489 research outputs found

    Entropy-based gene ranking without selection bias for the predictive classification of microarray data

    Get PDF
    BACKGROUND: We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). RESULTS: With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. CONCLUSIONS: Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance

    Integrating gene expression profiling and clinical data

    Get PDF
    AbstractWe propose a combination of machine learning techniques to integrate predictive profiling from gene expression with clinical and epidemiological data. Starting from BioDCV, a complete software setup for predictive classification and feature ranking without selection bias, we apply semisupervised profiling for detecting outliers and deriving informative subtypes of patients. During the profiling process, sampletracking curves are extracted, and then clustered according to a distance derived from dynamic time warping. Sampletracking allows also the identification of outlier cases, whose removal is shown to improve predictive accuracy and stability of derived gene profiles. Here we propose to employ clinical features to validate the semisupervising procedure. The procedure is demonstrated in the analysis of a liver cancer dataset of 213 samples described by 1993 genes and by pathological features

    Gene expression profile based classification models of psoriasis

    Get PDF
    AbstractPsoriasis is an autoimmune disease, which symptoms can significantly impair the patient's life quality. It is mainly diagnosed through the visual inspection of the lesion skin by experienced dermatologists. Currently no cure for psoriasis is available due to limited knowledge about its pathogenesis and development mechanisms. Previous studies have profiled hundreds of differentially expressed genes related to psoriasis, however with no robust psoriasis prediction model available. This study integrated the knowledge of three feature selection algorithms that revealed 21 features belonging to 18 genes as candidate markers. The final psoriasis classification model was established using the novel Incremental Feature Selection algorithm that utilizes only 3 features from 2 unique genes, IGFL1 and C10orf99. This model has demonstrated highly stable prediction accuracy (averaged at 99.81%) over three independent validation strategies. The two marker genes, IGFL1 and C10orf99, were revealed as the upstream components of growth signal transduction pathway of psoriatic pathogenesis

    A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping

    Get PDF
    Selection of novel molecular markers is an important goal of cancer genomics studies. The aim of our analysis was to apply the multivariate bioinformatical tools to rank the genes – potential markers of papillary thyroid cancer (PTC) according to their diagnostic usefulness. We also assessed the accuracy of benign/malignant classification, based on gene expression profiling, for PTC. We analyzed a 180-array dataset (90 HG-U95A and 90 HG-U133A oligonucleotide arrays), which included a collection of 57 PTCs, 61 benign thyroid tumors, and 62 apparently normal tissues. Gene selection was carried out by the support vector machines method with bootstrapping, which allowed us 1) ranking the genes that were most important for classification quality and appeared most frequently in the classifiers (bootstrap-based feature ranking, BBFR); 2) ranking the samples, and thus detecting cases that were most difficult to classify (bootstrap-based outlier detection). The accuracy of PTC diagnosis was 98.5% for a 20-gene classifier, its 95% confidence interval (CI) was 95.9–100%, with the lower limit of CI exceeding 95% already for five genes. Only 5 of 180 samples (2.8%) were misclassified in more than 10% of bootstrap iterations. We specified 43 genes which are most suitable as molecular markers of PTC, among them some well-known PTC markers (MET, fibronectin 1, dipeptidylpeptidase 4, or adenosine A1 receptor) and potential new ones (UDP-galactose-4-epimerase, cadherin 16, gap junction protein 3, sushi, nidogen, and EGF-like domains 1, inhibitor of DNA binding 3, RUNX1, leiomodin 1, F-box protein 9, and tripartite motif-containing 58). The highest ranking gene, metallophosphoesterase domain-containing protein 2, achieved 96.7% of the maximum BBFR score

    Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA) algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis) using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes.</p> <p>Results</p> <p>We applied the iterative BMA algorithm to two cancer datasets: breast cancer and diffuse large B-cell lymphoma (DLBCL) data. On the breast cancer data, the algorithm selected a total of 15 predictor genes across 84 contending models from the training data. The maximum likelihood estimates of the selected genes and the posterior probabilities of the selected models from the training data were used to divide patients in the test (or validation) dataset into high- and low-risk categories. Using the genes and models determined from the training data, we assigned patients from the test data into highly distinct risk groups (as indicated by a p-value of 7.26e-05 from the log-rank test). Moreover, we achieved comparable results using only the 5 top selected genes with 100% posterior probabilities. On the DLBCL data, our iterative BMA procedure selected a total of 25 genes across 3 contending models from the training data. Once again, we assigned the patients in the validation set to significantly distinct risk groups (p-value = 0.00139).</p> <p>Conclusion</p> <p>The strength of the iterative BMA algorithm for survival analysis lies in its ability to account for model uncertainty. The results from this study demonstrate that our procedure selects a small number of genes while eclipsing other methods in predictive performance, making it a highly accurate and cost-effective prognostic tool in the clinical setting.</p

    A study of health effects of long-distance ocean voyages on seamen using a data classification approach

    Get PDF
    Background: Long-distance ocean voyages may have substantial impacts on seamen’s health, possibly causing malnutrition and other illness. Measures can possibly be taken to prevent such problems from happening through preparing special diet and making special precautions prior or during the sailing if a detailed understanding can be gained about what specific health effects such voyages may have on the seamen. Methods: We present a computational study on 200 seamen using 41 chemistry indicators measured on their blood samples collected before and after the sailing. Our computational study is done using a data classification approach with a support vector machine-based classifier in conjunction with feature selections using a recursive feature elimination procedure. Results: Our analysis results suggest that among the 41 blood chemistry measures, nine are most likely to be affected during the sailing, which provide important clues about the specific effects of ocean voyage on seamen’s health. Conclusions: The identification of the nine blood chemistry measures provides important clues about the effects of long-distance voyage on seamen’s health. These findings will prove to be useful to guide in improving the living and working environment, as well as food preparation on ships

    Gene selection and classification of microarray data using random forest

    Get PDF
    BACKGROUND: Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. RESULTS: We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. CONCLUSION: Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data

    Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    Full text link
    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson-Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package `PRIMsrc` is available on CRAN and GitHub.Comment: Keywords: Exploratory Survival/Risk Analysis, Survival/Risk Estimation & Prediction, Non-Parametric Method, Cross-Validation, Bump Hunting, Rule-Induction Metho
    corecore