9,162 research outputs found

    Workflow Partitioning and Deployment on the Cloud using Orchestra

    Get PDF
    Orchestrating service-oriented workflows is typically based on a design model that routes both data and control through a single point - the centralised workflow engine. This causes scalability problems that include the unnecessary consumption of the network bandwidth, high latency in transmitting data between the services, and performance bottlenecks. These problems are highly prominent when orchestrating workflows that are composed from services dispersed across distant geographical locations. This paper presents a novel workflow partitioning approach, which attempts to improve the scalability of orchestrating large-scale workflows. It permits the workflow computation to be moved towards the services providing the data in order to garner optimal performance results. This is achieved by decomposing the workflow into smaller sub workflows for parallel execution, and determining the most appropriate network locations to which these sub workflows are transmitted and subsequently executed. This paper demonstrates the efficiency of our approach using a set of experimental workflows that are orchestrated over Amazon EC2 and across several geographic network regions.Comment: To appear in Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC 2014

    A Cloud Platform-as-a-Service for Multimedia Conferencing Service Provisioning

    Full text link
    Multimedia conferencing is the real-time exchange of multimedia content between multiple parties. It is the basis of a wide range of applications (e.g., multimedia multiplayer game). Cloud-based provisioning of the conferencing services on which these applications rely will bring benefits, such as easy service provisioning and elastic scalability. However, it remains a big challenge. This paper proposes a PaaS for conferencing service provisioning. The proposed PaaS is based on a business model from the state of the art. It relies on conferencing IaaSs that, instead of VMs, offer conferencing substrates (e.g., dial-in signaling, video mixer and audio mixer). The PaaS enables composition of new conferences from substrates on the fly. This has been prototyped in this paper and, in order to evaluate it, a conferencing IaaS is also implemented. Performance measurements are also made.Comment: 6 pages, 6 figures, IEEE ISCC 201

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    On Synchronous and Asynchronous Monitor Instrumentation for Actor-based systems

    Full text link
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315

    Dynamic Virtualized Deployment of Particle Physics Environments on a High Performance Computing Cluster

    Full text link
    The NEMO High Performance Computing Cluster at the University of Freiburg has been made available to researchers of the ATLAS and CMS experiments. Users access the cluster from external machines connected to the World-wide LHC Computing Grid (WLCG). This paper describes how the full software environment of the WLCG is provided in a virtual machine image. The interplay between the schedulers for NEMO and for the external clusters is coordinated through the ROCED service. A cloud computing infrastructure is deployed at NEMO to orchestrate the simultaneous usage by bare metal and virtualized jobs. Through the setup, resources are provided to users in a transparent, automatized, and on-demand way. The performance of the virtualized environment has been evaluated for particle physics applications

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Extensible Technology-Agnostic Runtime Verification

    Full text link
    With numerous specialised technologies available to industry, it has become increasingly frequent for computer systems to be composed of heterogeneous components built over, and using, different technologies and languages. While this enables developers to use the appropriate technologies for specific contexts, it becomes more challenging to ensure the correctness of the overall system. In this paper we propose a framework to enable extensible technology agnostic runtime verification and we present an extension of polyLarva, a runtime-verification tool able to handle the monitoring of heterogeneous-component systems. The approach is then applied to a case study of a component-based artefact using different technologies, namely C and Java.Comment: In Proceedings FESCA 2013, arXiv:1302.478
    corecore