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Bounds on separated pairs of subgraphs,
eigenvalues and related polynomials
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Abstract. We give a bound on the sizes of two sets of vertices at a given minimum distance (a
separated pair of subgraphs) in a graph in terms of polynomials and the spectrum of the graph.
We find properties of the polynomial optimizing the bound. Explicit bounds on the number of
vertices at maximal distance and distance two from a given vertex, and on the size of two
equally large sets at maximal distance are given, and we find graphs for which the bounds are
tight.

1. Introduction

In an earlier paper by Van Dam and Haemers [5], a bound on the sizes of two sets of
vertices at a given minimum distance (a separated pair of subgraphs) in a graph in terms
of polynomials and the spectrum of the graph was derived. The problem is to choose good
polynomials. This problem occured in [3, 5, 8] to bound the diameter of a graph in terms
of its eigenvalues. Chung, Faber and Manteuffel [3] and Van Dam and Haemers [5] used
Chebyshev polynomials, while Fiol, Garriga and Yebra [8] looked at the best possible
polynomials.

Here we also consider the optimal polynomials. They are used to obtain an upper bound
on the number of vertices at maximal distance, and a lower bound on the number of
vertices at distance two from a given vertex, in terms of the Laplace spectrum of the
graph. The two bounds are equivalent for regular graphs with four distinct eigenvalues,
and here the graphs for which the bounds are tight are characterized.

Other applications are bounds on the size of two equally large sets of vertices at maximal
distance, or distance at least two (i.e., with no edges in between). The latter has
applications for the bandwidth of a graph. We find graphs (including some strongly
regular graphs) for which the bound is tight.

The Laplace spectrum of a graph is the spectrum of its Laplace matrix. This is a square
matrix Q indexed by the vertices, witk,, = k,, the degree ok, andQ,, = -1 if x andy

are adjacent, an@,, = 0 if x andy are not adjacent. If the graph is regular of degkee

then its (adjacency) eigenvalues and its Laplace eigenvalue8, are related by
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ei = k - )\i.

In this paper we use the method of interlacing eigenvalues. For this we refer to the paper
by Haemers [9]. We frequently use distance-regular graphs, for which we refer to the book
by Brouwer, Cohen and Neumaier [1].

2. The tool

The next theorem, which is our main tool, is a theorem by Van Dam and Haemers [5],
except that now the Laplace matrix instead of the adjacency matrix is used.

THEOREM 2.1. Let G be a connected graph on v vertices with r distinct Laplace
eigenvalued =0, < 0, < ... <0,. Let m be a nonnegative integer and let X and Y be sets
of vertices such that the distance between any vertex of X and any vertex of Y is at least
m+ 1. If p is a polynomial of degree m such thg0Op = 1, then
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Proof. Let G have Laplace matrixQ, then p(Q); = O for all verticesi 0 X andj 0.
Without loss of generality we assume that the fit3t| rows of Q correspond to the
vertices inX and the last|Y| rows correspond to the vertices M Now consider the
matrix
0o [

M = E p(Q)E
MQ : Of
Note thatM is symmetric, has row and column sums equal to 1, and its spectrum is

{x p®) | i =1, 2,...,r} including multiplicities. Let M be partitioned symmetrically in
the following way.
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Let B be the matrix of average row sums in the blocks of this partition, then
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with eigenvaluesh,(8) = -A,(B) = 1, 1,8) = @) = XYl since the
N (V= XDv- 1Y)
eigenvalues oB interlace those oM (cf. [9]), we have that
MB) < A(M) < max|p@)| |
1#
and the theorem follows. O
To obtain the sharpest bound we have to minimizax |p(6,) | over all polynomials

izl
degreem such thatp(0) = 1. This problem occured in earlier papers [3, 5, 8] to obtain
bounds on the diameter of graphs. In the first two papers Chebyshev polynomials were
used, which are good but not optimal. In the more recent paper by Fiol, Garriga and Yebra
[8] the optimal polynomials were investigated. In the next section we shall say some more
on these polynomials.

3. The optimal polynomials

Consider the se®,, , of all polynomials of degreen such thatp(l) = 1. It was proven by
Chatelin [2, Thm. 7.1.6] that if we have distinct real numberqu = |, W,..., 4, and

m+ 1 <r, then there is a subs& of {2,..., r} of size m+ 1 such that the polynomial

given by
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wherecg is such thap(y) = 1, minimizes

max | p(u) |

izl

over all polynomialsp U P, .
Since for any subse€t of {2,..., r} of size m+ 1 we have that

¢,/ = min maxp(u)| < min maxp(w)| = [c
pDPmu igT pEIPmu izl

sl



and so

cg| < max c,| < el
TO{2,...,r}, |[T|=m+1

we now find that the minimum equals
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In the cases that we are interested in, we have that minjy or p = maxy, t
i i

follows from the theory of approximation, and it was also proven by Fiol, Garriga and
Yebra [8] that in these cases the optimal polynomial is unique, and it is knowmp(tkaits

the optimal polynomial if and only if there ave O {p| i = 2,...,r}, j =1,...,m+ 1, such
that x, <X, < ... <X, and p(x) is alternating + max|p(i)| (cf. [11, Thm. 2.8 and

izl
2.10]). From this property it follows that, up to a factor (such tp@t) = 1), the optimal
polynomial does not depend on the actual value o (as long as

M= miny or p = maxy). Together with the fact that the minimune| is smaller than

1, it now follows that we must havg, = miny, andx_, = maxy,

izl izl
In the casem = 2, where we have to find the optimal polynomial of degree two, it is
easily verified that we have to take = u,, the number closest to(+ X;)/2.

4. The number of vertices at maximal distance and distance two

It is well known that if a graph has distinct (Laplace) eigenvalues, then it has diameter
at mostr — 1. Using the results of the previous section and Theorem 2.1 we find the
following.

THEOREM 4.1. Let G be a connected graph on v vertices with r distinct Laplace
eigenvaluesD =0, <0, < ... <0,. Let x be an arbitrary vertexthen for the number of
vertices k ; at distance r— 1 from x we have that
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Proof. Take X = {x}, and letY be the set of vertices at distance- 1 from x. Now take
the optimal polynomial given in the previous section and apply Theorem 2.1, then the
bound follows. 0



In particular, we find that ifv < 1 +¢™, so thatk_, < 1, then the diameter o6 is at
mostr — 2, a result that was already found by Van Dam and Haemers [5, Thm. 2.5].

If the bound is tight, then it follows that in the proof of Theorem 2.1 we have tight
interlacing, and so the partition & is regular (cf. [9]). Therefore

Eb caj’ ol 1
D.. e ..
p(Q) = %J S, ¢ S v-l-k o ,
D.. e ..
EP : S, S K,

wherea = 1/(v - k._,), is regularly partitioned witt5,, and S,, having the same row sums.
If the bound is tight for every vertex, then it follows thadt— (v - k_)p(Q) is the
adjacency matrix of the distanage— 1 graphG,_, of G, and that this graph is a strongly
regular ¢, k._;, A = W) graph.

On the other hand we can prove thaiGfis a distance-regular graph with diameter 1
such that the distanace—- 1 graphG,_, of G is a strongly regular k._;, A = 1) graph then
the bound is tight for every vertex. To do this we have to prove that

o

k | = _ Y wherec = max p(8)| ,
1+ i#1
cHv-1)

for some polynomialp of degreer — 2 such thatp(0) = 1. This suffices because of the
optimality of the bound. Assume th& has degre&, then its Laplace eigenvalués and
its (adjacency) eigenvalues are related by, = k — 6,. SinceG is distance-regular, there
is a polynomialg of degreer — 2 such that

qA) = = ADIV - k) = (A + .. +A+ DIV - k),

and thenq(k) = 1. Now let p(x) = q(k — x). We have thatG,_, is a strongly regular
(v, k_;, A =) graph, and such a graph has (adjacency) eigenvalues

k_, and i\/krfl(v—krfl)/(v—l) . From this it follows that

max p(O)| - maxla)| - ot

which is equivalent to what we want to prove.

Examples are given by all 2-antipodal distance-regular graphs, since they have a disjoint
union of edges a&,_; (so withk._, = 1). Other examples are given by the odd graph on 7
points k; = 18) and the generalized hexagdasl(q, q) (k; = ).

If G is a connected regular graph with four distinct eigenvalues then the statement can be



reversed, i.e. a tight bound for every vertex implies distance-regularity.

THEOREM 4.2. Let G be a connected regular graph on v vertices with four distinct
eigenvalues k A; > A, > A; > A,. Let x be an arbitrary vertexthen for the number of
vertices k at distance3 from x we have that
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with equality for every vertex if and only if G is distance-regular such that the distance
three graph G of G is a strongly regulagv, k;, A = p) graph.

Proof. What remains to prove is th& is distance-regular if the bound is tight for every
vertex. In that case we already derived thgt=J — (v — k;)p(Q). SinceQ =kl — A andp

is a polynomial of degree two, it follows thak, O OA? A, I, J O Since the adjacency
matrix A, of the distance two graph o& follows from A, + A, + A+ 1 =J, and G has
four eigenvalues, so that (cf. [4])

(K-A)K-A)k-A) |

(A=A DA -NNA-N) = _

we find that we have an association scheme, thus proving@hatdistance-regular. 0O

The upper bound fok, gives a lower bound fok,, the number of vertices at distance 2,
sincek, =v — 1 -k — k. Van Dam and Haemers [7] conjectured another lower bound for

k, for connected regular graphs with four distinct eigenvalues in terms of the spectrum of
the graph. They characterized the distance-regular graphs with diameter three as the graphs
for which equality holds.

Here the lower bound fok, generalizes to connected regular graphs with more than four
distinct eigenvalues, since we can bound the number of verkigeat distance at least

three, using the optimal polynomial of degree two (see the last remark of Section 3).

THEOREM 4.3. Let G be a connected regular graph on v vertices witk 4 distinct
eigenvalues k A, > A, > ... >\, and letA, be the eigenvalue unequal A and A,, which
is closest to(A, + A,)/2. Let x be an arbitrary vertexthen for the number of vertices kt
distance2 from x we have that

k2 1-k M h EE H K=\l %
=V - - - ——— ,Wnere c= a3 . O

1-—— GF2hr i=2hr \)\j—)\i\ 0]
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Similarly as before, equality for every vertex implies th@t, is a strongly regular



(v, ks, A = 1) graph, and sdG, , is a strongly regular k + k,, A" = ' — 2) graph. Vice
versa, if G is a distance-regular graph, such th&,, is a strongly regular

(v, K+ Kk, N' = = 2) graph, then the bound is tight for every vertex. Note Gamust

have diameter 3 or 4. We do not know any graph with more than four distinct eigenvalues
for which the bound is tight.

5. Equally large sets at maximal distance

In case we have two equally large sets at maximal distance, we derive the following from
Theorem 2.1.

THEOREM 5.1. Let G be a connected graph on v vertices with r distinct Laplace
eigenvalued =0, <6, < ... <. Let X and X be sets of vertices of size such that the
distance between any vertex of ahd any vertex of Xis r — 1, then
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If the bound is tight then again we must have tight interlacing in Theorem 2.1, and so the
partition of M is regular. It now follows that the partition @f(Q) induced by the partition
of the vertices intoX;, X, and the set of remaining vertices is regular with quotient matrix
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If we have only three distinct Laplace eigenvalues then Theorem 5.1 states that if we
have two sets of vertices of sia€, such that there are no edges between the two sets,
then

K' < v(6, —6,)/(26,).

This bound on the size of two equally large sets of sizevith no edges in between,
holds for any connected graph withdistinct Laplace eigenvalues. Here we have to use
the first degree polynomigd(x) = 1 — 2¢/(6, + 8,). This method was used by Haemers [9]
to find a bound due to Helmberg, Mohar, Poljak and Rendl [10] on the bandwidth of a
graph.

If the bound onk' is tight, then it follows that the Laplace matriQ is regularly

v



partitioned with quotient matrix

H 6, -9, 0 4

0
%(e2 -6) 6,-6, 5(0,-0)0.
4o -8 o H

Thus a necessary condition for tightness is #at 0, is even.

Connected graphs with three distinct Laplace eigenvalues have a nice combinatorial
characterization. They are the connected graphs with congtamtd |, that is, any two
vertices that are not adjacent hayecommon neighbours, and in the complement of the
graph any two vertices that are not adjacent haveeommon neighbours (cf. [6]).
Moreover, in such a graph only two vertex degrees can occur, and the regular ones are
precisely the strongly regular graphs.

Families of (strongly regular) graphs for which we have a tight bound are given by the
multipartite complete graphk,,, for evenn, with k < n/2, the triangular graph3(n) for

evenn, with k < ("?), and the lattice graphs OA(2) for evenn, with kK < (n/2)%. Besides
these, the only connected graphs with three distinct Laplace eigenvalues on at most 27
vertices for which the bound can be tight are the graphs obtained from polarities in
2-(15, 8, 4), 2-(16, 6, 2) and 2-(21, 5, 1) designs. A symmetric design has a polarity if and
only if it has a symmetric incidence matrix, and then we consider the graph which has the
incidence matrix minus its diagonal as adjacency matrix. For example, the matrices given

by
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are incidence matrices of 2-(16, 6, 2) designs with a polarity, and we obtain graphs with
Laplace spectrum {[8] [4]**™, [0]*} for m=5, 6, 7, 8, and 9. For these graphs we have



K < 4, and the bound is tight, as we can see from the matrices. The regular graphs in this
example are the Clebsch graph and the lattice graph OA(4, 2). The only other regular
graph obtained from a 2-(16, 6, 2) design with a polarity is the Shrikhande graph, and also
here the bound is tight.

The triangular graphr(6) is an (the only regular) example obtained from a 2-(15, 8, 4)
design with a polarity, and it has tight bourds 3.

There are precisely two graphs that can be obtained from a polarity in the 2-(21, 5, 1)
design (the projective plane of order 4), and for both graphs the beun@ is tight.

Besides the graphs we already mentioned, there are only two other strongly regular
graphs on at most 35 vertices for which the bound is tight: these are two of the three
Chang graphs. These graphs are cospectral with and obtained from switching in the
triangular graphr(8). The one that is obtained from switching with respect to a 4-coclique
and the one that is obtained from switching with respect to 8-cycle have a tight bound, the
one that is obtained from switching with respect to the union of a 3-cycle and a 5-cycle
not.

Now consider the connected regular graphs with four distinct eigenvalues. Whebeéver
a 2-antipodal distance-regular graph with diameter 3, so that it has eigenvalues
k>A,>-1>A, with AN, = -k then G®J, (the graph with vertex seV x {1,..., n},
where V is the vertex set ofG, and where two distinct verticesy,(i) and (v, j) are
adjacent if and only ifv = w or v andw are adjacent ir5) is a connected regular graph
with four distinct eigenvalues (cf. [4]), for which the bourck n is tight.

The only other examples of regular graphs with four distinct eigenvalues on at most 30
vertices, for which the bound is tight, are given by the four incidence graphs of
2-(15, 8, 4) designs, which all have a tight bouxc 3. The problem of finding two sets
of size three at distance 3 is equivalent to finding three points all of which are incident
with three blocks in the corresponding complementary 2-(15, 7, 3) design.
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