3,345 research outputs found

    Some applications of linear algebra in spectral graph theory

    Get PDF
    The application of the theory of matrices and eigenvalues to combinatorics is cer- tainly not new. In the present work the starting point is a theorem that concerns the eigenvalues of partitioned matrices. Interlacing yields information on subgraphs of a graph, and the way such subgraphs are embedded. In particular, one gets bounds on extremal substructures. Applications of this theorem and of some known matrix theorems to matrices associated to graphs lead to new results. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc. This master thesis is a contribution to the area of algebraic graph theory and the study of some generalizations of regularity in bipartite graphs. In Chapter 1 we recall some basic concepts and results from graph theory and linear algebra. Chapter 2 presents some simple but relevant results on graph spectra concerning eigenvalue interlacing. Most of the previous results that we use were obtained by Haemers in [33]. In that work, the author gives bounds for the size of a maximal (co)clique, the chromatic number, the diameter and the bandwidth in terms of the eigenvalues of the standard adjacency matrix or the Laplacian matrix. He also nds some inequalities and regularity results concerning the structure of graphs. The work initiated by Fiol [26] in this area leads us to Chapter 3. The discussion goes along the same spirit, but in this case eigenvalue interlacing is used for proving results about some weight parameters and weight-regular partitions of a graph. In this master thesis a new observation leads to a greatly simpli ed notation of the results related with weight-partitions. We nd an upper bound for the weight independence number in terms of the minimum degree. Special attention is given to regular bipartite graphs, in fact, in Chapter 4 we contribute with an algebraic characterization of regularity properties in bipartite graphs. Our rst approach to regularity in bipartite graphs comes from the study of its spectrum. We characterize these graphs using eigenvalue interlacing and we pro- vide an improved bound for biregular graphs inspired in Guo's inequality. We prove a condition for existence of a k-dominating set in terms of its Laplacian eigenvalues. In particular, we give an upper bound on the sum of the rst Laplacian eigenvalues of a k-dominating set and generalize a Guo's result for these structures. In terms of predistance polynomials, we give a result that can be seen as the biregular coun- terpart of Ho man's Theorem. Finally, we also provide new characterizations of bipartite graphs inspired in the notion of distance-regularity. In Chapter 5 we describe some ideas to work with a result from linear algebra known as the Rayleigh's principle. We observe that the clue is to make the \right choice" of the eigenvector that is used in Rayleigh's principle. We can use this method 1 to give a spectral characterization of regular and biregular partitions. Applying this technique, we also derive an alternative proof for the upper bound of the independence number obtained by Ho man (Chapter 2, Theorem 1.2). Finally, in Chapter 6 other related new results and some open problems are pre- sented

    On the Spectral Gap of a Quantum Graph

    Full text link
    We consider the problem of finding universal bounds of "isoperimetric" or "isodiametric" type on the spectral gap of the Laplacian on a metric graph with natural boundary conditions at the vertices, in terms of various analytical and combinatorial properties of the graph: its total length, diameter, number of vertices and number of edges. We investigate which combinations of parameters are necessary to obtain non-trivial upper and lower bounds and obtain a number of sharp estimates in terms of these parameters. We also show that, in contrast to the Laplacian matrix on a combinatorial graph, no bound depending only on the diameter is possible. As a special case of our results on metric graphs, we deduce estimates for the normalised Laplacian matrix on combinatorial graphs which, surprisingly, are sometimes sharper than the ones obtained by purely combinatorial methods in the graph theoretical literature

    Eigenvalue interlacing and weight parameters of graphs

    Get PDF
    Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some "weights" (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights "regularize" the graph, and hence allow us to define a kind of regular partition, called "pseudo-regular," intended for general graphs. Here we show how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lov\'asz, it is shown that the weight Shannon capacity Θ\Theta^* of a connected graph \G, with nn vertices and (adjacency matrix) eigenvalues λ1>λ2.˙.λn\lambda_1>\lambda_2\ge\...\ge \lambda_n, satisfies \Theta\le \Theta^* \le \frac{\|\vecnu\|^2}{1-\frac{\lambda_1}{\lambda_n}} where Θ\Theta is the (standard) Shannon capacity and \vecnu is the positive eigenvector normalized to have smallest entry 1. In the special case of regular graphs, the results obtained have some interesting corollaries, such as an upper bound for some of the multiplicities of the eigenvalues of a distance-regular graph. Finally, some results involving the Laplacian spectrum are derived. spectrum are derived

    A transfer principle and applications to eigenvalue estimates for graphs

    Full text link
    In this paper, we prove a variant of the Burger-Brooks transfer principle which, combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a universal constants CC such that the kk-th eigenvalue λknr\lambda_k^{nr} of the normalized Laplacian of a graph GG of (geometric) genus gg on nn vertices satisfies λknr(G)Cdmax(g+k)n,\lambda_k^{nr}(G) \leq C \frac{d_{\max}(g+k)}{n}, where dmaxd_{\max} denotes the maximum valence of vertices of the graph. This result is tight up to a change in the value of the constant CC, and improves recent results of Kelner, Lee, Price and Teng on bounded genus graphs. To show that the transfer theorem might be of independent interest, we relate eigenvalues of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss an application to the mesh partitioning problem, extending pioneering results of Miller-Teng-Thurston-Vavasis and Spielman-Tang to arbitrary meshes.Comment: Major revision, 16 page

    On the spectrum of hypergraphs

    Full text link
    Here we study the spectral properties of an underlying weighted graph of a non-uniform hypergraph by introducing different connectivity matrices, such as adjacency, Laplacian and normalized Laplacian matrices. We show that different structural properties of a hypergrpah, can be well studied using spectral properties of these matrices. Connectivity of a hypergraph is also investigated by the eigenvalues of these operators. Spectral radii of the same are bounded by the degrees of a hypergraph. The diameter of a hypergraph is also bounded by the eigenvalues of its connectivity matrices. We characterize different properties of a regular hypergraph characterized by the spectrum. Strong (vertex) chromatic number of a hypergraph is bounded by the eigenvalues. Cheeger constant on a hypergraph is defined and we show that it can be bounded by the smallest nontrivial eigenvalues of Laplacian matrix and normalized Laplacian matrix, respectively, of a connected hypergraph. We also show an approach to study random walk on a (non-uniform) hypergraph that can be performed by analyzing the spectrum of transition probability operator which is defined on that hypergraph. Ricci curvature on hypergraphs is introduced in two different ways. We show that if the Laplace operator, Δ\Delta, on a hypergraph satisfies a curvature-dimension type inequality CD(m,K)CD (\mathbf{m}, \mathbf{K}) with m>1\mathbf{m}>1 and K>0\mathbf{K}>0 then any non-zero eigenvalue of Δ- \Delta can be bounded below by mKm1 \frac{ \mathbf{m} \mathbf{K}}{ \mathbf{m} -1 } . Eigenvalues of a normalized Laplacian operator defined on a connected hypergraph can be bounded by the Ollivier's Ricci curvature of the hypergraph
    corecore