1,230 research outputs found

    An unsupervised learning technique to optimize radio maps for indoor localization

    Get PDF
    A major burden of signal strength-based fingerprinting for indoor positioning is the generation and maintenance of a radio map, also known as a fingerprint database. Model-based radio maps are generated much faster than measurement-based radio maps but are generally not accurate enough. This work proposes a method to automatically construct and optimize a model-based radio map. The method is based on unsupervised learning, where random walks, for which the ground truth locations are unknown, serve as input for the optimization, along with a floor plan and a location tracking algorithm. No measurement campaign or site survey, which are labor-intensive and time-consuming, or inertial sensor measurements, which are often not available and consume additional power, are needed for this approach. Experiments in a large office building, covering over 1100 m(2), resulted in median accuracies of up to 2.07 m, or a relative improvement of 28.6% with only 15 min of unlabeled training data

    Automatic Wi-Fi Fingerprint System based on Unsupervised Learning

    Get PDF
    Recently, smartphones and Wi-Fi appliances have been generalized in daily life, and location-based service(LBS) has gradually been extended to indoor environments. Unlike outdoor positioning, which is typically handled by the global positioning system(GPS), indoor positioning technologies for providing LBSs have been studied with algorithms using various short-range wireless communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc. Fingerprint-based positioning technology, a representative indoor LBS, estimates user locations using the received signal strength indicator(RSSI), indicating the relative transmission power of the access point(AP). Therefore, a fingerprint-based algorithm has the advantage of being robust to distorted wireless environments, such as radio wave reflections and refractions, compared to the time-of-arrival(TOA) method for non-line-of-sight(NLOS), where many obstacles exist. Fingerprint is divided into a training phase in which a radio map is generated by measuring the RSSIs of all indoor APs and positioning phase in which the positions of users are estimated by comparing the RSSIs of the generated radio map in real-time. In the training phase, the user collects the RSSIs of all APs measured at reference points set at regular intervals of 2 to 3m, creating a radio map. In the positioning phase, the reference point, which is most similar to the RSSI, compares the generated radio map from the training phase to the RSSI measured from user movements. This estimates the real-time indoor position. Fingerprint algorithms based on supervised and semi-supervised learning such as support vector machines and principal component analysis are essential for measuring the RSSIs in all indoor areas to produce a radio map. As the building size and the complexity of structures increases, the amount of work and time required also increase. The radio map generation algorithm that uses channel modeling does not require direct measurement, but it requires considerable effort because of building material, three-dimensional reflection coefficient, and numerical modeling of all obstacles. To overcome these problems, this thesis proposes an automatic Wi-Fi fingerprint system that combines an unsupervised dual radio mapping(UDRM) algorithm that reduces the time taken to acquire Wi-Fi signals and leverages an indoor environment with a minimum description length principle(MDLP)-based radio map feedback(RMF) algorithm to simultaneously optimize and update the radio map. The proposed UDRM algorithm in the training phase generates a radio map of the entire building based on the measured radio map of one reference floor by selectively applying the autoencoder and the generative adversarial network(GAN) according to the spatial structures. The proposed learning-based UDRM algorithm does not require labeled data, which is essential for supervised and semi-supervised learning algorithms. It has a relatively low dependency on RSSI datasets. Additionally, it has a high accuracy of radio map prediction than existing models because it learns the indoor environment simultaneously via a indoor two-dimensional map(2-D map). The produced radio map is used to estimate the real-time positioning of users in the positioning phase. Simultaneously, the proposed MDLP-based RMF algorithm analyzes the distribution characteristics of the RSSIs of newly measured APs and feeds the analyzed results back to the radio map. The MDLP, which is applied to the proposed algorithm, improves the performance of the positioning and optimizes the size of the radio map by preventing the indefinite update of the RSSI and by updating the newly added APs to the radio map. The proposed algorithm is compared with a real measurement-based radio map, confirming the high stability and accuracy of the proposed fingerprint system. Additionally, by generating a radio map of indoor areas with different structures, the proposed system is shown to be robust against the change in indoor environment, thus reducing the time cost. Finally, via a euclidean distance-based experiment, it is confirmed that the accuracy of the proposed fingerprint system is almost the same as that of the RSSI-based fingerprint system.|์ตœ๊ทผ ์Šค๋งˆํŠธํฐ๊ณผ Wi-Fi๊ฐ€ ์‹ค์ƒํ™œ์— ๋ณดํŽธํ™”๋˜๋ฉด์„œ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ ๋ถ„์•ผ๊ฐ€ ์‹ค๋‚ด ํ™˜๊ฒฝ์œผ๋กœ ์ ์ฐจ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. GPS๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‹ค์™ธ ์œ„์น˜ ์ธ์‹๊ณผ ๋‹ฌ๋ฆฌ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ธ์‹ ๊ธฐ์ˆ ์€ Wi-Fi, UWB, ๋ธ”๋ฃจํˆฌ์Šค ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทผ๊ฑฐ๋ฆฌ ๋ฌด์„  ํ†ต์‹  ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‹ค๋‚ด ์œ„์น˜์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ธ Fingerprint๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ˆ˜์‹ ํ•œ AP ์‹ ํ˜ธ์˜ ์ƒ๋Œ€์ ์ธ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” RSSI๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ Fingerprint๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์žฅ์• ๋ฌผ์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š” ๋น„๊ฐ€์‹œ ๊ฑฐ๋ฆฌ์—์„œ TOA ๋ฐฉ์‹์— ๋น„ํ•ด ์ „ํŒŒ์˜ ๋ฐ˜์‚ฌ ๋ฐ ๊ตด์ ˆ๊ณผ ๊ฐ™์ด ์™œ๊ณก๋œ ๋ฌด์„  ํ™˜๊ฒฝ์— ๊ฐ•์ธํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. Fingerprint๋Š” ์‹ค๋‚ด์˜ ๋ชจ๋“  AP์˜ RSSI๋“ค์„ ์ธก์ •ํ•˜์—ฌ Radio map์„ ์ œ์ž‘ํ•˜๋Š” ๊ณผ์ •์ธ ํ•™์Šต ๋‹จ๊ณ„์™€ ์ƒ์„ฑ๋œ Radio map์˜ RSSI๋“ค์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •๋œ RSSI์™€ ๋น„๊ตํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด์ง„๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ๋Š” ์œ„์น˜๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ 2~3m์˜ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์„ค์ •๋œ ์ฐธ์กฐ ์œ„์น˜๋“ค๋งˆ๋‹ค ์ธก์ •๋˜๋Š” ๋ชจ๋“  AP๋“ค์˜ RSSI๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  Radio map์œผ๋กœ ์ œ์ž‘ํ•œ๋‹ค. ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ๋Š” ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์ž‘๋œ Radio map๊ณผ ์‚ฌ์šฉ์ž์˜ ์ด๋™์— ์˜ํ•ด ์ธก์ •๋˜๋Š” RSSI์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ์œ ์‚ฌํ•œ RSSI ํŒจํ„ด์„ ๊ฐ€์ง€๋Š” ์ฐธ์กฐ ์œ„์น˜๊ฐ€ ์‹ค์‹œ๊ฐ„ ์‹ค๋‚ด ์œ„์น˜๋กœ ์ถ”์ •๋œ๋‹ค. ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM), ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA) ๋“ฑ๊ณผ ๊ฐ™์ด ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต๊ธฐ๋ฐ˜์˜ Fingerprint ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Radio map์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ RSSI์˜ ์ธก์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ฑด๋ฌผ์ด ๋Œ€ํ˜•ํ™”๋˜๊ณ  ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•ด์งˆ์ˆ˜๋ก ์ธก์ • ๊ณต๊ฐ„์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ ์ž‘์—…๊ณผ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋˜ํ•œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ฑ„๋„๋ชจ๋ธ๋ง์„ ํ†ตํ•œ Radio map ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง์ ‘์ ์ธ ์ธก์ • ๊ณผ์ •์ด ๋ถˆํ•„์š”ํ•œ ๋ฐ˜๋ฉด์— ๊ฑด๋ฌผ์˜ ์žฌ์งˆ, 3์ฐจ์›์ ์ธ ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ ๋ฐ˜์‚ฌ ๊ณ„์ˆ˜ ๋ฐ ๋ชจ๋“  ์žฅ์• ๋ฌผ์— ๋Œ€ํ•œ ์ˆ˜์น˜์ ์ธ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๋‹นํžˆ ๋งŽ์€ ์ž‘์—…๋Ÿ‰์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•™์Šต ๋‹จ๊ณ„์—์„œ Wi-Fi ์‹ ํ˜ธ์˜ ์ˆ˜์ง‘์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์‹ค๋‚ด ํ™˜๊ฒฝ์ด ๊ณ ๋ ค๋œ Unsupervised Dual Radio Mapping(UDRM) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ Radio map์˜ ์ตœ์ ํ™”๊ฐ€ ๋™์‹œ์— ๊ฐ€๋Šฅํ•œ Minimum description length principle(MDLP)๊ธฐ๋ฐ˜์˜ Radio map Feedback(RMF) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ๋น„์ง€๋„ํ•™์Šต๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi Fingerprint๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์•ˆํ•˜๋Š” UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Autoencoder์™€ Generative Adversarial Network (GAN)๋ฅผ ๊ณต๊ฐ„๊ตฌ์กฐ์— ๋”ฐ๋ผ ์„ ํƒ์ ์œผ๋กœ ์ ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ฐธ์กฐ ์ธต์—์„œ ์ธก์ •๋œ Radio map์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฑด๋ฌผ์ „์ฒด์˜ Radio map์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต์—์„œ ํ•„์ˆ˜์ ์ธ Labeled data๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ RSSI ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜์กด์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋˜ํ•œ 2์ฐจ์› ์‹ค๋‚ด ์ง€๋„๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์กด์˜ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋น„ํ•ด Radio map์˜ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ๋†’๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ์ œ์ž‘๋œ Radio map์€ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ์ž์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜์ธ์‹์— ์ ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ œ์•ˆํ•˜๋Š” MDLP ๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi ์—…๋ฐ์ดํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒˆ๋กญ๊ฒŒ ์ธก์ •๋˜๋Š” AP๋“ค์˜ RSSI์˜ ๋ถ„ํฌํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ Radio map์— ํ”ผ๋“œ๋ฐฑํ•œ๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋œ MDLP๋Š” ๋ฌด๋ถ„๋ณ„ํ•œ RSSI์˜ ์—…๋ฐ์ดํŒ…์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ถ”๊ฐ€๋˜๋Š” AP๋ฅผ Radio map์— ์—…๋ฐ์ดํŠธํ•จ์œผ๋กœ์„œ ์œ„์น˜์ธ์‹์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  Radio map์˜ ํฌ๊ธฐ์˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์ œ ์ธก์ •๊ธฐ๋ฐ˜์˜ Radio map๊ณผ ์„œ๋กœ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ Fingerprint ์‹œ์Šคํ…œ์˜ ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹ค๋ฅธ ์‹ค๋‚ด๊ณต๊ฐ„์˜ Radio map ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•์ธํ•จ๊ณผ ํ•™์Šต ์‹œ๊ฐ„ ์ธก์ •์„ ํ†ตํ•œ ์‹œ๊ฐ„ ๋น„์šฉ์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Euclidean distance ๊ธฐ๋ฐ˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์‹ค์ œ ์ธก์ •ํ•œ RSSI๊ธฐ๋ฐ˜์˜ Fingerprint ์‹œ์Šคํ…œ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์˜ ์œ„์น˜์ธ์‹ ์ •ํ™•๋„๊ฐ€ ๊ฑฐ์˜ ์ผ์น˜ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Contents Contents โ…ฐ Lists of Figures and Tables โ…ฒ Abstract โ…ต Chapter 1 Introduction 01 1.1 Background and Necessity for Research 01 1.2 Objectives and Contents for Research 04 Chapter 2 Wi-Fi Positioning and Unsupervised Learning 07 2.1 Wi-Fi Positioning 07 2.1.1 Wi-Fi Signal and Fingerprint 07 2.1.2 Fingerprint Techniques 15 2.2 Unsupervised Learning 23 2.2.1 Neural Network 23 2.2.2 Autoencoder 28 2.2.3 Generative Adversarial Network 31 Chapter 3 Proposed Fingerprint System 36 3.1 Unsupervised Dual Radio Mapping Algorithm 36 3.2 MDLP-based Radio Map Feedback Algorithm 47 Chapter 4 Experiment and Result 51 4.1 Experimental Environment and Configuration 51 4.2 Results of Unsupervised Dual Radio Mapping Algorithm 56 4.2 Results of MDLP-based Radio Map Feedback Algorithm 69 Chapter 5 Conclusion 79 Reference 81Docto

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    • โ€ฆ
    corecore