7 research outputs found

    Value Iteration Using Universal Graphs and the Complexity of Mean Payoff Games

    Get PDF
    We study the computational complexity of solving mean payoff games. This class of games can be seen as an extension of parity games, and they have similar complexity status: in both cases solving them is in NP ? coNP and not known to be in P. In a breakthrough result Calude, Jain, Khoussainov, Li, and Stephan constructed in 2017 a quasipolynomial time algorithm for solving parity games, which was quickly followed by a few other algorithms with the same complexity. Our objective is to investigate how these techniques can be extended to mean payoff games. The starting point is the combinatorial notion of universal trees: all quasipolynomial time algorithms for parity games have been shown to exploit universal trees. Universal graphs extend universal trees to arbitrary (positionally determined) objectives. We show that they yield a family of value iteration algorithms for solving mean payoff games which includes the value iteration algorithm due to Brim, Chaloupka, Doyen, Gentilini, and Raskin. The contribution of this paper is to prove tight bounds on the complexity of algorithms for mean payoff games using universal graphs. We consider two parameters: the largest weight N in absolute value and the number k of weights. The dependence in N in the existing value iteration algorithm is linear, we show that this can be improved to N^{1 - 1/n} and obtain a matching lower bound. However, we show that we cannot break the linear dependence in the exponent in the number k of weights implying that universal graphs do not yield a quasipolynomial time algorithm for solving mean payoff games

    The Theory of Universal Graphs for Infinite Duration Games

    Get PDF
    We introduce the notion of universal graphs as a tool for constructing algorithms solving games of infinite duration such as parity games and mean payoff games. In the first part we develop the theory of universal graphs, with two goals: showing an equivalence and normalisation result between different recently introduced related models, and constructing generic value iteration algorithms for any positionally determined objective. In the second part we give four applications: to parity games, to mean payoff games, and to combinations of them (in the form of disjunctions of objectives). For each of these four cases we construct algorithms achieving or improving over the best known time and space complexity.Comment: 43 pages, 10 figure

    The Theory of Universal Graphs for Infinite Duration Games

    Get PDF
    We introduce the notion of universal graphs as a tool for constructing algorithms solving games of infinite duration such as parity games and mean payoff games. In the first part we develop the theory of universal graphs, with two goals: showing an equivalence and normalisation result between different recently introduced related models, and constructing generic value iteration algorithms for any positionally determined objective. In the second part we give four applications: to parity games, to mean payoff games, to a disjunction between a parity and a mean payoff objective, and to disjunctions of several mean payoff objectives. For each of these four cases we construct algorithms achieving or improving over the best known time and space complexity

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    On linear, fractional, and submodular optimization

    Get PDF
    In this thesis, we study four fundamental problems in the theory of optimization. 1. In fractional optimization, we are interested in minimizing a ratio of two functions over some domain. A well-known technique for solving this problem is the Newton– Dinkelbach method. We propose an accelerated version of this classical method and give a new analysis using the Bregman divergence. We show how it leads to improved or simplified results in three application areas. 2. The diameter of a polyhedron is the maximum length of a shortest path between any two vertices. The circuit diameter is a relaxation of this notion, whereby shortest paths are not restricted to edges of the polyhedron. For a polyhedron in standard equality form with constraint matrix A, we prove an upper bound on the circuit diameter that is quadratic in the rank of A and logarithmic in the circuit imbalance measure of A. We also give circuit augmentation algorithms for linear programming with similar iteration complexity. 3. The correlation gap of a set function is the ratio between its multilinear and concave extensions. We present improved lower bounds on the correlation gap of a matroid rank function, parametrized by the rank and girth of the matroid. We also prove that for a weighted matroid rank function, the worst correlation gap is achieved with uniform weights. Such improved lower bounds have direct applications in submodular maximization and mechanism design. 4. The last part of this thesis concerns parity games, a problem intimately related to linear programming. A parity game is an infinite-duration game between two players on a graph. The problem of deciding the winner lies in NP and co-NP, with no known polynomial algorithm to date. Many of the fastest (quasi-polynomial) algorithms have been unified via the concept of a universal tree. We propose a strategy iteration framework which can be applied on any universal tree
    corecore