26,610 research outputs found

    An Uncertainty-Aware Minimal Intervention Control Strategy Learned from Demonstrations

    Get PDF
    Motivated by the desire to have robots physically present in human environments, in recent years we have witnessed an emergence of different approaches for learning active compliance. Some of the most compelling solutions exploit a minimal intervention control principle, correcting deviations from a goal only when necessary, and among those who follow this concept, several probabilistic techniques have stood out from the rest. However, these approaches are prone to requiring several task demonstrations for proper gain estimation and to generating unpredictable robot motions in the face of uncertainty. Here we present a Programming by Demonstration approach for uncertainty-aware impedance regulation, aimed at making the robot compliant - and safe to interact with - when the uncertainty about its predicted actions is high. Moreover, we propose a data-efficient strategy, based on the energy observed during demonstrations, to achieve minimal intervention control, when the uncertainty is low. The approach is validated in an experimental scenario, where a human collaboratively moves an object with a 7-DoF torque-controlled robot

    Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives

    Get PDF
    During the past few years, probabilistic approaches to imitation learning have earned a relevant place in the literature. One of their most prominent features, in addition to extracting a mean trajectory from task demonstrations, is that they provide a variance estimation. The intuitive meaning of this variance, however, changes across different techniques, indicating either variability or uncertainty. In this paper we leverage kernelized movement primitives (KMP) to provide a new perspective on imitation learning by predicting variability, correlations and uncertainty about robot actions. This rich set of information is used in combination with optimal controller fusion to learn actions from data, with two main advantages: i) robots become safe when uncertain about their actions and ii) they are able to leverage partial demonstrations, given as elementary sub-tasks, to optimally perform a higher level, more complex task. We showcase our approach in a painting task, where a human user and a KUKA robot collaborate to paint a wooden board. The task is divided into two sub-tasks and we show that using our approach the robot becomes compliant (hence safe) outside the training regions and executes the two sub-tasks with optimal gains.Comment: Published in the proceedings of IROS 201

    Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives

    Get PDF
    During the past few years, probabilistic approaches to imitation learning have earned a relevant place in the literature. One of their most prominent features, in addition to extracting a mean trajectory from task demonstrations, is that they provide a variance estimation. The intuitive meaning of this variance, however, changes across different techniques, indicating either variability or uncertainty. In this paper we leverage kernelized movement primitives (KMP) to provide a new perspective on imitation learning by predicting variability, correlations and uncertainty about robot actions. This rich set of information is used in combination with optimal controller fusion to learn actions from data, with two main advantages: i) robots become safe when uncertain about their actions and ii) they are able to leverage partial demonstrations, given as elementary sub-tasks, to optimally perform a higher level, more complex task. We showcase our approach in a painting task, where a human user and a KUKA robot collaborate to paint a wooden board. The task is divided into two sub-tasks and we show that using our approach the robot becomes compliant (hence safe) outside the training regions and executes the two sub-tasks with optimal gains.Comment: Submitted to IROS1

    MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

    Full text link
    Robotic systems that aspire to operate in uninstrumented real-world environments must perceive the world directly via onboard sensing. Vision-based learning systems aim to eliminate the need for environment instrumentation by building an implicit understanding of the world based on raw pixels, but navigating the contact-rich high-dimensional search space from solely sparse visual reward signals significantly exacerbates the challenge of exploration. The applicability of such systems is thus typically restricted to simulated or heavily engineered environments since agent exploration in the real-world without the guidance of explicit state estimation and dense rewards can lead to unsafe behavior and safety faults that are catastrophic. In this study, we isolate the root causes behind these limitations to develop a system, called MoDem-V2, capable of learning contact-rich manipulation directly in the uninstrumented real world. Building on the latest algorithmic advancements in model-based reinforcement learning (MBRL), demo-bootstrapping, and effective exploration, MoDem-V2 can acquire contact-rich dexterous manipulation skills directly in the real world. We identify key ingredients for leveraging demonstrations in model learning while respecting real-world safety considerations -- exploration centering, agency handover, and actor-critic ensembles. We empirically demonstrate the contribution of these ingredients in four complex visuo-motor manipulation problems in both simulation and the real world. To the best of our knowledge, our work presents the first successful system for demonstration-augmented visual MBRL trained directly in the real world. Visit https://sites.google.com/view/modem-v2 for videos and more details.Comment: 9 pages, 8 figure

    Uncertainty-Aware Shared Autonomy System with Hierarchical Conservative Skill Inference

    Full text link
    Shared autonomy imitation learning, in which robots share workspace with humans for learning, enables correct actions in unvisited states and the effective resolution of compounding errors through expert's corrections. However, it demands continuous human attention and supervision to lead the demonstrations, without considering the risks associated with human judgment errors and delayed interventions. This can potentially lead to high levels of fatigue for the demonstrator and the additional errors. In this work, we propose an uncertainty-aware shared autonomy system that enables the robot to infer conservative task skills considering environmental uncertainties and learning from expert demonstrations and corrections. To enhance generalization and scalability, we introduce a hierarchical structure-based skill uncertainty inference framework operating at more abstract levels. We apply this to robot motion to promote a more stable interaction. Although shared autonomy systems have demonstrated high-level results in recent research and play a critical role, specific system design details have remained elusive. This paper provides a detailed design proposal for a shared autonomy system considering various robot configurations. Furthermore, we experimentally demonstrate the system's capability to learn operational skills, even in dynamic environments with interference, through pouring and pick-and-place tasks. Our code will be released soon.Comment: Submitted to ICRA 2024 and currently under revie

    Interactive Imitation Learning in Robotics: A Survey

    Full text link
    Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) where human feedback is provided intermittently during robot execution allowing an online improvement of the robot's behavior. In recent years, IIL has increasingly started to carve out its own space as a promising data-driven alternative for solving complex robotic tasks. The advantages of IIL are its data-efficient, as the human feedback guides the robot directly towards an improved behavior, and its robustness, as the distribution mismatch between the teacher and learner trajectories is minimized by providing feedback directly over the learner's trajectories. Nevertheless, despite the opportunities that IIL presents, its terminology, structure, and applicability are not clear nor unified in the literature, slowing down its development and, therefore, the research of innovative formulations and discoveries. In this article, we attempt to facilitate research in IIL and lower entry barriers for new practitioners by providing a survey of the field that unifies and structures it. In addition, we aim to raise awareness of its potential, what has been accomplished and what are still open research questions. We organize the most relevant works in IIL in terms of human-robot interaction (i.e., types of feedback), interfaces (i.e., means of providing feedback), learning (i.e., models learned from feedback and function approximators), user experience (i.e., human perception about the learning process), applications, and benchmarks. Furthermore, we analyze similarities and differences between IIL and RL, providing a discussion on how the concepts offline, online, off-policy and on-policy learning should be transferred to IIL from the RL literature. We particularly focus on robotic applications in the real world and discuss their implications, limitations, and promising future areas of research

    Towards Minimal Intervention Control with Competing Constraints

    Get PDF
    As many imitation learning algorithms focus on pure trajectory generation in either Cartesian space or joint space, the problem of considering competing trajectory constraints from both spaces still presents several challenges. In particular, when perturbations are applied to the robot, the underlying controller should take into account the importance of each space for the task execution, and compute the control effort accordingly. However, no such controller formulation exists. In this paper, we provide a minimal intervention control strategy that simultaneously addresses the problems of optimal control and competing constraints between Cartesian and joint spaces. In light of the inconsistency between Cartesian and joint constraints, we exploit the robot null space from an information-theory perspective so as to reduce the corresponding conflict. An optimal solution to the aforementioned controller is derived and furthermore a connection to the classical finite horizon linear quadratic regulator (LQR) is provided. Finally, a writing task in a simulated robot verifies the effectiveness of our approach
    • …
    corecore