49,438 research outputs found

    An Overview of Model-assisted Global Query System

    Get PDF

    Fine-Grained Product Class Recognition for Assisted Shopping

    Full text link
    Assistive solutions for a better shopping experience can improve the quality of life of people, in particular also of visually impaired shoppers. We present a system that visually recognizes the fine-grained product classes of items on a shopping list, in shelves images taken with a smartphone in a grocery store. Our system consists of three components: (a) We automatically recognize useful text on product packaging, e.g., product name and brand, and build a mapping of words to product classes based on the large-scale GroceryProducts dataset. When the user populates the shopping list, we automatically infer the product class of each entered word. (b) We perform fine-grained product class recognition when the user is facing a shelf. We discover discriminative patches on product packaging to differentiate between visually similar product classes and to increase the robustness against continuous changes in product design. (c) We continuously improve the recognition accuracy through active learning. Our experiments show the robustness of the proposed method against cross-domain challenges, and the scalability to an increasing number of products with minimal re-training.Comment: Accepted at ICCV Workshop on Assistive Computer Vision and Robotics (ICCV-ACVR) 201

    Toward Self-Organising Service Communities

    Get PDF
    This paper discusses a framework in which catalog service communities are built, linked for interaction, and constantly monitored and adapted over time. A catalog service community (represented as a peer node in a peer-to-peer network) in our system can be viewed as domain specific data integration mediators representing the domain knowledge and the registry information. The query routing among communities is performed to identify a set of data sources that are relevant to answering a given query. The system monitors the interactions between the communities to discover patterns that may lead to restructuring of the network (e.g., irrelevant peers removed, new relationships created, etc.)

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    Automated Visual Fin Identification of Individual Great White Sharks

    Get PDF
    This paper discusses the automated visual identification of individual great white sharks from dorsal fin imagery. We propose a computer vision photo ID system and report recognition results over a database of thousands of unconstrained fin images. To the best of our knowledge this line of work establishes the first fully automated contour-based visual ID system in the field of animal biometrics. The approach put forward appreciates shark fins as textureless, flexible and partially occluded objects with an individually characteristic shape. In order to recover animal identities from an image we first introduce an open contour stroke model, which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we show that combinatorial, scale-space selective fingerprinting can successfully encode fin individuality. We then measure the species-specific distribution of visual individuality along the fin contour via an embedding into a global `fin space'. Exploiting this domain, we finally propose a non-linear model for individual animal recognition and combine all approaches into a fine-grained multi-instance framework. We provide a system evaluation, compare results to prior work, and report performance and properties in detail.Comment: 17 pages, 16 figures. To be published in IJCV. Article replaced to update first author contact details and to correct a Figure reference on page

    TRECVid 2006 experiments at Dublin City University

    Get PDF
    In this paper we describe our retrieval system and experiments performed for the automatic search task in TRECVid 2006. We submitted the following six automatic runs: • F A 1 DCU-Base 6: Baseline run using only ASR/MT text features. • F A 2 DCU-TextVisual 2: Run using text and visual features. • F A 2 DCU-TextVisMotion 5: Run using text, visual, and motion features. • F B 2 DCU-Visual-LSCOM 3: Text and visual features combined with concept detectors. • F B 2 DCU-LSCOM-Filters 4: Text, visual, and motion features with concept detectors. • F B 2 DCU-LSCOM-2 1: Text, visual, motion, and concept detectors with negative concepts. The experiments were designed both to study the addition of motion features and separately constructed models for semantic concepts, to runs using only textual and visual features, as well as to establish a baseline for the manually-assisted search runs performed within the collaborative K-Space project and described in the corresponding TRECVid 2006 notebook paper. The results of the experiments indicate that the performance of automatic search can be improved with suitable concept models. This, however, is very topic-dependent and the questions of when to include such models and which concept models should be included, remain unanswered. Secondly, using motion features did not lead to performance improvement in our experiments. Finally, it was observed that our text features, despite displaying a rather poor performance overall, may still be useful even for generic search topics
    corecore