2,779 research outputs found

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    An Effective Wireless Sensor Network Routing Protocol Based on Particle Swarm Optimization Algorithm

    Get PDF
    Improving wireless communication and artificial intelligence technologies by using Internet of Things (Itoh) paradigm has been contributed in developing a wide range of different applications. However, the exponential growth of smart phones and Internet of Things (IoT) devices in wireless sensor networks (WSNs) is becoming an emerging challenge that adds some limitations on Quality of Service (QoS) requirements. End-to-end latency, energy consumption, and packet loss during transmission are the main QoS requirements that could be affected by increasing the number of IoT applications connected through WSNs. To address these limitations, an effective routing protocol needs to be designed for boosting the performance of WSNs and QoS metrics. In this paper, an optimization approach using Particle Swarm Optimization (PSO) algorithm is proposed to develop a multipath protocol, called a Particle Swarm Optimization Routing Protocol (MPSORP). The MPSORP is used for WSN-based IoT applications with a large volume of traffic loads and unfairness in network flow. For evaluating the developed protocol, an experiment is conducted using NS-2 simulator with different configurations and parameters. Furthermore, the performance of MPSORP is compared with AODV and DSDV routing protocols. The experimental results of this comparison demonstrated that the proposed approach achieves several advantages such as saving energy, low end-to-end delay, high packet delivery ratio, high throughput, and low normalization load.publishedVersio

    Hybrid Heterogeneous Routing Scheme for Improved Network Performance in WSNs for Animal Tracking

    Full text link
    Wireless Sensor Networks (WSNs) experiences several technical challenges such as limited energy, short transmission range, limited storage capacities, and limited computational capabilities. Moreover, the sensor nodes are deployed randomly and massively over an inaccessible or hostile region. Hence WSNs are vulnerable to adversaries and are usually operated in a dynamic and unreliable environment. Animal tracking using wireless sensors is one such application of WSN where power management plays a vital role. In this paper, an energy-efficient hybrid routing method is proposed that divides the whole network into smaller regions based on sensor location and chooses the routing scheme accordingly. The sensor network consists of a base station (BS) located at a distant place outside the network, and a relay node is placed inside the network for direct communications from nodes nearer to it. The nodes are further divided into two categories based on the supplied energy; such that the ones located far away from BS and relay have higher energy than the nodes nearer to them. The network performance of the proposed method is compared with protocols like LEACH, SEP, and SNRP, considering parameters like stability period, throughput and energy consumption. Simulation result shows that the proposed method outperforms other methods with better network performance

    Hierarchical routing protocols for wireless sensor network: a compressive survey

    Get PDF
    Wireless Sensor Networks (WSNs) are one of the key enabling technologies for the Internet of Things (IoT). WSNs play a major role in data communications in applications such as home, health care, environmental monitoring, smart grids, and transportation. WSNs are used in IoT applications and should be secured and energy efficient in order to provide highly reliable data communications. Because of the constraints of energy, memory and computational power of the WSN nodes, clustering algorithms are considered as energy efficient approaches for resource-constrained WSNs. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first present the most relevant previous work in routing protocols surveys then highlight our contribution. Next, we outline the background, robustness criteria, and constraints of WSNs. This is followed by a survey of different WSN routing techniques. Routing techniques are generally classified as flat, hierarchical, and location-based routing. This survey focuses on the deep analysis of WSN hierarchical routing protocols. We further classify hierarchical protocols based on their routing techniques. We carefully choose the most relevant state-of-the-art protocols in order to compare and highlight the advantages, disadvantage and performance issues of each routing technique. Finally, we conclude this survey by presenting a comprehensive survey of the recent improvements of Low-Energy Adaptive Clustering Hierarchy (LEACH) routing protocols and a comparison of the different versions presented in the literature

    Enhancing graph-routing algorithm for industrial wireless sensor networks

    Get PDF
    Industrial Wireless Sensor Networks (IWSNs) are gaining increasing traction, especially in domains such as the Industrial Internet of Things (IIoT), and the Fourth Industrial Revolution (Industry 4.0). Devised for industrial automation, they have stringent requirements regarding data packet delivery, energy consumption balance, and End-to-End Transmission (E2ET) time. Achieving effective communication is critical to the fulfilment of these requirements and is significantly facilitated by the implementation of graph-routing – the main routing method in the Wireless Highway Addressable Remote Transducer (WirelessHART), which is the global standard of IWSNs. However, graph-routing in IWSN creates a hotspot challenge resulting from unbalanced energy consumption. This issue stems from the typical configuration of WirelessHART paths, which transfers data packets from sensor nodes through mesh topology to a central system called the Network Manager (NM), which is connected to a network gateway. Therefore, the overall aim of this research is to improve the performance of IWSNs by implementing a graph-routing algorithm with unequal clustering and optimisation techniques. In the first part of this thesis, a basic graph-routing algorithm based on unequal clustering topologies is examined with the aim of helping to balance energy consumption, maximise data packet delivery, and reduce the number of hops in the network. To maintain network stability, the creation of static clusters is proposed using the WirelessHART Density-controlled Divide-and-Rule (WDDR) topology. Graph-routing can then be built between Cluster Heads (CHs), which are selected according to the maximum residual energy rate between the sensor nodes in each static cluster. Simulation results indicate that graph-routing with the WDDR topology and probabilistic unequal clustering outperforms mesh topology, even as the network density increased, despite isolated nodes found in the WDDR topology. The second part of this thesis focuses on using the Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. This addresses the three IWSN requirements that form the focus of this research, by proposing three single-objective graph-routing paths: minimum distance (PODis), maximum residual energy (POEng), and minimum end-to-end transmission time (POE2E). The research also adapts the CMA-ES to balance multiple objectives, resulting in the Best Path of Graph-Routing with a CMA-ES (BPGR-ES). Simulation results show that the BPGR-ES effectively balances IWSN requirements, but single-objective paths of graph-routing does not achieve balanced energy consumption with mesh topology, resulting in a significant reduction in the efficiency of the network. Therefore, the third part of this thesis focuses on an Improvement of the WDDR (IWDDR) topology to avoid isolated nodes in the static cluster approaches. The IWDDR topology is used to evaluate the performance of the single-objective graph-routing paths (PODis, POEng, and POE2E). The results show that in IWDDR topology, single-objective graph-routing paths result in more balanced energy consumption

    The Future 5G Network-Based Secondary Load Frequency Control in Shipboard Microgrids

    Get PDF

    Dynamic Firewall Rule Building Engine for Hybrid Cloud

    Get PDF
    Growth in the cloud computing resource management aspects have also increases the risks associated with the services hosted on the cloud.The foundational challenges are firstly to accommodate the ease of access without violating the security aspects and the time constraints to provide service responses on time, to provide the security to the active services. A good number of researches are observed to achieve the best firewall security to the hosted services. Nonetheless, the existing methods are often criticised for higher complexity and the non-performing aspects for the newer attack types. Henceforth, this work aims to solve the existing research bottlenecks. The proposed work firstly aims to solve the higher complexity of the deployed strategy by reducing the attribute sets with a sense of accuracy, time complexity and information loss. Further, this work proposes a dynamic firewall rule engine design strategy for detection of the attacks using the thresholding method. The proposed algorithms are testing on the benchmarked KDD dataset and as outcome a nearly 99.7% accuracy is observed and the time complexity is reduced to nearly 40%. Hence, this proposed work demonstrates a state-of-the-art technology for firewall design for hybrid cloud and shall be considered as a new benchmark in this domain of the research
    corecore