10 research outputs found

    Strain Analysis by a Total Generalized Variation Regularized Optical Flow Model

    Full text link
    In this paper we deal with the important problem of estimating the local strain tensor from a sequence of micro-structural images realized during deformation tests of engineering materials. Since the strain tensor is defined via the Jacobian of the displacement field, we propose to compute the displacement field by a variational model which takes care of properties of the Jacobian of the displacement field. In particular we are interested in areas of high strain. The data term of our variational model relies on the brightness invariance property of the image sequence. As prior we choose the second order total generalized variation of the displacement field. This prior splits the Jacobian of the displacement field into a smooth and a non-smooth part. The latter reflects the material cracks. An additional constraint is incorporated to handle physical properties of the non-smooth part for tensile tests. We prove that the resulting convex model has a minimizer and show how a primal-dual method can be applied to find a minimizer. The corresponding algorithm has the advantage that the strain tensor is directly computed within the iteration process. Our algorithm is further equipped with a coarse-to-fine strategy to cope with larger displacements. Numerical examples with simulated and experimental data demonstrate the very good performance of our algorithm. In comparison to state-of-the-art engineering software for strain analysis our method can resolve local phenomena much better

    ВОЗМОЖНОСТИ АППАРАТНОЙ РЕАЛИЗАЦИИ АЛГОРИТМОВ ФИЛЬТРАЦИИ ВИДЕОИЗОБРАЖЕНИЙ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ

    Get PDF
    Анализируются результаты разработки и моделирования аппаратной реализации алгоритмовулучшения качества видеоизображений в автоматизированных системах видеонаблюдения. Приводятся оценки производительности аппаратной реализации алгоритмов фильтрации видеоизображений

    Dense Corresspondence Estimation for Image Interpolation

    Get PDF
    We evaluate the current state-of-the-art in dense correspondence estimation for the use in multi-image interpolation algorithms. The evaluation is carried out on three real-world scenes and one synthetic scene, each featuring varying challenges for dense correspondence estimation. The primary focus of our study is on the perceptual quality of the interpolation sequences created from the estimated flow fields. Perceptual plausibility is assessed by means of a psychophysical userstudy. Our results show that current state-of-the-art in dense correspondence estimation does not produce visually plausible interpolations.In diesem Bericht evaluieren wir den gegenwärtigen Stand der Technik in dichter Korrespondenzschätzung hinsichtlich der Eignung für die Nutzung in Algorithmen zur Zwischenbildsynthese. Die Auswertung erfolgt auf drei realen und einer synthetischen Szene mit variierenden Herausforderungen für Algorithmen zur Korrespondenzschätzung. Mittels einer perzeptuellen Benutzerstudie werten wir die wahrgenommene Qualität der interpolierten Bildsequenzen aus. Unsere Ergebnisse zeigen dass der gegenwärtige Stand der Technik in dichter Korrespondezschätzung nicht für die Zwischenbildsynthese geeignet ist

    Segmentation based variational model for accurate optical flow estimation.

    Get PDF
    Chen, Jianing.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 47-54).Abstract also in Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Related Work --- p.3Chapter 1.3 --- Thesis Organization --- p.5Chapter 2 --- Review on Optical Flow Estimation --- p.6Chapter 2.1 --- Variational Model --- p.6Chapter 2.1.1 --- Basic Assumptions and Constraints --- p.6Chapter 2.1.2 --- More General Energy Functional --- p.9Chapter 2.2 --- Discontinuity Preserving Techniques --- p.9Chapter 2.2.1 --- Data Term Robustification --- p.10Chapter 2.2.2 --- Diffusion Based Regularization --- p.11Chapter 2.2.3 --- Segmentation --- p.15Chapter 2.3 --- Chapter Summary --- p.15Chapter 3 --- Segmentation Based Optical Flow Estimation --- p.17Chapter 3.1 --- Initial Flow --- p.17Chapter 3.2 --- Color-Motion Segmentation --- p.19Chapter 3.3 --- Parametric Flow Estimating Incorporating Segmentation --- p.21Chapter 3.4 --- Confidence Map Construction --- p.24Chapter 3.4.1 --- Occlusion detection --- p.24Chapter 3.4.2 --- Pixel-wise motion coherence --- p.24Chapter 3.4.3 --- Segment-wise model confidence --- p.26Chapter 3.5 --- Final Combined Variational Model --- p.28Chapter 3.6 --- Chapter Summary --- p.28Chapter 4 --- Experiment Results --- p.30Chapter 4.1 --- Quantitative Evaluation --- p.30Chapter 4.2 --- Warping Results --- p.34Chapter 4.3 --- Chapter Summary --- p.35Chapter 5 --- Application - Single Image Animation --- p.37Chapter 5.1 --- Introduction --- p.37Chapter 5.2 --- Approach --- p.38Chapter 5.2.1 --- Pre-Process Stage --- p.39Chapter 5.2.2 --- Coordinate Transform --- p.39Chapter 5.2.3 --- Motion Field Transfer --- p.41Chapter 5.2.4 --- Motion Editing and Apply --- p.41Chapter 5.2.5 --- Gradient-domain composition --- p.42Chapter 5.3 --- Experiments --- p.43Chapter 5.3.1 --- Active Motion Transfer --- p.43Chapter 5.3.2 --- Animate Stationary Temporal Dynamics --- p.44Chapter 5.4 --- Chapter Summary --- p.45Chapter 6 --- Conclusion --- p.46Bibliography --- p.4

    Deep Retinal Optical Flow: From Synthetic Dataset Generation to Framework Creation and Evaluation

    Get PDF
    Sustained delivery of regenerative retinal therapies by robotic systems requires intra-operative tracking of the retinal fundus. This thesis presents a supervised convolutional neural network to densely predict optical flow of the retinal fundus, using semantic segmentation as an auxiliary task. Retinal flow information missing due to occlusion by surgical tools or other effects is implicitly inpainted, allowing for the robust tracking of surgical targets. As manual annotation of optical flow is infeasible, a flexible algorithm for the generation of large synthetic training datasets on the basis of given intra-operative retinal images and tool templates is developed. The compositing of synthetic images is approached as a layer-wise operation implementing a number of transforms at every level which can be extended as required, mimicking the various phenomena visible in real data. Optical flow ground truth is calculated from motion transforms with the help of oflib, an open-source optical flow library available from the Python Package Index. It enables the user to manipulate, evaluate, and combine flow fields. The PyTorch version of oflib is fully differentiable and therefore suitable for use in deep learning methods requiring back-propagation. The optical flow estimation from the network trained on synthetic data is evaluated using three performance metrics obtained from tracking a grid and sparsely annotated ground truth points. The evaluation benchmark consists of a series of challenging real intra-operative clips obtained from an extensive internally acquired dataset encompassing representative surgical cases. The deep learning approach clearly outperforms variational baseline methods and is shown to generalise well to real data showing scenarios routinely observed during vitreoretinal procedures. This indicates complex synthetic training datasets can be used to specifically guide optical flow estimation, laying the foundation for a robust system which can assist with intra-operative tracking of moving surgical targets even when occluded

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    Combinatorial Solutions for Shape Optimization in Computer Vision

    Get PDF
    This thesis aims at solving so-called shape optimization problems, i.e. problems where the shape of some real-world entity is sought, by applying combinatorial algorithms. I present several advances in this field, all of them based on energy minimization. The addressed problems will become more intricate in the course of the thesis, starting from problems that are solved globally, then turning to problems where so far no global solutions are known. The first two chapters treat segmentation problems where the considered grouping criterion is directly derived from the image data. That is, the respective data terms do not involve any parameters to estimate. These problems will be solved globally. The first of these chapters treats the problem of unsupervised image segmentation where apart from the image there is no other user input. Here I will focus on a contour-based method and show how to integrate curvature regularity into a ratio-based optimization framework. The arising optimization problem is reduced to optimizing over the cycles in a product graph. This problem can be solved globally in polynomial, effectively linear time. As a consequence, the method does not depend on initialization and translational invariance is achieved. This is joint work with Daniel Cremers and Simon Masnou. I will then proceed to the integration of shape knowledge into the framework, while keeping translational invariance. This problem is again reduced to cycle-finding in a product graph. Being based on the alignment of shape points, the method actually uses a more sophisticated shape measure than most local approaches and still provides global optima. It readily extends to tracking problems and allows to solve some of them in real-time. I will present an extension to highly deformable shape models which can be included in the global optimization framework. This method simultaneously allows to decompose a shape into a set of deformable parts, based only on the input images. This is joint work with Daniel Cremers. In the second part segmentation is combined with so-called correspondence problems, i.e. the underlying grouping criterion is now based on correspondences that have to be inferred simultaneously. That is, in addition to inferring the shapes of objects, one now also tries to put into correspondence the points in several images. The arising problems become more intricate and are no longer optimized globally. This part is divided into two chapters. The first chapter treats the topic of real-time motion segmentation where objects are identified based on the observations that the respective points in the video will move coherently. Rather than pre-estimating motion, a single energy functional is minimized via alternating optimization. The main novelty lies in the real-time capability, which is achieved by exploiting a fast combinatorial segmentation algorithm. The results are furthermore improved by employing a probabilistic data term. This is joint work with Daniel Cremers. The final chapter presents a method for high resolution motion layer decomposition and was developed in combination with Daniel Cremers and Thomas Pock. Layer decomposition methods support the notion of a scene model, which allows to model occlusion and enforce temporal consistency. The contributions are twofold: from a practical point of view the proposed method allows to recover fine-detailed layer images by minimizing a single energy. This is achieved by integrating a super-resolution method into the layer decomposition framework. From a theoretical viewpoint the proposed method introduces layer-based regularity terms as well as a graph cut-based scheme to solve for the layer domains. The latter is combined with powerful continuous convex optimization techniques into an alternating minimization scheme. Lastly I want to mention that a significant part of this thesis is devoted to the recent trend of exploiting parallel architectures, in particular graphics cards: many combinatorial algorithms are easily parallelized. In Chapter 3 we will see a case where the standard algorithm is hard to parallelize, but easy for the respective problem instances

    PatchMatch Belief Propagation for Correspondence Field Estimation and its Applications

    Get PDF
    Correspondence fields estimation is an important process that lies at the core of many different applications. Is it often seen as an energy minimisation problem, which is usually decomposed into the combined minimisation of two energy terms. The first is the unary energy, or data term, which reflects how well the solution agrees with the data. The second is the pairwise energy, or smoothness term, and ensures that the solution displays a certain level of smoothness, which is crucial for many applications. This thesis explores the possibility of combining two well-established algorithms for correspondence field estimation, PatchMatch and Belief Propagation, in order to benefit from the strengths of both and overcome some of their weaknesses. Belief Propagation is a common algorithm that can be used to optimise energies comprising both unary and pairwise terms. It is however computational expensive and thus not adapted to continuous spaces which are often needed in imaging applications. On the other hand, PatchMatch is a simple, yet very efficient method for optimising the unary energy of such problems on continuous and high dimensional spaces. The algorithm has two main components: the update of the solution space by sampling and the use of the spatial neighbourhood to propagate samples. We show how these components are related to the components of a specific form of Belief Propagation, called Particle Belief Propagation (PBP). PatchMatch however suffers from the lack of an explicit smoothness term. We show that unifying the two approaches yields a new algorithm, PMBP, which has improved performance compared to PatchMatch and is orders of magnitude faster than PBP. We apply our new optimiser to two different applications: stereo matching and optical flow. We validate the benefits of PMBP through series of experiments and show that we consistently obtain lower errors than both PatchMatch and Belief Propagation

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst
    corecore