2,030 research outputs found

    Learning the dominance in diploid genetic algorithms for changing optimization problems

    Get PDF
    Using diploid representation with dominance scheme is one of the approaches developed for genetic algorithms to address dynamic optimization problems. This paper proposes an adaptive dominance mechanism for diploid genetic algorithms in dynamic environments. In this scheme, the genotype to phenotype mapping in each gene locus is controlled by a dominance probability, which is learnt adaptively during the searching progress. The proposed dominance scheme isexperimentally compared to two other schemes for diploid genetic algorithms. Experimental results validate the efficiency of the dominance learning scheme

    Explaining Adaptation in Genetic Algorithms With Uniform Crossover: The Hyperclimbing Hypothesis

    Full text link
    The hyperclimbing hypothesis is a hypothetical explanation for adaptation in genetic algorithms with uniform crossover (UGAs). Hyperclimbing is an intuitive, general-purpose, non-local search heuristic applicable to discrete product spaces with rugged or stochastic cost functions. The strength of this heuristic lie in its insusceptibility to local optima when the cost function is deterministic, and its tolerance for noise when the cost function is stochastic. Hyperclimbing works by decimating a search space, i.e. by iteratively fixing the values of small numbers of variables. The hyperclimbing hypothesis holds that UGAs work by implementing efficient hyperclimbing. Proof of concept for this hypothesis comes from the use of a novel analytic technique involving the exploitation of algorithmic symmetry. We have also obtained experimental results that show that a simple tweak inspired by the hyperclimbing hypothesis dramatically improves the performance of a UGA on large, random instances of MAX-3SAT and the Sherrington Kirkpatrick Spin Glasses problem.Comment: 22 pages, 5 figure

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Forest-Genetic method to optimize parameter design of multiresponse experiment

    Full text link
    [EN] We propose a methodology for the improvement of the parameter design that consists of the combination of Random Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization. The first phase corresponds to the previous preparation of the data set by using normalization functions. In the second phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called it Multivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase, we obtained the optimal combination of parameter levels with the integration of properties of our modelling scheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us to compare and validate the virtues of our methodology versus other proposals involving Artificial Neural Networks (ANN) and Simulated Annealing (SA).[ES] Proponemos una metodología para la mejora del diseño de parámetros que consiste en la combinación de Random Forest (RF) con Algoritmos Genéticos (GA) en 3 fases: normalización, modelización y optimización. La primera fase corresponde a la preparación previa del conjunto de datos mediante funciones de normalización. En la segunda fase, diseñamos un esquema de modelización ajustado a múltiples características de calidad, que hemos llamado Multivariante Random Forest (MRF) para la determinación de la función objetivo. Finalmente, en la tercera fase se obtiene la combinación ¿optima de los niveles de los parámetros mediante la integración de propiedades dadas por nuestro esquema de modelización y las desirabibity functions en el establecimiento del correspondiente GA. Dos casos ilustrativos nos permiten comparar y validar las virtudes de nuestra metodología versus otras propuestas que involucran Redes Neuronales Artificiales (ANN) y Simulated Annealing (SA).Villa Murillo, A.; Carrión García, A.; Sozzi, A. (2020). Forest-Genetic method to optimize parameter design of multiresponse experiment. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial. 23(66):9-25. https://doi.org/10.4114/intartif.vol23iss66pp9-25S925236
    corecore