70 research outputs found

    A secure, constraint-aware role-based access control interoperation framework

    Get PDF
    With the growing needs for and the benefits of sharing resources and information among different organizations, an interoperation framework that automatically integrates policies to facilitate such cross-domain sharing in a secure way is becoming increasingly important. To avoid security breaches, such policies must enforce the policy constraints of the individual domains. Such constraints may include temporal constraints that limit the times when the users can access the resources, and separation of duty (SoD) constraints. Existing interoperation solutions do not address such cross-domain temporal access control and SoDs requirements. In this paper, we propose a role-based framework to facilitate secure interoperation among multiple domains by ensuring the enforcement of temporal and SoD constraints of individual domains. To support interoperation, we do not modify the internal policies, as most of the current approaches do. We present experimental results to demonstrate our proposed framework is effective and easily realizable. © 2011 IEEE

    An Access Control and Trust Management Framework for Loosely-Coupled Multidomain Environment

    Get PDF
    Multidomain environments where multiple organizations interoperate with each other are becoming a reality as can be seen in emerging Internet-based enterprise applications. Access control to ensure secure interoperation in such an environment is a crucial challenge. A multidomain environment can be categorized as tightly-coupled and loosely-coupled. The access control challenges in the loosely-coupled environment have not been studied adequately in the literature. In a loosely-coupled environment, different domains do not know each other before they interoperate. Therefore, traditional approaches based on users' identities cannot be applied directly. Motivated by this, researchers have developed several attribute-based authorization approaches to dynamically build trust between previously unknown domains. However, these approaches all focus on building trust between individual requesting users and the resource providing domain. We demonstrate that such approaches are inefficient when the requests are issued by a set of users assigned to a functional role in the organization. Moreover, preserving principle of security has long been recognized as a challenging problem when facilitating interoperations. Existing research work has mainly focused on solving this problem only in a tightly-coupled environment where a global policy is used to preserve the principle of security. In this thesis, we propose a role-based access control and trust management framework for loosely-coupled environments. In particular, we allow the users to specify the interoperation requests in terms of requested permissions and propose several role mapping algorithms to map the requested permissions into roles in the resource providing domain. Then, we propose a Simplify algorithm to simplify the distributed proof procedures when a set of requests are issued according to the functions of some roles in the requesting domain. Our experiments show that our Simplify algorithm significantly simplifies such procedures when the total number of credentials in the environment is sufficiently large, which is quite common in practical applications. Finally, we propose a novel policy integration approach using the special semantics of hybrid role hierarchy to preserve the principle of security. At the end of this dissertation a brief discussion of implemented prototype of our framework is present

    Access and information flow control to secure mobile web service compositions in resource constrained environments

    Get PDF
    The growing use of mobile web services such as electronic health records systems and applications like twitter, Facebook has increased interest in robust mechanisms for ensuring security for such information sharing services. Common security mechanisms such as access control and information flow control are either restrictive or weak in that they prevent applications from sharing data usefully, and/or allow private information leaks when used independently. Typically, when services are composed there is a resource that some or all of the services involved in the composition need to share. However, during service composition security problems arise because the resulting service is made up of different services from different security domains. A key issue that arises and that we address in this thesis is that of enforcing secure information flow control during service composition to prevent illegal access and propagation of information between the participating services. This thesis describes a model that combines access control and information flow control in one framework. We specifically consider a case study of an e-health service application, and consider how constraints like location and context dependencies impact on authentication and authorization. Furthermore, we consider how data sharing applications such as the e-health service application handle issues of unauthorized users and insecure propagation of information in resource constrained environmentsÂą. Our framework addresses this issue of illegitimate information access and propagation by making use of the concept of program dependence graphs (PDGs). Program dependence graphs use path conditions as necessary conditions for secure information flow control. The advantage of this approach to securing information sharing is that, information is only propagated if the criteria for data sharing are verified. Our solution proposes or offers good performance, fast authentication taking into account bandwidth limitations. A security analysis shows the theoretical improvements our scheme offers. Results obtained confirm that the framework accommodates the CIA-triad (which is the confidentiality, integrity and availability model designed to guide policies of information security) of our work and can be used to motivate further research work in this field

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Access Control in Industrial Internet of Things

    Get PDF
    The Industrial Internet of Things (IIoT) is an ecosystem that consists of - among others - various networked sensors and actuators, achieving mainly advancements related with lowering production costs and providing workflow flexibility. Introducing access control in such environments is considered to be challenging, mainly due to the variety of technologies and protocols in IIoT devices and networks. Thus, various access control models and mechanisms should be examined, as well as the additional access control requirements posed by these industrial environments. To achieve these aims, we elaborate on existing state-of-the-art access control models and architectures and investigate access control requirements in IIoT, respectively. These steps provide valuable indications on what type of an access control model and architecture may be beneficial for application in the IIoT. We describe an access control architecture capable of achieving access control in IIoT using a layered approach and based on existing virtualization concepts (e.g., the cloud). Furthermore, we provide information on the functionality of the individual access control related components, as well as where these should be placed in the overall architecture. Considering this research area to be challenging, we finally discuss open issues and anticipate these directions to provide interesting multi-disciplinary insights in both industry and academia

    D7.5 FIRST consolidated project results

    Get PDF
    The FIRST project commenced in January 2017 and concluded in December 2022, including a 24-month suspension period due to the COVID-19 pandemic. Throughout the project, we successfully delivered seven technical reports, conducted three workshops on Key Enabling Technologies for Digital Factories in conjunction with CAiSE (in 2019, 2020, and 2022), produced a number of PhD theses, and published over 56 papers (and numbers of summitted journal papers). The purpose of this deliverable is to provide an updated account of the findings from our previous deliverables and publications. It involves compiling the original deliverables with necessary revisions to accurately reflect the final scientific outcomes of the project

    Extended role-based access control model for enterprise systems and web services

    Get PDF
    This thesis intends to develop application-level access control models to address several major security issues in enterprise environments. The first goal is to provide simple and efficient authorization specifications to reduce the complexity of security management. The second goal is to provide dynamic access control for Web service applications. The third goal is to provide an access control framework for Semantic Web services. In this thesis, an Authorization-Function-Based Role-based Access Control (FB-RBAC) model is proposed for controlling enterprise systems at the application level. The unique features of the proposed model are authorization-function-based access control and constraint-based finegrained access control. This model significantly simplifies the management of an access control system by adopting roles and authorization-functions in authorization specifications. An extension of FB-RBAC, Extended FB-RBAC (ERBAC), is applied to Web service applications. New features such as credential-based access control and dynamic role assignment are added to FB-RBAC in order to address user heterogeneity and dynamicity in the Web environment. The proposed ERBAC model is then extended to support Semantic Web services. Each component of the ERBAC model is described by security ontologies. These correlated security ontologies are integrated with Semantic Web services to form a complete ontology network. Ontology-based role assignment is facilitated so that security information can be queries and discovered through a network of ontologies

    ENABLING ATTRIBUTE BASED ACCESS CONTROL WITHIN THE INTERNET OF THINGS (IOT)

    Get PDF
    With the wide-scale development of the Internet of Things (IoT) and the usage of low-powered devices (sensors) together with smart devices, numerous people are using IoT systems in their homes and businesses to have more control over their technology. Unfortunately, some users of IoT systems that are controlled by a mobile application do not have a high level of data protection to respond in case the device is lost, stolen, or used by one of the owner’s friends or family members. The problem studied in this research is how to apply one of access control methods an IoT system whether they are stored locally on a sensor or on a cloud. To solve the problem, an attribute-based access control (ABAC) mechanism is applied to give the system the ability to apply policies to detect any unauthorized entry by evaluating some of the users’ attributes: the accessed time, the device media access control address (MAC address), the username, and password. Finally, a prototype was built to test the proposed solution in two ways; one is locally on a low-powered device, the second using cloud platform for the data storage. To evaluate both the prototype implementation, this research had an evaluation plan to mimic the real-world interactions by obtaining the response times when different numbers of requests sent from diverse numbers of users in different delays. The evaluation results showed that the first implementation was noticeably faster than the second implementation

    Analyzing and developing role-based access control models

    Get PDF
    Role-based access control (RBAC) has become today's dominant access control model, and many of its theoretical and practical aspects are well understood. However, certain aspects of more advanced RBAC models, such as the relationship between permission usage and role activation and the interaction between inheritance and constraints, remain poorly understood. Moreover, the computational complexity of some important problems in RBAC remains unknown. In this thesis we consider these issues, develop new RBAC models and answer a number of these questions. We develop an extended RBAC model that proposes an alternative way to distinguish between activation and usage hierarchies. Our extended RBAC model has well-defined semantics, derived from a graph-based interpretation of RBAC state. Pervasive computing environments have created a requirement for access control systems in which authorization is dependent on spatio-temporal constraints. We develop a family of simple, expressive and flexible spatio-temporal RBAC models, and extend these models to include activation and usage hierarchies. Unlike existing work, our models address the interaction between spatio-temporal constraints and inheritance in RBAC, and are consistent and compatible with the ANSI RBAC standard. A number of interesting problems have been defined and studied in the context of RBAC recently. We explore some variations on the set cover problem and use these variations to establish the computational complexity of these problems. Most importantly, we prove that the minimal cover problem -- a generalization of the set cover problem -- is NP-hard. The minimal cover problem is then used to determine the complexity of the inter-domain role mapping problem and the user authorization query problem in RBAC. We also design a number of efficient heuristic algorithms to answer the minimal cover problem, and conduct experiments to evaluate the quality of these algorithms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Security Policies That Make Sense for Complex Systems: Comprehensible Formalism for the System Consumer

    Get PDF
    Information Systems today rarely are contained within a single user workstation, server, or networked environment. Data can be transparently accessed from any location, and maintained across various network infrastructures. Cloud computing paradigms commoditize the hardware and software environments and allow an enterprise to lease computing resources by the hour, minute, or number of instances required to complete a processing task. An access control policy mediates access requests between authorized users of an information system and the system\u27s resources. Access control policies are defined at any given level of abstraction, such as the file, directory, system, or network, and can be instantiated in layers of increasing (or decreasing) abstraction. For the system end-user, the functional allocation of security policy to discrete system components, or subsystems, may be too complex for comprehension. In this dissertation, the concept of a metapolicy, or policy that governs execution of subordinate security policies, is introduced. From the user\u27s perspective, the metapolicy provides the rules for system governance that are functionally applied across the system\u27s components for policy enforcement. The metapolicy provides a method to communicate updated higher-level policy information to all components of a system; it minimizes the overhead associated with access control decisions by making access decisions at the highest level possible in the policy hierarchy. Formal definitions of policy often involve mathematical proof, formal logic, or set theoretic notation. Such policy definitions may be beyond the capability of a system user who simply wants to control information sharing. For thousands of years, mankind has used narrative and storytelling as a way to convey knowledge. This dissertation discusses how the concepts of storytelling can be embodied in computational narrative and used as a top-level requirements specification. The definition of metapolicy is further discussed, as is the relationship between the metapolicy and various access control mechanisms. The use of storytelling to derive the metapolicy and its applicability to formal requirements definition is discussed. The author\u27s hypothesis on the use of narrative to explain security policy to the system user is validated through the use of a series of survey instruments. The survey instrument applies either a traditional requirements specification language or a brief narrative to describe a security policy and asks the subject to interpret the statements. The results of this research are promising and reflect a synthesis of the disciplines of neuroscience, security, and formal methods to present a potentially more comprehensible knowledge representation of security policy
    • …
    corecore