5,902 research outputs found

    Abelian bordered factors and periodicity

    Full text link
    A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem.Comment: 14 page

    A probabilistic technique for finding almost-periods of convolutions

    Full text link
    We introduce a new probabilistic technique for finding 'almost-periods' of convolutions of subsets of groups. This gives results similar to the Bogolyubov-type estimates established by Fourier analysis on abelian groups but without the need for a nice Fourier transform to exist. We also present applications, some of which are new even in the abelian setting. These include a probabilistic proof of Roth's theorem on three-term arithmetic progressions and a proof of a variant of the Bourgain-Green theorem on the existence of long arithmetic progressions in sumsets A+B that works with sparser subsets of {1, ..., N} than previously possible. In the non-abelian setting we exhibit analogues of the Bogolyubov-Freiman-Halberstam-Ruzsa-type results of additive combinatorics, showing that product sets A B C and A^2 A^{-2} are rather structured, in the sense that they contain very large iterated product sets. This is particularly so when the sets in question satisfy small-doubling conditions or high multiplicative energy conditions. We also present results on structures in product sets A B. Our results are 'local' in nature, meaning that it is not necessary for the sets under consideration to be dense in the ambient group. In particular, our results apply to finite subsets of infinite groups provided they 'interact nicely' with some other set.Comment: 29 pages, to appear in GAF

    Building Abelian Functions with Generalised Baker-Hirota Operators

    Full text link
    We present a new systematic method to construct Abelian functions on Jacobian varieties of plane, algebraic curves. The main tool used is a symmetric generalisation of the bilinear operator defined in the work of Baker and Hirota. We give explicit formulae for the multiple applications of the operators, use them to define infinite sequences of Abelian functions of a prescribed pole structure and deduce the key properties of these functions. We apply the theory on the two canonical curves of genus three, presenting new explicit examples of vector space bases of Abelian functions. These reveal previously unseen similarities between the theories of functions associated to curves of the same genus

    On connective KO-theory of elementary abelian 2-groups

    Get PDF
    A general notion of detection is introduced and used in the study of the cohomology of elementary abelian 2-groups with respect to the spectra in the Postnikov tower of orthogonal K-theory. This recovers and extends results of Bruner and Greenlees and is related to calculations of the (co)homology of the spaces of the associated Omega-spectra by Stong and by Cowen Morton
    corecore