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Abstract

The multidimensional Manhattan street networks constitute a family of digraphs
with many interesting properties, such as vertex symmetry (in fact they are Cayley
digraphs), easy routing, Hamiltonicity, and modular structure. From the known
structural properties of these digraphs, we determine their spectra, which always
contain the spectra of hypercubes. In particular, in the standard (two-dimensional)
case it is shown that their line digraph structure imposes the presence of the zero
eigenvalue with a large multiplicity.

1 Introduction

The study of a class of directed torus networks known as Manhattan (street) networks
has received significant attention since they were introduced independently and in dif-
ferent contexts by Morillo et al. [24] and Maxemchuk [22] as an unidirectional regular
mesh structure locally resembling the topology of the avenues and streets of Manhattan
or l’Eixample in downtown Barcelona; see Fig. 2.2. Morillo et al. [24] related the networks
to plane tessellations, and this association facilitated the study of some main distance-
related parameters, such as the distribution of the internodal distances, the diameter and
the mean distance. In fact, most of the work on Manhattan street networks has been de-
voted to the computation of such parameters (for instance, the average distance is dealt
with in [21]) and the generation of routing schemes for the 2-dimensional case [22]. Also,
in this case, the study of spanning trees [11] in a Manhattan street network has allowed
the computation of the diameter and the design of a multiport broadcasting algorithm.
More recently, Varvarigos [27] evaluated the mean internodal distance, provided a short-
est path routing algorithm, and also a decomposition into two edge-disjoint Hamiltonian
cycles for the 2-dimensional case N × N . Moreover, it has been shown that such net-
works admit optimal or quasi-optimal communication protocols, like the broadcasting (or
dissemination of information from a given node to all the others) [11, 13].

The 3-dimensional natural extension of the Manhattan street networks has been con-
sidered by Banerjee et al., see [2, 3], with the determination of the average distance of a
3-dimensional Manhattan street network, and a conjecture for higher dimensions. Chung
and Agrawal [12] studied the diameter and provided routing schemes for a 3-dimensional
construction based on a 2-dimensional Manhattan street networks, although the network
obtained is not strictly a 3-dimensional Manhattan street network. The natural general-
ization to dimension n ≥ 2 of Manhattan street networks, denoted Mn, has been recently
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studied by the first three authors of this paper [14]. In particular, it has been shown that
Mn is a Cayley digraph of a subgroup of the n-dim version of the wallpaper group pgg
(see for instance [16]).

Here we address the question of computing the spectrum of the n-dimensional Man-
hattan street networks, showing, among other things, that they contain the spectra of the
hypercubes. The knowledge of the spectrum of a (di)graph is important for the estimation
of relevant parameters, which are, in general, very hard to obtain by other methods. In
particular, the spectrum of the adjacency matrix of a digraph contains information about
its expansion properties, as it was first noticed by Tanner [26]. Similar connections have
been established with other parameters such as the diameter [8, 9, 10, 25].

This paper is organized as follows. Section 2 is devoted to formally introduce the
multidimensional Manhattan street network Mn and describe its main properties. Mainly,
we give a useful alternative definition, based on the fact that Mn can be seen as a Cayley
digraph related to a well-known cristallographic group. In the same section, it is also
shown that the standard Manhattan street network M2 has the structure of a line digraph,
which is relevant to the study of its spectrum. The main body of this paper is in Section 3,
where the spectral properties (eigenvalues and eigenvectors) of the two-dimensional case
are fully characterized, and the computation complexity of the multidimensional case is
drastically reduced.

2 The Multidimensional Manhattan Street Network

In this section we recall the definition and basic properties of the networks under study.
With this aim, we begin with some background on digraphs and their spectra.

2.1 Preliminaries

We model networks using digraphs. A directed graph or digraph for short, denoted G =
(V,E), consists of a set of vertices V , together with a set of arcs A, which can be seen
as ordered pairs of vertices, A ⊂ V × V = {(u, v) : u, v ∈ V }. An arc (u, v) is usually
depicted as an arrow with initial vertex u and terminal vertex v, that is, u → v. The
indegree δ−(u) (respectively, outdegree δ+(u)) of a vertex u is the number of arcs with
initial (respectively, terminal) vertex u. Then G is δ-regular when δ−(u) = δ+(u) = δ for
every vertex u ∈ V .

A homomorphism ϕ from a digraph G = (V,A) to a digraph H = (V ′, A′) is a mapping
from V to V ′ preserving adjacencies, that is, (u, v) ∈ A if and only if (ϕ(u), ϕ(v)) ∈ A′.

Recall also that a partition π = (C1, . . . , Ck) of the vertex set V is equitable or regular

if, for all i and j, the number of neighbors that a vertex in Ci has in Cj only depends on
i and j, see [19].

The standard definitions and basic results about graphs and digraphs not defined here
can be found in [4, 7].

Let us now recall a useful result from spectral graph theory. For any digraph, it is
known that the components of its eigenvalues can be seen as charges on each vertex (see
[18, 19]). More precisely, suppose that G = (V,A) is a digraph with adjacency matrix A

and λ-eigenvector v. Then the charge of a vertex i ∈ V is the corresponding entry vi of
v, and the equation Av = λv means that

∑

i→j

vj = λvi for every i ∈ V. (1)
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That is, each vertex “absorbs” the charges of its out-neighbors to get a final charge λ
times the one it had originally.

2.2 Definition and structure

As mentioned in the Introduction, the standard Manhattan street network was defined as
a 2-regular digraph in the following way: every vertex is represented by a pair of integers
u = (u1, u2), with 0 ≤ ui ≤ Ni − 1, for some even integers Ni, i = 1, 2, and each vertex
u has two outgoing arcs: one horizontal (u1 ± 1, u2) and the other vertical (u1, u2 ± 1)
(where the sign depends on the parity of the other component and the arithmetic must
be understood modulo Ni). More precisely, a horizontal arc points to est (respectively,
west) if it is on an even (respectively, odd) row. Similarly, a vertical arc points to north

(respectively, south) if it is on an even (respectively, odd) column. Locally the structure
obtained is as shown in Fig. 2.2, and it corresponds to a standard pattern for the allowed
traffic directions in some neighborhoods of our modern cities, like New York or Barcelona,
with their system of straight orthogonal streets.

Figure 1: The local pattern of a Manhattan street network and two real-life examples:
Orthogonal streets of Manhattan and l’Eixample in Barcelona.

The natural extension of Manhattan street networks to higher dimensions was formally
introduced in [14]. Its standard definition goes as follows:

Definition 2.1. Given n even positive integers N1, N2, . . . , Nn, the n-dimensional Man-

hattan street network Mn = M(N1, N2, . . . , Nn) is a digraph with vertex set V (Mn) =
ZN1

× ZN2
× · · · × ZNn . Thus, each of its vertices is represented by an n-vector u =

(u1, u2, . . . , un), with 0 ≤ ui ≤ Ni − 1, i = 1, 2, . . . , n. The arc set A(Mn) is defined by

the following adjacencies:

(u1, . . . , ui, . . . , un) → (u1, . . . , ui + (−1)
∑

j 6=i uj , . . . , un) (1 ≤ i ≤ n). (2)

Therefore, Mn is an n-regular digraph on N =
∏n

i=1 Ni vertices. In particular, when
Ni = 2, 1 ≤ i ≤ n, the n-dimensional Manhattan street network is isomorphic to the
symmetric digraph Q∗n, with Qn being the hypercube of dimension n or n-cube.

Some other simple consequences of the definition of Mn follow (see [14]).

Lemma 2.2. Every n-dimensional Manhattan street network Mn = M(N1, N2, . . . , Nn)
satisfies the following properties:
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(a) Given any permutation π of the numbers N1, N2, . . . , Nn, say P1, P2, . . . , Pn, the

Manhattan street networks Mn and Mπ
n = M(P1, P2, . . . , Pn) are isomorphic di-

graphs.

(b) Mn is isomorphic to its converse Mn.

(c) For any fixed n − k integers xi ∈ ZNi
, i = k + 1, k + 2, . . . , n, the subdigraph of

Mn induced by the vertices of the form (u1, u2, . . . , uk, xk+1, . . . , xn) is either the

k-dimensional Manhattan street networks Mk = M(N1, N2, . . . , Nk) or its converse

Mk, depending on whether α :=
∑n

i=k+1 xn is even or odd, respectively.

(d) Mn is both a 2n-partite and bipartite digraph.

(e) There exists an homomorphism from Mn to the symmetric hypercube Q∗n.

For instance, (d) holds since Mn has independent sets Vb, where b = (b1, b2, . . . , bn) is
a binary n-string. A vertex u = (u1, u2, ..., un) belongs to Vb when the parities of ui and
bi coincide for every 1 ≤ i ≤ n. In particular, Mn is bipartite with stable vertex sets V0

and V1 constituted by the vertices whose corresponding binary string has, respectively,
even or odd Hamming weight, that is, number of 1’s.

2.3 An alternative definition

In [14], the authors proved some structural results concerning the symmetries of the
Manhattan street networks which lead to the following useful alternative presentation.

Definition 2.3. The vertex set of Mn = M(N1, N2, . . . , Nn) is, as before, ZN1
× · · · × ZNn

and the (i-)arcs are now:

(u1, . . . , ui, . . . , un) → (−u1, . . . ,−ui−1, ui +1,−ui+1, . . . ,−un) (1 ≤ i ≤ n). (3)

In fact, the (involutive) isomorphism Ψ from the standard definition to the new pre-
sentation is defined by:

Ψ(u1, u2, . . . , un) = ((−1)
∑

j 6=1
uju1, (−1)

∑

j 6=2
uju2, . . . , (−1)

∑

j 6=n ujun). (4)

As an example, Fig. 2 shows both, the standard definition and the new presentation
of M(6, 4). (Directed dashed lines represent the identification of parallel sides of the
rectangle corresponding to the torus surface.)
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0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

4,0

4,1

4,2

4,3

5,0

5,1

5,2

5,3

0,0 1,0 2,0 3,0 4,0 5,0

0,1 5,3 4,1 3,3 2,1 1,3

0,2 1,2 2,2 3,2 4,2 5,2

0,3 5,1 4,3 3,1 2,3 1,1

Figure 2: The Manhattan street network M(6, 4) with vertices labeled according to the
standard (on the left) and alternative (on the right) definitions.
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2.4 The line digraph structure

Recall that, given a digraph G = (V,A) with n vertices and m arcs, its line digraph
LG = (VL, AL) has vertices representing the arcs of G, so that we identify each vertex
ij ∈ VL with the arc (i, j) ∈ A; and its adjacencies are naturally induced by the arc
adjacencies in G. More precisely, vertex ij ∈ VL is adjacent to vertex jk since the arc
(i, j) ∈ A has the same terminal vertex as the initial vertex of (j, k). Thus, the order
of LG equals the size m of G and, if G is δ-regular, so is LG and it has δn arcs. Also,
it is known that if G is different from a (directed) cycle and has diameter D, then its
line digraph LG has diameter D + 1. Some interesting properties of line digraphs can
be found in [15, 17]. Among them, the spectrum of the line digraph LG has the same
non-zero eigenvalues as G, including (algebraic) multiplicities. In fact, the eigenvalue sets
only differ in the number of zeros since their corresponding characteristic polynomials,
pLG and pG, satisfy (see [1, 23]):

pLG(x) = xm−npG(x).

The next result shows that the line digraph structure is inherent to the 2-dimensional
case.

Lemma 2.4. For any N1, N2, the 2-dimensional Manhattan street network M2 is a line

digraph.

P roof. It suffices to check the Heuchenne’s condition [20], which says that a digraph
is a line digraph if and only if it has no multiple arc and the out-neighbor (or in-neighbor)
sets of any two of its vertices are either identical or disjoint. If two vertices (i, j), (i′ , j′) ∈ A
have a common neighbor either

(a) i + 1 = i′ + 1 and − j = −j′,
or

(b) i + 1 = −i′ and − j = j′ + 1.
The first situation leads to identical vertices (i, j) = (i′, j′). The second assumption gives
i′ + 1 = −i and −j′ = j + 1. In this case, vertices (i, j) and (i′, j′) also have common
neighborhood (see Fig. 3). In fact, notice that Γ+(i, j) = Γ+(i′, j′) iff i+ i′ = j + j′ = −1.
�

( , )i  j

( ’, ’)i j

( +1,- )=(- ’, ’+1)i j i j

(- , +1)=( ’+1, - ’)i j i j

Figure 3: The Heuchenne’s condition in M2.

In fact, for n ≥ 3, the n-dimensional Manhattan street networks are never line di-
graphs, as they do not fulfill Heuchenne’s condition. For example, in M(8, 6, 10) the
vertices (1, 1, 5) and (6, 1, 4) are both adjacent to vertices (2, 5, 5) and (7, 5, 6) but they
do not have identical out-neighborhood

Γ+(1, 1, 5) = {(2, 5, 5), (7, 2, 5), (7, 5, 6)} 6= {(7, 5, 6), (2, 2, 6), (2, 5, 5)} = Γ+(6, 1, 4).

A direct consequence of Lemma 2.4 and the results in [18], which is relevant to our
study, is that the spectrum of M(N1, N2) has the eigenvalue 0 with geometric multiplicity
at least N1N2/2. For instance, Fig. 4 illustrates a 0-eigenvector of M2(6, 4) as a distri-
bution of charges ±1 and 0’s on its vertices. Indeed note that, using (1), every vertex
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has out-neighbors whose total charge add up to 0. Analogously, each of the remaining
N1N2/2− 1 = 11 (linearly independent) 0-eigenvectors would be obtained by putting ±1
on the two vertices of a given dotted diagonal and 0 elsewhere.

0

0

0

0

0 0 0

0 0

0 0

0 0

0 0 0

-1

0 0 0

0 0

1 0

Figure 4: The 0-eigenvectors of M2(6, 4).

3 The spectrum

We first recall some results concerning the spectra of the (directed) cycle CN , the direct
product of two cycles CN1

� CN2
and the n-cube Qn.

The eigenvalues of the cycle CN are the N roots of the unity, ωk = ei 2π
N

k,
0 ≤ k ≤ N − 1, and φk = (1, ωk, ω2k, . . . , ω(N−1)k) is an eigenvector of ωk. Similarly,

the eigenvalues of CN1
� CN2

are ωk + τ l = e
i 2π

N1
k
+ e

i 2π
N2

l
, 0 ≤ k ≤ N1 −1, 0 ≤ l ≤ N2−1,

whose respective eigenvectors φ = φ(k,l) have components φ(i,j) = ωikτ jl. Here it is

worth noting that the vector sets {φk}k and {φ(k,l)}k,l are the orthogonal bases involved
in the computation of the (respectively, 1-dim and 2-dim) discrete Fourier transforms
(DFT’s) [6].

Moreover, the spectrum of the n-cube Qn is

spQn = {(n − 2k)(
n

k) : k = 0, 1, . . . , n},

where the superscripts denote multiplicities. In this case, the corresponding eigenvectors
have entries ±1 and are defined below (as Mn(2, 2, . . . , 2) ∼= Qn); see for instance [5].

We begin our study with a general result concerning the n-dimensional case. So,
the following proposition shows that the spectrum of an n-dimensional Manhattan street
network contains the spectrum of the n-cube Qn.

Proposition 3.1. The spectrum of the n-dimensional Manhattan street network

Mn = M(N1, N2, . . . , Nn) contains all the eigenvalues (including multiplicities) of the

n-cube Qn:

sp Qn ⊆ spMn,

with equality when Ni = 2, 1 ≤ i ≤ n.

Furthermore, for every subset Ik ⊂ {1, 2, . . . , n} of cardinality k, 0 ≤ k ≤ n, the vector

w with components wu =
∏

i∈Ik
(−1)ui , where u = (u1, u2, . . . , un) is an eigenvector for

the eigenvalue λ = n − 2k.

P roof. The independent sets Vb, defined after Lemma 2.2, constitute an equitable
partition π of the set of vertices of Mn. The corresponding quotient digraph Mn/π is
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clearly isomorphic to the n-cube Qn. Thus, the characteristic polynomial of Qn divides
the characteristic polynomial of Mn, see [19, pag. 78]. Moreover, when Ni = 2 for every
1 ≤ i ≤ n, we have equality since Mn(2, 2, . . . , 2) ∼= Qn.

In order to find the eigenvectors associated to the eigenvalues, we think of each com-
ponent of a λ-eigenvector w as a “charge” in the corresponding vertex. Then the sum of
the charges of the out-neighbors of vertex u is λ times the charge of vertex u, see [18]. If
the charge of vertex u is wu =

∏

i∈Ik
(−1)ui , then among its n out-neighbors, there are

(n − k) vertices with charge wu (namely, those adjacent from u through i-arcs, i 6∈ Ik)
and k vertices with charge −wu (those adjacent from u through i-arcs, i ∈ Ik). Thus,

λwu = (n − k)wu − kwu = (n − 2k)wu.

To complete the proof, notice that, for every value of k, the
(

n
k

)

possible choices of Ik give
rise to the same number of independent eigenvectors w. Indeed, observe that the weight
wu of vertex u = (u1, u2, . . . , un) only depends on the parity of entries in Ik. Thus, the
vectors w are also the eigenvectors of the n-cube Qn

∼= Mn(2, 2, . . . , 2). Consequently,
the geometric multiplicity of the eigenvalue λ = n − 2k is as required. �

3.1 The two-dimensional case

The next result shows how the eigenvalues of the 2-dimensional Manhattan street network
M(N1, N2) can be computed in terms of the eigenvalues of the directed cycles CNi

, i = 1, 2.

Theorem 3.2. The eigenvalues of the 2-dimensional Manhattan network M2 = M(N1, N2)
are

0,±
√

2 cos
(

4πk
N1

)

+ 2cos
(

4πl
N2

)

for 0 ≤ k ≤ N1

2 − 1, 0 ≤ l ≤ N2

2 − 1. (5)

Moreover, the geometric multiplicity of every non-zero eigenvalue coincides with the times

it appears in (5), whereas the geometric multiplicity of the eigenvalue zero satisfies m(0) ≥
(N1N2)/2, and equality happens when Ni 6≡ 0 (mod 4), i = 1, 2.

P roof. Let A be the adjacency matrix of the 2-dimensional Manhattan network

M2 = M(N1, N2). Let λ1 = e
i 2π

N1
k

and λ2 = e
i 2π

N2
l
be eigenvalues of the cycles CN1

and
CN2

, for some 0 ≤ k ≤ N1 − 1 and 0 ≤ l ≤ N2 − 1, respectively. Then, from their
corresponding eigenvectors

x = (x0, x1, . . . , xN1−1) = (1, λ1, λ
2
1, . . . , λ

N1−1
1 ),

y = (y0, y1, . . . , yN2−1) = (1, λ2, λ
2
2, . . . , λ

N2−1
2 ).

we define a λ-eigenvector w in M2, whose components are of the form:

w(i,j) = αxiyj + βx−iy−j + γxiy−j + δx−iyj, (6)

for some constants α, β, γ, δ to be determined. Notice that, in terms of the eigenvectors
of CN1

� CN2
, this corresponds to take the vector

w = w(k,l) = αφ(k,l) + βφ(−k,−l) + γφ(k,−l) + δφ(−k,l). (7)

Thus, in constructing w, we are not only using x and y, but also their conjugate vectors
x = (x0, x1, . . . , xN1−1) and y = (y0, y1, . . . , yN2−1), which correspond to the eigenvalues

λ1 = e
−i 2π

N1
k

and λ2 = e
−i 2π

N2
l
, respectively. Therefore, without loss of generality, we can

restrict ourselves to the ranges 0 ≤ k ≤ N1/2 and 0 ≤ l ≤ N2/2.
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Now, interpreting again the entries of an eigenvector as charges in each vertex—see
(1)—the following equalities hold:

xi+1 = λ1xi, x−i = λ1x−i−1, i ∈ ZN1
;

yj+1 = λ2yj, y−j = λ2y−j−1, j ∈ ZN2
.

Besides, as λ−1
i = λi, the two rightmost equalities can be written as:

x−i−1 = λ1x−i, i ∈ ZN1
;

y−j−1 = λ2y−j, j ∈ ZN2
.

Also by (1), we have that, for every vertex (i, j) of M2,

(Aw)(i,j) =
∑

(i′,j′)←(i,j)

w(i′,j′) = λw(i,j).

Thus, taking into account that vertex (i, j) is adjacent to the vertices (i + 1,−j) and
(−i, j + 1), and using the expression of w(i,j) in (6), the above equation becomes:

w(i+1,−j) + w(−i,j+1) = αxi+1y−j + βx−i−1yj + γxi+1yj + δx−i−1y−j

+ αx−iyj+1 + βxiy−j−1 + γx−iy−j−1 + δxiyj+1

= λ(αxiyj + βx−iy−j + γxiy−j + δx−iyj),

whence, for every i, j,

αλ1xiy−j +
β

λ1
x−iyj + γλ1xiyj +

δ

λ1
x−iy−j

+ αλ2x−iyj +
β

λ2
xiy−j +

γ

λ2
x−iy−j + δλ2xiyj

= (γλ1 + δλ2)xiyj +

(

δ

λ1
+

γ

λ2

)

x−iy−j +

(

αλ1 +
β

λ2

)

xiy−j +

(

β

λ1
+ αλ2

)

x−iyj

= λ(αxiyj + βx−iy−j + γxiy−j + δx−iyj)

or, in terms of the corresponding vectors,

(γλ1 + δλ2)φ
(k,l) +

(

δ

λ1
+

γ

λ2

)

φ(−k,−l) +

(

αλ1 +
β

λ2

)

φ(k,−l) +

(

β

λ1
+ αλ2

)

φ(−k,l)

= λαφ(k,l) + λβφ(−k,−l) + λγφ(k,−l) + λδφ(−k,l). (8)

Now we must distinguish four cases, depending on the values of k and l:

(a) Let us first assume that 0 < k < N1/2 and 0 < l < N2/2. Then, since k 6= −k
and l 6= −l, the four vectors φ(±k,±l) are linearly independent and their respective
coefficients must be equal. Thus, (8) yields the matricial equation:









0 0 λ1 λ2

0 0 1
λ2

1
λ1

λ1
1
λ2

0 0

λ2
1
λ1

0 0

















α
β
γ
δ









= λ









α
β
γ
δ









. (9)

Consequently, λ is an eigenvalue of the above matrix, whose characteristic polyno-
mial is

p(x) = x4 − x2(λ2
1 + λ−2

1 + λ2
2 + λ−2

2 ), (10)
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with zeros x = 0 (double) and x = ±
√

λ2
1 + λ−2

1 + λ2
2 + λ−2

2 , whereas the corre-

sponding eigenvectors are the rows of the matrix

B =













1 −λ1λ2 0 0

0 0 −λ1λ2 1
λλ2

1
λ2

1+λ2
1
λ2
2

λλ1

1+λ2
1
λ2
2

λ1λ2 1

− λλ2
1λ2

1+λ2
1
λ2
2

− λλ1

1+λ2
1
λ2
2

λ1λ2 1













, (11)

where

λ =
√

λ2
1 + λ−2

1 + λ2
2 + λ−2

2 =

√

2 cos
(

4πk
N1

)

+ 2cos
(

4πl
N2

)

. (12)

Thus, for each pair of eigenvalues λ1 and λ2 of the cycles CN1
, CN2

, the eigenvectors
of the eigenvalues 0 (with multiplicity two) and ±λ of M2(N1, N2) are, respectively,

w
(k,l)
1 = φ(k,l) − λ1λ2φ

(−k,−l),

w
(k,l)
2 = −λ1λ2φ

(k,−l) + φ(−k,l),

w
(k,l)
3 =

λλ2
1
λ2

1+λ2
1
λ2
2

φ(k,l) + λλ1

1+λ2
1
λ2
2

φ(−k,−l) + λ1λ2φ
(k,−l) + φ(−k,l),

w
(k,l)
4 = − λλ2

1λ2

1+λ2
1
λ2
2

φ(k,l) − λλ1

1+λ2
1
λ2
2

φ(−k,−l) + λ1λ2φ
(k,−l) + φ(−k,l). (13)

First, note that, as the four vectors φ(±k,±l) are linearly independent (in fact or-

thogonal), the two eigenvectors w
(k,l)
1 , w

(k,l)
2 , corresponding to the eigenvalue 0, also

are. Thus, the zero eigenvalue has geometric multiplicity 2(N1/2 − 1)(N2/2 − 1).

Moreover, when the value of λ in (12) is not zero, all the eigenvectors w
(k,l)
i , 1 ≤

i ≤ 4, are also linearly independent. This is because of the linear independence of
the vectors φ(±k,±l) and the fact that the determinant of the matrix in (11) is

det B =
2λ(λ2

1 + λ2
2)

λ2
.

Thus, when λ 6= 0, it has linearly independent rows.

Let us now see that λ = 0 when Ni ≡ 0 (mod 4), for some i = 1, 2. Indeed, from
(12), λ = 0 iff cos(4πk

N1
) + cos(4πl

N2
) = 0, that is, either, both angles are equal to an

odd multiple of π
2 or their sum or difference is also an odd multiple of π

2 .

In the first case, we have λ2
1 +λ2

2 = 0 and N1 ≡ N2 ≡ 0 (mod 4). In the second case,
λ4

i + 1 = 0 and Ni ≡ 0 (mod 4) for at least one value of i ∈ {1, 2}.

Finally, notice also that, if (k′, l′) 6= (k, l), every vector w
(k′,l′)
i is orthogonal to every

vector w
(k,l)
i , 1 ≤ i ≤ 4.

Summarizing, in case (a) we have:

– A zero eigenvalue with geometric multiplicity 2(N1/2 − 1)(N2/2 − 1).

– If Ni 6≡ 0 (mod 4), i = 1, 2, there are 2(N1/2−1)(N2/2−1) non-zero eigenvalues
whose sum of geometric multiplicities add up to the same amount.

(b) 0 < k < N1

2 , l ∈ {0, N2

2 }; that is, k 6= −k, λ2 = ±1. The expression of the vector in
(7) is now

w = αφ(k,l) + δφ(−k,l),

9



which corresponds to take β = γ = 0 in equation (8). In matricial form, we obtain
two equations:

(

λ1 ±1
±1 1

λ1

) (

α
δ

)

= λ

(

α
δ

)

, (14)

taking either the plus signs or the negative signs. Both matrices have the same
characteristic polynomial

p(x) = x(x − λ1 − 1
λ1

). (15)

Then, altogether we have the eigenvalue 0 and

λ = λ1 + λ1 = 2cos
(

2πk
N1

)

=

√

2 cos
(

4πk
N1

)

+ 2. (16)

Note that the above corresponds to take l = ±1 in (12).

So, in this case we have the eigenvalue 0 with geometric multiplicity 2
(

N1

2 − 1
)

and
equal number of different λ eigenvalues from (16).

(c) k ∈ {0, N1

2 }, 0 < l < N2

2 ; that is, λ1 = ±1, l 6= −l. This is similar to the above case
with the eigenvalues being 0 and

λ = λ2 + λ2 = 2cos
(

2πl
N2

)

=

√

2 cos
(

4πl
N2

)

+ 2. (17)

Again, the geometric multiplicity of 0 is 2
(

N2

2 − 1
)

, and there are also 2
(

N2

2 − 1
)

eigenvalues from (17).

(d) k ∈ {0, N1

2 }, l ∈ {0, N2

2 }; that is, λ1 = ±1, λ2 = ±1. As k = −k and l = −l,

the expression of the vector (7) is now w = αφ(k,l). This corresponds to take
β = γ = δ = 0 in (7). Thus, equation (8) becomes

2αφ(0,0) = λαφ(0,0) for λ1 = λ2 = 1,

0 = λαφ(0,N2/2) for λ1 = 1, λ2 = −1,

0 = λαφ(N1/2,0) for λ1 = −1, λ2 = 1,

−2αφ(N1/2,N2/2) = λαφ(N1/2,N2/2) for λ1 = λ2 = −1,

which gives, respectively, the eigenvalues λ = 2, λ = 0 (double) and λ = −2.

Finally, the sum of the non-zero different eigenvalues from the above discussion, is
N1

2 + N2

2 + 2 and the same amount for λ = 0. Thus, together with the eigenvalues
obtained when k 6= −k, l 6= −l, we conclude that the multiplicity of the zero eigenvalue
is, at least, N1N2

2 as stated. �

Corollary 3.3. The spectrum of the 2-dimensional Manhattan street network M2 =
M(N1, N2), with N1, N2 6≡ 0 (mod 4), is

spM2 =

{

0
N1N2

2 ,±
√

2 cos
(

4πk
N1

)

+ 2cos
(

4πl
N2

)

∣

∣ 0 ≤ k < N1

2 , 0 ≤ l < N2

2

}

,

where the superscript denotes multiplicity. Moreover, the algebraic and geometric multi-

plicities coincide.
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Notice that, in the above results, we can also use that a λ-eigenvector of the cycle CN

is ω = (1, λ, λ2, . . . , λN−1), although their presentation is not simplified.
Some examples of the spectra obtained from the result given in (5) are the following:

sp M(2, 2) = {02,±2},
sp M(4, 2) = {06,±2},
sp M(4, 4) = {012,±2,±2 i},
sp M(4, 6) = {014,±2, (±1)2, (±

√
3 i)2},

sp M(8, 4) = {020,±2, (±
√

2)2, (±
√

2i)2,±2 i},
sp M(6, 6) = {018,±2, (±1)4, (±

√
2i)4},

sp M(8, 6) = {026, (±1)2,±2, (±i)4, (±
√

3 i)2, (±
√

2)2},
sp M(8, 8) = {046,±2, (±

√
2)4, (±

√
2 i)4,±2 i},

spM(6, 10) = {030,±2, (±1)2, (±2 cos(π/5))2, (±2 cos(2π/5) )2,

(±i
√

3 − 4 cos2(π/5) )4, (±i
√

3 − 4 cos2(2π/5))4},

in particular for M(2, 2),M(6, 6),M(6, 10) the given multiplicities are geometric.

3.2 The three-dimensional case

A parallel reasoning for the 3-dimensional Manhattan street network M3 = M(N1, N2, N3),
which will be generalized in the following subsection, leads to



























0 λ1 λ2 λ3 0 0 0 0
λ1 0 1

λ3

1
λ2

0 0 0 0

λ2
1
λ3

0 1
λ1

0 0 0 0

λ3
1
λ2

1
λ1

0 0 0 0 0

0 0 0 0 0 1
λ3

1
λ2

1
λ1

0 0 0 0 1
λ3

0 λ1 λ2

0 0 0 0 1
λ2

λ1 0 λ3

0 0 0 0 1
λ1

λ2 λ3 0



















































α
β
γ
δ
ǫ
ζ
µ
τ

























= λ

























α
β
γ
δ
ǫ
ζ
µ
τ

























, (18)

provided that λ1, λ2, λ3 are eigenvalues of the directed cycles CN1
, CN2

, CN3
, respectively.

Thus, we can simplify the study of the eigenvalues of expression (18) to the computation
of the zeros of the characteristic polynomial of the matrix









0 λ1 λ2 λ3

λ1 0 1
λ3

1
λ2

λ2
1
λ3

0 1
λ1

λ3
1
λ2

1
λ1

0









, (19)

which is

p3(x) = −x4 + Ax2 + 2Bx + 3,

where

A := λ2
1 + λ2

2 + λ2
3 +

1

λ2
1

+
1

λ2
2

+
1

λ2
3

,

B := λ1 λ2 λ3 +
λ1

λ2 λ3
+

λ2

λ1 λ3
+

λ3

λ1 λ2
.
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Then, as 1 and −1 are always eigenvalues of the N -cycle CN , there are two fixed sets of
possible values of the coefficients A,B, namely A = 6, B = 4 and A = 6, B = −4. In
the first case, the eigenvalues of the Manhattan street network are λ = 3,−1 and their
opposites λ = −3, 1 correspond to the second assumption, according to Proposition 3.1.

Other possible situations that may help in the knowledge of the spectrum are the
following:

• λ1 = λ2 = 1: p(x) = (x + λ3)(x + 1
λ3

)(x2 − ( 1
λ2
3

+ 1)x − 3).

• λ1 = 1, λ2 = −1: p(x) = (x − λ3)(x − 1
λ3

)(x2 + ( 1
λ2
3

+ 1)x − 3).

• If N1 ≡ 0 (mod 4), then λ1 = ±i:

◦ λ1 = ±i, λ2 = λ3 = ±1: p(x) = −(x2 + 1)(x2 − 3).

◦ λ1 = ±i, λ2 = ±1: p(x) = −x4 + (λ2
3 + λ−2

3 )x2 + 3.

• If N1 ≡ N2 ≡ 0 (mod 4), then λ1 = ±i, λ2 = ±i:

◦ λ1 = ±i, λ2 = ±i, λ3 = ±1: p(x) = −(x + 1)(x − 1)(x2 + 3).

3.3 The general case revisited

To derive the spectrum of an n-dimensional Manhattan street network of dimension n > 3,
it is useful to consider a new family of graphs, which are closely related to hypercubes
and folded hypercubes. Accordingly, we begin by recalling the definition of the later.

The folded (n+1)-cube, usually denoted by Q̃n, is obtained from the hypercube Qn by
adding an edge between each pair of antipodal vertices, that is, x1x2 . . . xn ∼ x1x2 . . . xn.
Hence, Q̃n is an (n + 1)-regular graph on 2n vertices, with diameter D = ⌊(n + 1)/2⌋ and
distinct eigenvalues

ev Q̃n = {n + 1 > n − 3 > n − 7 > · · · }
(see for instance [5]). An alternative way to get Q̃n is by identifying the antipodal vertices
of the hypercube Qn+1.

The graph that we call the conjugate n-cube, denoted Qn, has the same vertex set
as the hipercube, Z

n
2 , and two vertices are adjacent whenever the corresponding strings

differ in all components but one:

x1x2 . . . xi . . . xn ∼ x1x2 . . . xi . . . xn (1 ≤ i ≤ n).

Thus, Qn is an n-regular graph which, in fact, coincides either with the hypercube or the
folded hypercube, depending on the dimension, as the following result shows.

Lemma 3.4. Let Qn be the conjugate hypercube defined above. Then,

(a) Qn
∼= Qn if n is even.

(b) Qn
∼= Q̃n−1 ∪ Q̃n−1 if n is odd.

P roof. (a) When n is even, we can obtain Qn from the hypercube Qn by simply
conjugating all vertices with odd Hamming weight. Notice that such vertices constitute
one of the stable sets in Qn (when seen as a bipartite graph), so that every vertex is either
as it was or it becomes conjugated. Then, it is clear that the graph obtained has the same
adjacencies as Qn.

(b) Assuming now that n is odd, we first consider the folded n-cube Q̃n−1 obtained
by identifying the antipodal vertices of the hypercube Qn (as commented above). Hence,

12
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Figure 5: The conjugate hypercube Q3.
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Figure 6: The conjugate hypercube Q4.

the vertices of Q̃n−1 can be identified with the 2-sets {x1x2 . . . xn, x1x2 . . . xn}, and the
adjacencies are:

{x1x2 . . . xi . . . xn, x1x2 . . . xi . . . xn} ∼ {x1x2 . . . xi . . . xn, x1x2 . . . xi . . . xn}.

But this, in turn, corresponds to the following two adjacencies in Qn (one in each copy
of Q̃n−1)

x1x2 . . . xi−1xixi+1 . . . xn ∼ x1x2 . . . xi−1xixi+1 . . . xn,

x1x2 . . . xi−1xixi+1 . . . xn ∼ x1x2 . . . xi−1xixi+1 . . . xn.

Notice that, in this case, the 2n vertices of Qn are partitioned into two sets (without edges
between them), which are the vertex sets of the two copies of Q̃n−1. Since n is odd, both
sets have the same size, each of them containing all the sequences whose number of 1’s
has the same (even or odd) parity. This completes the proof. �

By way of example, Figs. 5 and 6 show two particular cases of Qn (n = 3, 4) corre-
sponding to the above cases (b) and (a), respectively.

The next result reduces the computation of the eigenvalues of the n-dimensional Man-
hattan street network Mn = M(N1, N2, . . . , Nn) to the study of the spectra of the n × n
matrix W , corresponding to the adjacency matrix of a weighted conjugate n-cube, defined
in the following way: let i0i1 . . . in−1 and j0j1 . . . jn−1 be the binary expressions of the
vertices i, j (row and column of W ). Then, the entries of W = (wij) are

wij =







λk , if im 6= jm for all m 6= k and ik = jk = 0,

λ−1
k = λk , if im 6= jm for all m 6= k and ik = jk = 1,

0 , otherwise.

(20)

where i, j ∈ {0, 1, . . . , n − 1} and λk is an eigenvalue of the cycle CNk
, k = 1, 2, . . . , n.
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Theorem 3.5. For any given n integers N1, N2, . . . , Nn, the different eigenvalues of the n-

dimensional Manhattan street network Mn = M(N1, N2, . . . , Nn) coincide with the distinct

eigenvalues of the weighted conjugate n-cube Q
∗
n:

ev Mn = ev Q
∗
n. (21)

P roof. Let uj = (uj
0, u

j
1, . . . , u

j
Nj−1) be an eigenvector of the cycle CNj

, with corre-

sponding eigenvalue λj. Thus, as stated before, its components satisfy uj
k+1 = λj uj

k and

uj
−k−1 = 1

λj
uj
−k. We assume that an eigenvector w of Mn, with unknown eigenvalue λ,

has components (charges),

w(i1,i2,...,in) = α00...0u
1
i1u

2
i2 . . . un

in + · · · + α11...1u
1
−i1u

2
−i2 . . . un

−in

=
∑

x∈Z
n
2

αx1x2...xn u1
(−1)x1 i1

u2
(−1)x2 i2

. . . un
(−1)xn in

, (22)

where x = x1x2 . . . xn ∈ Z
n
2 . Then, as vertex (i1, i2, . . . , ij , . . . , in) in Mn is adjacent to

vertices (−i1,−i2, . . . , ij + 1, . . . ,−in), j = 1, 2, . . . , n, and using a reasoning parallel to
that in Proposition 3.2, we obtain the following:

λw(i1,...,in)=
∑

x∈Z
n
2

λαx u1
(−1)x1 i1

u2
(−1)x2 i2

. . . un
(−1)xn in

=

n
∑

j=1

∑

y∈Z
n
2

αy u1
((−1)y1+1)i1

u2
((−1)y2+1)i2

. . . uj
((−1)yj )(ij+1)

. . . un
((−1)yn+1)in

=
∑

y∈Z
n
2

n
∑

j=1

αyu
1
((−1)y1+1)i1

u2
((−1)y2+1)i2

. . . λ
(−1)yj

j uj
((−1)yj )ij

. . . un
((−1)yn+1)in

=
∑

x∈Z
n
2

n
∑

j=1

αx1x2...xj ...xnu1
((−1)x1+1)i1

u2
((−1)x2+1)i2

. . . λ
(−1)xj

j uj
((−1)xj )ij

. . . un
((−1)xn+1)in

=
∑

x∈Z
n
2

n
∑

j=1

λ
(−1)xj

j αx1x2...xj ...xnu1
(−1)x1 i1

u2
(−1)x2 i2

. . . uj
(−1)xj ij

. . . un
(−1)xn in

.

Thus, since the above equalities are satisfied for any u1
i1

, u2
i2

, . . . , un
in , the next matrix

equation must hold:

W











α00...0

α0...01
...

α11...1











= λ











α00...0

α0...01
...

α11...1











. (23)

Consequently, λ is an eigenvalue of the weighted conjugate n-cube Q
∗

n, as claimed. Notice
that, in particular, when λi = 1, i = 1, . . . , n, the matrix W is the adjacency matrix of
Qn and we retrieve the eigenvalues of the n-cube. �
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