8 kiB, it seems feasible to
include all of the tested certificates. However this is only the size of the certificates itself, the
messages will also include protocol overhead and payload data. Reasonable certificate chains
can only be realised with Falcon 512. Note that the limit of 8 kiB for a message chunk is not
a hard limit, but depends on the lower transport and networking layers used. Thus, in the
experiment, we can exceed this limit because we control the implementation that was used.
But we have to expect incompatibilities in practice.

4.2.2 Message Sizes

The sizes of exchanged messages in the key establishment are measured with Wireshark.
Therefore only the messages GetEndpointResponse, OSCRq and OSCRp, as explained in
Section 2.1.2 are considered. The GetEndpointsRequest does not change with the chang-
ing cipher suites and thus is not part of the results. As for the runtime measurements in
Section 4.1, certificate chains of length 1 and length 2 are measured.

GetEndpointResponse Figure 37 shows the message lengths of the GetEndpointsRe-
sponse for a chain length of 1, meaning no intermediate CA was used. The chart compares
the sizes between ’Variant One’ and ’Variant Two’ of the hybrid key exchange. For com-
parison, classical RSA, as used in the original OPC UA implementation, is shown as well.
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GetEndpointsResponse (Chain length 1)

Figure 37: Get endpoints response message sizes. RSA is the standard implementation of
OPC UA, all others are hybrid versions in ’Variant One’ and ’Variant Two’.

The chart shows very large packet sizes compared to the certificate sizes. In OPC UA every
endpoint uses its own certificate. This means that even if every endpoint uses actually the
same certificate, a copy is individually included in every endpoint description. The standard
configuration of open62541 creates 7 endpoints, and we add two endpoints for the hybrid
security policy, resulting in 9 endpoints. Therefore we expect the message size to have 9 times
the certificate size plus some overhead for additional information about the endpoints, which
the chart confirms.

Since the certificates of ’Variant Two’ are smaller, also the messages become smaller. The
biggest difference can be observed for hybrid certificates using Dilithium 3, where the message
for ’Variant Two’ is 5.4% smaller compared to ’Variant One’. When two certificates are used
in a chain (chain length 2), the message’s sizes roughly double, as can be seen in Figure 45 in
Appendix D.

These message sizes exceed the chunk size of 8 kiB by far. However, only the OSCRq and
OSCRp are limited to one chunk, for the GetEndpointsResponse fragmentation is allowed.

OSCRq and OSCRp The sizes of OSCRq messages, that are sent from client to server, for
a chain length of 1 are shown in Figure 38 and for a chain length of 2 are shown in Figure 39.
Both charts compare the message sizes of ’Variant One’ and ’Variant Two’ and include the
message size of classical RSA used in standard OPC UA for reference.

Both charts show that when Dilithium was used for the quantum resistant signature
scheme, ’Variant Two’ results in a smaller message sizes, but when Falcon is used, ’Variant
One’ produces smaller message sizes. This is due to Falcon’s public keys being smaller than
the Kyber KEM public keys, while the Dilithium public keys are larger. The horizontal lines
in the charts show the 8 kiB chunk size limit. With a chain length of 1, as illustrated in
Figure 38, the limit is exceed by Dilithium 4 and also by Dilithium 3 when used in ’Variant
One’.
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Figure 38: Size of the OSCRq sent by the client with a certificate chain length of 1. The line
shows the 8 kiB chunk size limit.

Figure 39: Size of the OSCRq sent by the client with an intermediate certificate included
(chain length 2). The line shows the 8 kB chunk size limit.

When using a chain length of 2, i.e. when an intermediate CA certificate is included in
the chain, only Falcon 512 can guarantee that the message will fit into one message chunk.
To deploy any other scheme or parameter set one either has to find another way to transmit
intermediate certificates or might adjust the chunk size limit of OPC UA accordingly.

The OSCRp which is shown in Figure 46 and Figure 47 in Appendix D exhibits the same
characteristics as the OSCRq.
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5 Budget

The main outcome of the thesis are several software artefacts that are only based on open
source project that can be used free of charge. For the measurements that where conducted,
two Raspberry Pi 3 micro computers were used.

Costs:

Item Quantity Cost
Raspberry Pi 3 2 50EUR
Power Supply 2 10EUR
Cat5e Cable 2m 2 7EUR

Total 134EUR

6 Environment Impact

The cryptographic schemes that were shown affect the computation time of the involved
microprocessors. This means that their power consumption will most likely increase when we
transition to hybrid quantum resistant schemes is made. To give a reasonable estimate on the
effect of different cryptographic schemes on the power consumption, one needs a dedicated
study that surveys the overall number of deployed cryptographic devices in the field and
from there could try to estimate the increased power consumption due to quantum resistant
cryptography.
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7 Conclusion and Outlook

All 9 quantum resistant signature schemes that are remaining in round two of the NIST
PQ project were evaluated regarding their suitability for OPC UA. Falcon and Dilithium
are found to be the most suitable candidates due to their small public key and signature
sizes. Here it turns out that transmission time of large data packets is, at least in the case
of Ethernet, no issue, however limitations of message sizes in the protocols are the most
restricting factor. This is also a hint for future protocol standardizers that it might be worth
to allow more overhead data in order to be more flexible in the choice of quantum resistant
cryptographic algorithms.

Furthermore this thesis shows how backwards compatible hybrid quantum resistant X.509
certificates can be created and a prototype in Python was implemented that actually proofs
their feasibility. While this is indispensable for the transition phase towards quantum resistant
cryptography it seems appropriate to design a new version of X.509 that actually allows easy
use of multiple public keys and signatures and renounce backwards compatibility.

Based on these certificates, two methods for a hybrid quantum resistant and authenticated
key exchange that withstand a QcQ attacker are proposed. While the ’Variant Two’ promises
minor performance improvements over ’Variant One’, the ’Variant One’ has stronger security
arguments and is closer oriented on the existing key establishment method of OPC UA. Both
variants are integrated into the open source OPC UA protocol stack open62541 and proof
practical feasibility and allow to estimate performance impacts beyond theoretical calcula-
tions.

Regarding size constraints, we demonstrate that Falcon is the most suitable signature
scheme to be deployed in OPC UA due to its small signature and public key size, whereas
Dilithium still has acceptable public key and signature sizes and performs better in terms of
CPU usage, which becomes more important on resource constrained processors. However, one
has to consider that in the future the computational cost of both schemes could decrease due
to optimization in the implementations as well as due to specialized cryptographic hardware.
But the sizes of signatures and public keys can be expected to be fixed at least when a scheme
becomes standardized. For a future work it would be interesting to investigate the same issue
from a viewpoint where all size constraints a dropped and only the computing performance
is considered.

Finally, with the performance measurements we are able to provide insights to vendors of
IoT and embedded systems to estimate if their systems are capable of running hybrid quantum
resistant schemes and if not what changes are required.

It is worth noting that all the considered signature schemes are still under evaluation by
the NIST and it remains to be seen which ones will become actual standards. This thesis
suggest that in case neither Falcon nor Dilithium become part of the standard, some major
changes to the OPC UA protocol become necessary to remain secure in a post quantum world.
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Abbreviations

AES Advanced Encryption Standard

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CCA chosen-ciphertext-attack

CPA chosen-plaintext-attack

CPS Cyber Physical System

CPU Central Processing Unit

DER Distinguished Encoding Rules

DH Diffie-Hellmann

dPRF dual PRF

ERP Enterprise Resource Planning System

ETSI European Telecommunications Standards Institute

EUF-CMA Existential Unforgeability under Chosen Message Attack

GUI Graphical User Interface

HFE Hidden Field Equations

HMAC Keyed Hash Message Authentication Code

HMI Human Machine Interface

HTTP Hyper Text Transfer Protocol

ICS Industrial Control System

IETF Internet Engineering Task Force

IIoT Industrial Internet of Things

ISO International Organization for Standardization

ITU International Telecommunications Union

KDF Key Derivation Function

KEM Key Encapsulation Method

M2M Machine To Machine
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MAC Message Authentication Code

MES Manufacturing Execution System

NIST National Institute of Standards and Technology

OID Object Identifier

OID Object Identifier

OPC UA OPC Unified Automation

OPC Open Platform Communications

OQS Open Quantum Safe

OSCRp Open Secure Channel Response

OSCRq Open Secure Channel Request

PC Personal Computer

PGP Pretty Good Privacy

PKI Public Key Infrastructure

PLC Programmable Logic Controller

PQ Post Quantum

PRF Pseudo Random Function

RA Registration Authority

RSA Rivest Shamir Adelman

SCADA Supervisory Control And Data Acquisition

SHA Secure Hash Algorithm

TLS Transport Layer Security

XML Extensible Markup Language
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A Compilation of open62541

Open62541 comes with a cmake file that builds the OPC UA stack as a static library. Two
new software projects (server, client) were created for this thesis that also use cmake and
include the open62541 cmake project. This means when the server or client is build, the
open62541 library is automatically build as well and all the binaries are links.

The listing shows the CMakeLists.txt (cmake configuration file) that was used for the
client, the server uses an identical file just with a different project name.

cmake_minimum_required(VERSION 2.8)

set(CMAKE_CXX_FLAGS_RELEASE "-O3 -mcpu=cortex-a53 -mfpu=neon-fp-armv8 -mfloat

↪→ -abi=hard -funsafe-math-optimizations")

add_subdirectory("../hybrid_crypto_test/hybrid_lib/" "build_hybrid_lib/")

add_subdirectory("../open62541" "build_open62541/")

project(opc_ua_client)

add_executable(${PROJECT_NAME} "main.c" "common.h")

INCLUDE_DIRECTORIES("../open62541/include/" "../open62541/deps" "../

↪→ hybrid_crypto_test/hybrid_lib/")

link_directories( "build_open62541/bin/" "build_hybrid_lib/")

target_link_libraries(${PROJECT_NAME} mbedcrypto mbedtls mbedx509 open62541

↪→ hybrid_crypto)

set_property(TARGET ${PROJECT_NAME} PROPERTY C_STANDARD 99)

Following CMake flags were added to the open62541 CMakeLists.txt in order to be able
to build different versions without changing the source code:

• HYBRID_CERTIFICATE_VERIFICATION (ON/OFF)

• HYBRID_KEXV1_DILITHIUM_2 (ON/OFF)

• HYBRID_KEXV1_DILITHIUM_3 (ON/OFF)

• HYBRID_KEXV1_DILITHIUM_4 (ON/OFF)

• HYBRID_KEXV1_FALCON_512 (ON/OFF)

• HYBRID_KEXV1_FALCON_1024 (ON/OFF)

• HYBRID_KEM_OPEN (ON/OFF)
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B Measurement Script

To automate the test runs where a server is started and a client connects, two bash scripts
were used.

For a test, the proper server executable has to be run on the server Raspberry Pi and the
proper certificate files have to be copied to the server folder. Then on the client Raspberry Pi,
the proper client executable has to be launched. It will connect to the server, output relevant
measurement data and terminate. The server also outputs measurement data, but will not
automatically terminate but will wait for a new connection. However for the next test case
probably a different server executable is required and therefore the server has to be stopped
and a new server has to be launch.

To automate this process, server and client each have a bash script. The server’s script
launches the server in the background and pipes the output data into a file for later evaluation.
Then a netcat server is started that pauses the script until a connection to the netcat server
is established and again terminated. The script then proceeds to terminate the server via the
kill command and launch the next server.

The client script launches the client and redirects the output to a file as well. Once the
client process terminates, a netcat command is sent to the server script. Then the client script
waits a second to give the server enough time to kill and start the new server process and the
proceeds to connect with the next client executable.

Part of the server measurement script

# --- TEST CASE -------------------------------------------

test_case_num=001

# Copy the proper certificates to the binary folder

sh /home/pi/code/certificates/classical/install_certs.sh root_signed

# Run the server, the script sets the parameters

sh run_server.sh 1 > $test_results/test_case_$test_case_num.txt &

echo test case $test_case_num started...

nc -l -p 4444

kill -9 $(pgrep opc_ua_server)

Part of the client measurement script

# --- TEST CASE -------------------------------------------

test_case_num=001

# Copy the proper certificates to the binary folder
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sh /home/pi/code/certificates/classical/install_certs.sh root_signed

# Run the server, the script sets the parameters

sh run_client.sh 1 Basic256Sha256 > $test_results/

↪→ test_case_$test_case_num.txt

echo

echo --- test $test_case_num done ----------------
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C Measurement Result Data

Table 16: Measured data with one certificate (no chain). Average over 100 measurements. All values are in milliseconds.

Verify
Server
Certificate

Create
OSCRq

Sign
OSCRq

Send
OSCRq

Verify
Client
Certificate

Verify
OSCRq

Create
OSCRp

Sign
OSCRp

send
OSCRp

Verify
OSCRp

Open secure
channel,
client

Baseline Measurement 2,034 0,051 72,201 0,038 1,948 1,710 0,189 54,716 0,070 1,300 0,104
Only KEM 2,034 2,938 71,867 0,056 1,950 1,736 3,566 54,764 0,067 1,328 3,364
Compatiblility Dilitihium 2 2,088 0,052 72,078 0,066 1,985 1,812 0,197 54,645 0,136 1,374 0,119
Compatiblility Dilitihium 3 2,025 0,055 72,313 0,067 1,910 1,867 0,197 54,980 0,139 1,394 0,107
Compatibility Dilithium 4 2,080 0,053 72,414 0,095 1,969 1,945 0,208 54,426 0,137 1,416 0,113
Compatibility Falcon 512 1,996 0,054 72,544 0,051 1,900 1,830 0,198 54,552 0,099 1,338 0,119
Compatibility Falcon 1024 2,109 0,054 71,915 0,063 1,992 1,773 0,198 54,617 0,136 1,371 0,109
Dilithium 2 - Var 1 4,631 2,856 79,089 0,137 4,483 4,468 3,547 62,784 0,147 4,046 3,635
Dilithium 3 - Var 1 5,640 2,856 84,438 0,172 5,479 5,569 3,621 64,881 0,230 5,100 3,355
Dilithium 4 - Var 1 6,981 2,852 83,037 0,191 6,791 6,863 3,650 65,084 0,249 6,350 3,379
Falcon 512 - Var 1 3,015 2,920 108,165 0,088 2,938 3,043 3,548 90,548 0,097 2,553 3,355
Falcon 1024 - Var 1 3,975 2,899 150,088 0,142 3,864 3,809 3,649 132,716 0,149 3,423 3,508
Dilithium2 - Var 2 4,664 5,712 72,146 0,113 4,507 1,801 9,425 54,468 0,118 1,410 6,328
Dilithium3 - Var 2 5,597 11,657 72,284 0,132 5,481 1,958 18,289 54,666 0,150 1,441 12,335
Dilithium4 - Var 2 6,953 19,786 72,144 0,146 6,803 1,925 30,592 54,395 0,165 1,486 20,539
Falcon512 - Var 2 3,027 5,766 72,120 0,084 2,928 1,825 9,435 54,621 0,095 1,373 6,300
Falcon1024 - Var 2 3,928 19,868 72,163 0,133 3,819 1,944 30,614 54,302 0,148 1,442 20,607
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D Measurement Charts
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Figure 40: Proportion of steps during a key establishment process for all setups with a cer-
tificate chain length of 1.
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Figure 41: Verification of the client certificate at the server (measurement point 5©)
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Figure 42: Signing of the OSCRp by the server (measurement point 8©).
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Figure 43: Transmission time of the OSCRp from server to client (measurement point 9©).
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Figure 44: Verification of the OSCRp at the client (measurement point 10©).

Figure 45: Get endpoints response, measured with Wireshark with a chain of two certificates
(device and CA certificate).

Figure 46: Data that are transmitted during the transmission of a OSCRp with a single
certificate in the chain.
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Figure 47: Size of a OSCRp message for different setups with one intermediate certificate in
the chain.
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E Implementation Details Variant One
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The goal of this documentation is to show the process of changing open62541 to support PQ X.509 
compatible certificates and sign asymmetrically encrypted messages using the keys in these certificates.

The hybrid certificate files. How to generate them is explained in a different document•
The hybrid_lib project files. They are explained in a different documentation•
A copy of open62541 from the github repository•
QtCreator•
All steps are explained on a Linux machine•

We need:

1. Creating the Project folders

You have to copy both, the open62541 project folder and the hybrid_crypto_test folder into the same 
directory.

Then you have to start QtCreator and create two new projects as in the following screenshots:

Name one project "opc_ua_server" and the other "opc_ua_client". Place both in the same folder as you 
copied the previous projects

Setting up the Project
Freitag, 24. Januar 2020 15:01
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2. Change the CMake files so that you have access to all the sub projects

Add the subdirectories that also contain CMake projects. The second folder specifies the build folders. 
Also the link and include directories are defined here. Note that mbedtls is already installed on the 
system as a static library --> The lib and include files are in a standard directory.
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Notice that in the "add_subdirectory" command, the build folder has to be specified. If it doesn't exist 
yet, create it, or try if it will be automatically created when running CMake.

Then copy a file called "common.h" from the open62541 examples code into each of the two created 
project folders using a file manager

When the CMake files are saved, QtCreator is loading after that you can see the two other projects in 
the file tree.
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3. Add the sample code for server and client
Go the the examples folder of open62541 and look for server_encryption.c and client_encryption.c. 
Open each file with a text editor and copy the code to the main function of each project (server to 
server, client to client). Replace everything in the original main.c file.

4. Configure the Builds

On the left, click Projects, select active project (first server later client) and set the tick at 
UA_ENABLE_ENCRYPTION and click "Apply Configuration Changes". Do the same for the client.
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5. Build

Set the active project to server and click the "Run" button (green triangle). This will build and run the 
server.

Open the compile window to see the progress. The building and linking steps will take a few seconds
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When the compilation step is done, the "Application Output" view will open automatically and show the 
programs output. Currently this is just an error message because we didn't supply the correct 
parameters. The important point is to notice that the program compiles and runs.

Now repeat the same steps for the client. You should see this output:
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The first step in order to change open62541 to work with hybrid certificates is to supply the hybrid 
private key as an parameter. The parameter will be a file name that contains the binary private key 
(depending on the scheme used later). For now we only care about passing another binary file.

1. Server
In the server project, open the main.c file.

Change the number of parameters (3 in the original) to 4 since we will add an additional parameter.

Original

Adding Hybrid Private Key as Parameter
Sonntag, 26. Januar 2020 21:23
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New:
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change the error message, that is displayed when too few arguments are passed.•
Add a UA_ByteString for the hybrid private key.•
Add the hybrid private key as a pointer to the parameters of the function•

Additions:

2. Client
Open the main.c file in the client project

We also have to change the number of arguments
Original
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With changes

(the screenshot above has an error. The index in line 32 must be 4 and not 3!!)

3. Adding the Arguments when Running the Project
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3. Adding the Arguments when Running the Project
When building the projects in a previous step, the build folders were created

Copy all the certificates and private keys to each, the server and client build folder. Decide which 
certificates you want to use (for example hybrid RSA/Dilithium3 certificates). Then copy following files to

Root_signed_1.crt.der
Certificate for the server that was signed by the root certificates

•

Rsa_private_key.der
The RSA private key for the public key in root_signed_1.crt.der

•

Hybrid_private_key.bin
the dilithium3 private key for the public key in root_signed_1.crt.der

•

Root.crt.der
Certificate with the public key to verify root_signed_1.crt.der

•

Server build folder:

Root_signed_2.crt.der•
Rsa_private_key.der•
Hybrid_private_key.bin•
Root.crt.der•

Client build folder:

Note that root.crt.der is the same file for both folders. The private keys have the same files names 
however contain different private keys (corresponding to the certificate each).

In QtCreator go to the projects settings and set the command line arguments
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To test run first the server and then the client and see if they connect. Notice that even though hybrid 
certificates are used, so far open62541 is just ignoring the hybrid part and uses them as standard x.509 
certificates.

When the client connects you should see following output with an error:

This happens because the signature size is too big.
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In either the server or the client project go to the file ua_client_connect.c

Change the define for MAX_DATA_SIZE to 8192 (or larger). This is the size against which the certificate is 
checked when a session is activated and that causes an error with large signatures.

Save and rebuild both projects. (Note: I had some problems when rebuilding that the file was not 
actually rebuild. So make sure with the debugger that MAX_DATA_SIZE has actually the value you want 
it to be!!)

Fixing to Make it Work with Hybrid Certificates
Dienstag, 28. Januar 2020 09:12
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it to be!!)

When testing if the changes worked there is another issue with the root certificate. Checking will fail 
because there is no revocation list. So to check if this change worked you have to remove the 
root.crt.der from the command line arguments for server and client.

Remove the revocation List Check
Look for the file ua_pki_default.c in the plugins folder.

Find the function certificateVerification_verify() and comment out the following:

After compiling you should be able to run server and client successfully.
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File: ua_pki_default.c

This is the original verification function. Add another function:

This function so far just calls the original function. Note that the function prototype for the original 
function was added above.

Go to the function UA_CertificateVerificationTrustList() and change the callback for the verifyCertificate 
function to the hybrid version

Add Hybrid Certificate Verification
Dienstag, 28. Januar 2020 09:34
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At this point you should be able to compile and run server and client successfully. You also can check 
with a debugger that actually the hybrid certificate verification function is called.

Adding the Hybrid Verification Logic
Edit the CMake file of the open62541 project

Add the line to include the hybrid crypto library into open62541
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Then add the hybrid_crypto.h file to ua_pki_default.c. Make sure that the file is recognized by the IDE, 
otherwise something with the include path is wrong.

Then add the code for the hybrid certificate verification

Compile and make sure everything runs fine.
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Compile and make sure everything runs fine.
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Copy the data structure BAsic256Sha256_PolicyContext and rename it to Hybrid_PolicyContext.  Add the 
localHybridPrivateKey field.

Adding a New Security Policy
Dienstag, 28. Januar 2020 09:52

   open62541 Page 21    



Copy the function UA_SecurityPolicy_Basic256Sha256 and rename it to UA_SecurityPolicy_Hybrid. Add a 
parameter for the hybrid private key.

Copy the function policyContext_newContext_sp_basic256sha256 and rename it to 
policyContext_newContext_sp_Hybrid(). Change the context datatype in the function. Add a parameter 
for the hybrid private key and assign the key to the data object.
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At the end of the function UA_SecurityPolicy_Hybrid, change the function call to call the hybrid policy 
context. Also pass the hybrid private key.

Finally change the URI of the new security policy

Go to the header file securitypolicy_default.h and add the function prototype for the hybrid security 
policy
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So far we have created a new security policy that is a copy of basic256sha256, but has the name Hybrid 
and accepts an additional hybrid private key as a parameter.

Adding the security Policy to Server and Client Config
Go to the file ua_config_default.c

   open62541 Page 24    



Look for the function UA_ServerConfig_addSecurityPolicyBasic256Sha256, copy it and rename it to 
UA_ServerConfig_addSecurityPolicyHybrid(). Add a parameter for the hybrid private key. Add a variable 
for the hybrid private key. Assign it to the variable. Change the function call to a Hybrid policy and add 
the new parameter to the function call.

Add the new function to the header file server_config_default.h
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Add the new function to the header file server_config_default.h

Then edit the function UA_ServerConfig_setDefaultWithSecurityPolicies().
Add a parameter for the hybrid private key.
After the call to UA_serverConfig_addAllSecurityPolicies() call the newly created function

Add the additional parameter to the header file server_config_default.h
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Finally go to the server main.c file and add the new parameter to the function call

Now you can compile and run server and client. Note that the new security policy so far is only configure 
at the server and not at the client. The client will use another default security policy to connect. 
However when you check with wireshark you can see that the server offers the new hybrid policy.
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Adding the Policy to the Client
In the file ua_config_default.c go to the function UA_ClientConfig_setDefaultEncryption(). Add the 
hybrid private key as a parameter. Change the number of allocated security policies from 4 to 5.

In the same function, add the new security policy at the end

Adopt the header file and add the new parameter
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In the clients main function add the new parameter to the function call

Then add the following two lines to configure the client to select the new security policy
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To see which policy is used, change the log level to 0 in the project settings

In the clients output we see that the correct security policy is uesed.
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In order to sign messages with an additional hybrid signature, we need to edit the newly created 
security policy.

First define some that we are going to need later in ua_seucritypolicy_basic256sha256.c

Then include the hybrid crypto functions

We need to add functions for signature verification (of messages, not certificates) and signature 
generation. Then we will use this functions in the security policy callback functions. All the functions are 
based on the basic256sha256 functions, so it is a good idea to copy and rename these function and then 
modify them.

Add the function asym_verify_sp_hybrid() (copy from asym_verify_sp_basic256sha256()). The signature 
now will be larger because in fact it contains two signatures. The first 256 bytes are the RSA sig. So do 
not pass the full signature length, but only the first 256 bytes to the mbedtls verify function

Add a Hybrid Signature to Asymmetric Encrypted 
Messages
Dienstag, 28. Januar 2020 10:46
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not pass the full signature length, but only the first 256 bytes to the mbedtls verify function

Then add the code for the PQ signature verification afterwards

Next add the hybrid signing function. No changes are required here
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Then add the code for the PQ signature

Open62541 gets the size of the signatures (that now has changes) also from the security policy. So we 
have to modify the functions for that as well:
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Finally you need to assign these functions to the hybrid security policy object. Therefore go to the 
function UA_SecurityPolicy_Hybrid()

Compile and run server and client.
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opc_ua_client/main.c
opc_ua_server/main.c

MAX_DATA_SIZE
open62541/ua_client_connect.c

certificateVerification_verify() (modified)
certificateVerification_hybrid() (added)
UA_CertificateVerification_Trustlist() (modified)

open62541/ua_pki_default.c

Include added
#defines
Hybrid_PolicyContext Struct (added)
Asym_verify_sp_hybrid() (added)
Asym_sign_sp_hybrid() (added)
Asym_getLocalSignatureSize_sp_hybrid() (added)
Asym_getRemoteSignatureSize_sp_hybrid() (added)
policyContext_NewContext_sp_hybrid() (added)
UA_SecurityPolicy_Hybrid() (added)

Open62541/ua_securitypolicy_basic256sha256.c

UA_ServerConfig_addSecurityPolicyHybrid() (added)
UA_ServerConfig_setDefaultWithSecurityPolicies() (modified)
UA_ClientConfig_setDefaultEncryption() (modified)

Open62541/ua_config_default.c

Summary Modified Files
Dienstag, 28. Januar 2020 12:24
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Scenario: A client uses a certificate that was signed by an intermediate CA. The intermediate CA was 
signed by the root CA. The server only trusts the root CA.
Therefore the client has to send both, his certificate and the intermediate CA's certificate. The server 
then has to verify the chain which ends at root CA, which is trusted by the server.

Problem 1: How to add the additional certificate of the intermediate CA to the client's request?

In main() a file with the clients certificate is passed and read binary. We will include two certificates into 
this file (simple concatenation). Thus we end up with a binary string that includes two certificates.

From the main() function, UA_ClientConfig_setDefaultEncryption() is called with the certificate byte 
string.

Adding Certificate Chains
Dienstag, 11. Februar 2020 10:05
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In this function, the byte string is directly passed to the function that creates the security policy object.

Inside, memory is allocated and the byte string is copied to that memory.

Conclusion: The security policy contains a byte string with two certificates included.

Next we have to look at the function that creates the openSecureChannelRequest. In particular at the 
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Next we have to look at the function that creates the openSecureChannelRequest. In particular at the 
function that prepends the asymmetric security header. There the certificate is directly copied to the 
header, and therefore is sent to the server. Next we have to ensure that the server uses this information 
properly.

Problem 2: Make the server evaluate certificate chains

First a quick test: Client uses a certificate chain as described above.

The hybrid certificate verification is off. This ensures that we are using the original function to verify 
certificates

As expected, certificate verification fails.

With a debugger, we check the certificateVerification_verify() function for the server.
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The remote certificate is parsed, it is the end certificated (named intermediate_signed_2), has no next 
value (therefore this is not a chain) and has a total length of 4060 bytes.

However the certificate received via the network has 8034 bytes. That is 8034 - 4060 = 3974 bytes that 
have been ignored. That is the exact byte size of the intermediate CA certificate. We can conclude that 
we have the intermediate CA certificate available but it is ignored by open62541.

Modifying the hybrid certificate verification function in order to allow certificate chain verification
Enable the hybrid certificate verification again

Then we can change the hybrid certificate verification function to actually parse out all the certificates 
that are contained in the request.
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Activate session might fail now because the MAX_DATA_SIZE can be exceeded by the chain. A simple fix 
is to extent the max size. Here we just double it by adding *2.

Now the same fixes are introduced into the original certificate verification function

   open62541 Page 40    



   open62541 Page 41    



F Implementation Details Variant Two

141



New Certificates
Variant Two needs new certificates that contain public keys for the KEMs that are used. These are:
Kyber 512 + Dilithium2 / Falcon512
Kyber 768 + Dilithium3
Kyber 1024 + Dilithium4 / Falcon1024

1. Make Private Keys Available
The private keys for the PQ KEMs are passed as a command line argument and then are stored in the 
security policy object. We just use the Basic256Sha security policies in the tests so the key is added here. 
For the unauthenticated quantum resistant key exchange, there was already a Post Quantum module 
added to this security policy. We add the kem_longterm_secret_key to this data structure.

Passing the secret key to the security policy:
Server:

A new parameter is added to the function UA_ServerConfig_setDefaultWithSecurityPolicy().

Inside this function we copy the private key into this field after creating the security policies

Variant Two
Mittwoch, 18. März 2020 10:59
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Client:
As for the server, we pass the KEM key to the config creation function

And add the private key to the security policy
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2. Additional Fields in the openSecureChannel Request/Response
Change the tools/schema/custom.Opc.Ua.Transport.bsd so the open channel request/response (both 
because it is defined in the header) will have the additional field

Build.
Check the file transport_generated.h if the structure is changed
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Change the function that returns the length of an asymmetric encrypted message. For the empty field 
we add 4 bytes and then we add another ciphertext length if there is data in the channel object. 
Channel->ciphertext2.data has to be created in the next step.
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Adding the ciphertext2 to the channel data structure. Also add variables for the secrets that will be 
encapsulated and encapsulated from the cipher texts. The local long term shared secret is the one that 
is return when encapsulation is called and remote long term shared secret is the one that is retrieved 
from the decapsulation function.
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When the client wants to open a new secure channel, we retrieve the public key from the remote 
(server) certificate and use the encapsulation function retrieve a new shared secret and a ciphertext. So 
far we are just transmitting the ciphertext to the server (the actual key generation comes later then we 
also use shared secret somewhere).
Store the ciphertext into the channel object. When the openSecureChannelRequest-asymmetric security 
header is created it will look into the channel object and add it.

Add the ciphertext2 from the channel object to the asymmetric security header
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And when the asymmetric security header is evaluated, retrieve the sent data and store it into the 
channel object. This way the server will have access to the ciphertext.

3. Adapt Functions related to Parsing the openSecureChannel Request/Response

Before a message is sent, the asymmetric security header is added. In this function we need to copy the 
ciphertext etc. data from the channel data structure into the buffer that is actually handed down to the 
network layer.

Therefore function prependHeaderAsym has to be changed:
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And when a message is received, when the asymmetric security header is checked, the relevant data has 
to be copied into the channel data structure so that it is available in the later processing functions.
This is done in the function checkAsymHeader().

When the local signing keys are generated from the long term shared secrets (which are 
extracted/created in the next sections) we have to XOR them in. The generateKey() function from the 
security policy takes the shared secret as inputs and generates a pseudorandom sequence into buffer3 
of the required length. Then buffer3 is split up and its parts (IV, localSigningKey, localEncryptionKey) and 
is XOR with the already existing keys, in order to make it hybrid.
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The same is done for the remote local key.

4. Request Creation on Client Side

The remote KEM public key is retrieved from the remote certificate. Then the encapsulation function of 
the KEM is used (crypto_kem_enc() ) and cipher text and shared secret are stored in the channel data 
structure. Later when the message is sent, that information is automatically embedded into the 
message. After that a MAC is calculated. The MAC key is the XOR of the local nonce (standard OPC UA) 
and the local shared secret (from the KEM).
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5. Request Parsing on Server Side

The shared secret is extracted from the received ciphertext. The ciphertext is already available in the 
channel struct. The extracted secret is also stored as the remote long term shared secret in the channel 
struct. Then also the MAC is verified.

6. Response Creation on Server Side
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6. Response Creation on Server Side

Then the server also encapsulates two secrets: The long term secret and the ephemeral secret

When the MAC is calculated (which was already done with the unauthenticated PQ KEM), we need to 
include the new ciphertext2 into the data that is signed. The new long term shared secret is already part 
of the derived local keys, which are used as the key for the MAC.

7. Response Parsing at Client Side

Finally the client needs to extract the long term shared secret that the server sent.
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The verification of the MAC has to be adjusted, because the ciphertext2 has become part of the 
message that was signed.
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