
Value Iteration Using Universal Graphs and the
Complexity of Mean Payoff Games
Nathanaël Fijalkow
CNRS, LaBRI, Bordeaux, France
The Alan Turing Institute of data science, London, UK

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland

Pierre Ohlmann
Université de Paris, IRIF, CNRS, France

Abstract
We study the computational complexity of solving mean payoff games. This class of games can
be seen as an extension of parity games, and they have similar complexity status: in both cases
solving them is in NP ∩ coNP and not known to be in P. In a breakthrough result Calude, Jain,
Khoussainov, Li, and Stephan constructed in 2017 a quasipolynomial time algorithm for solving
parity games, which was quickly followed by a few other algorithms with the same complexity. Our
objective is to investigate how these techniques can be extended to mean payoff games.

The starting point is the combinatorial notion of universal trees: all quasipolynomial time
algorithms for parity games have been shown to exploit universal trees. Universal graphs extend
universal trees to arbitrary (positionally determined) objectives. We show that they yield a family of
value iteration algorithms for solving mean payoff games which includes the value iteration algorithm
due to Brim, Chaloupka, Doyen, Gentilini, and Raskin.

The contribution of this paper is to prove tight bounds on the complexity of algorithms for mean
payoff games using universal graphs. We consider two parameters: the largest weight N in absolute
value and the number k of weights. The dependence in N in the existing value iteration algorithm is
linear, we show that this can be improved to N1−1/n and obtain a matching lower bound. However,
we show that we cannot break the linear dependence in the exponent in the number k of weights
implying that universal graphs do not yield a quasipolynomial time algorithm for solving mean
payoff games.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Algorithmic game theory and mechanism design

Keywords and phrases Mean payoff games, Universal graphs, Value iteration

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.34

Related Version A full version of the paper is available on arXiv [14] at https://arxiv.org/abs/
1812.07072.

Funding The first and third authors were (partially) funded by the DeLTA project (ANR-16-CE40-
0007).

1 Introduction

A mean payoff game is played over a finite graph whose edges are labelled by integer weights.
The interaction of the two players, called Eve and Adam, describe a path in the graph. The
goal of Eve is to ensure that the (infimum) limit of the weights average is non-negative.

The model of mean payoff games was introduced independently by Ehrenfeucht and
Mycielski [11] and by Gurvich, Karzanov, and Khachiyan [18]. A fundamental property
proved in both papers is that such games are positionally determined, meaning that for
both players, if there exists a strategy ensuring mean payoff, then there exists one using no

© Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://arxiv.org/abs/1812.07072
https://arxiv.org/abs/1812.07072
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Universal Graphs and Mean Payoff Games

memory at all. This holds for both players and is the key argument implying the intriguing
complexity status of solving mean payoff games: the decision problem is in NP and in coNP,
but not known to be solvable in polynomial time. It is unlikely to be NP-complete, since
this would imply that NP = coNP. Hence such a problem is either solvable in polynomial
time or an interesting piece in the landscape of computational complexity. This is one of the
reasons that makes the study of mean payoff games exciting. In addition to game theory, the
study of mean payoff games is motivated by verification and synthesis of programs, and by
their intricate connections to optimisation and linear programming. For instance, the model
of mean payoff games has been recently shown to be connected to the existence of a strongly
polynomial time algorithm for linear programming, which is the 9th item in Smale’s list of
problems for the 21st century [30]. Allamigeon, Benchimol, Gaubert, and Joswig [1] have
shown that a strongly polynomial time semi-algebraic pivoting rule in linear programming
would solve mean payoff games in strongly polynomial time.

The seminal paper of Zwick and Paterson [32] relates mean payoff games to discounted
payoff games and simple stochastic games, and most relevant to our work, constructs an
algorithm for solving mean payoff games with complexity O(n2mN), where n is the number
of vertices, m the number of edges, and N the largest weight in absolute value. If the weights
are given in unary N is polynomial in the representation, so we say that the algorithm is
pseudopolynomial. The question whether there exists a polynomial time algorithm for mean
payoff games with the usual representation of weights, meaning in binary, is open. The
currently fastest algorithm for mean payoff games is randomised and achieves subexponential
complexity 2Õ(

√
n). It is based on randomised pivoting rules for the simplex algorithm devised

by Kalai [21, 22] and Matoušek, Sharir and Welzl [27].
We are in this work interested in deterministic algorithms for solving mean payoff

games. There are two fastest deterministic algorithms: the value iteration algorithm of
Brim, Chaloupka, Doyen, Gentilini, and Raskin [3], which has complexity O(nmN), and the
algorithm of Lifshits and Pavlov [26] with complexity O(nm2n). They are incomparable:
the former is better when N ≤ 2n and otherwise the latter prevails. Very recently Dorfman,
Kaplan, and Zwick [10] presented an improved version of the value iteration algorithm with
a complexity O(min(nmN,nm2n/2 log(N))), an improvement over the previous algorithm
when N = Ω(n2n/2).

Solving a mean payoff game is very related to constructing an optimal strategy, meaning
one achieving the highest possible value. The state of the art for this problem is due to
Comin and Rizzi [7] who designed a pseudopolynomial time algorithm.

Parity games

It is most instructive in this context to think of parity games as a subclass of mean payoff games.
Indeed, a parity game with priorities in 0, . . . , d is turned into an equivalent mean payoff game
by replacing an edge of priority p by one of weight (−n)p. The breakthrough result of Calude,
Jain, Khoussainov, Li, and Stephan [4] was to construct a quasipolynomial time algorithm
for solving parity games. Following decades of exponential and subexponential algorithms,
this very surprising result triggered further research: soon after further quasipolynomial time
algorithms were constructed reporting almost the same complexity, which is roughly nO(log d).
Let us classify them in two families.

The first family of algorithms includes the original algorithm by Calude, Jain, Khoussainov,
Li, and Stephan [4] (see also [12] for a presentation of the algorithm as value iteration), then
the succinct progress measure algorithm by Jurdziński and Lazić [19] (see also [13] for a
presentation of the algorithm using universal trees explicitly) and the register games algorithm

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:3

by Lehtinen [24] (see also [29] for a presentation of the algorithm using good-for-small-games
automata explicitly). Bojańczyk and Czerwiński [2] introduced the separation question,
describing a family of algorithms for solving parity games based on separating automata,
and showed that the first quasipolynomial time algorithm yields a quasipolynomial solution
to the separation question. Later Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and
Parys [8] showed that the other two algorithms also yield quasipolynomial solutions to the
separation question. The main contribution of [8] is to show that any separating automaton
contains a universal tree in its set of states; in other words, the three algorithms in this first
family induce three (different) constructions of universal trees.

The second family of algorithms is so-called Zielonka-type algorithms, inspired by the
exponential time algorithm by Zielonka [31]. The first quasipolynomial time algorithm is due
to Parys [28], its complexity was improved by Lehtinen, Schewe, and Wojtczak [25]. Recently
Jurdziński and Morvan [20] constructed a universal attractor decomposition algorithm
encompassing all three algorithms: each algorithm is parameterised by the choice of two
universal trees (one of each player).

From universal trees to universal graphs

All quasipolynomial time algorithms for parity games fall in one of two families, and both are
based on the combinatorial notion of universal trees. This notion is by now well understood,
with almost matching upper and lower bounds on the size of universal trees [13, 8]. The
lower bound implies a complexity barrier applying to both families of algorithms, hence to
all known quasipolynomial time algorithms.

Universal trees arise in the study of the parity objective, the tree structure representing
the nested behaviour of priorities. Colcombet and Fijalkow [5, 6] introduced the notion of
universal graphs to extend universal trees from parity objectives to arbitrary (positionally
determined) objectives. The main result of [6] is an equivalence result between good-for-small-
games automata1 and universal graphs. More specifically, a good-for-small-games automaton
induces a universal graph of the same size, and vice versa. This equivalence extends the
results of [8] relating separating automata and universal trees to any positionally determined
objectives, so in particular for parity and mean payoff games.

Universal graphs for labelling schemes

The notion of universal graphs has been extensively studied in the unrelated context of
labelling schemes: the goal is to assign a short bitstring (called a label) to every node of a
graph so that a query concerning two nodes can be answered by looking at their corresponding
labels alone. As a prime example, labelling nodes of an undirected graph for adjacency
queries is known to be equivalent to constructing a so-called subgraph induced universal
graph [23]. Even though for some queries approaches based on an appropriately chosen
notion of universal graphs are known to be suboptimal [16], we also have examples in which
they allow for a significantly simpler and more efficient solution [17].

1 Good-for-small-games automata extend the notion of separating automata by including restricted
non-determinism. This notion is useful to capture Lehtinen’s register games algorithm, as explained
in [6], see also [29] for a similar point of view.

MFCS 2020

34:4 Universal Graphs and Mean Payoff Games

Contributions

Section 2 is devoted to a development of the theory of universal graphs for solving games
with arbitrary positionally determined objectives: we show that universal graphs yield a
family of value iteration algorithms whose time complexity is proportional to the number
of vertices of the universal graph and space complexity proportional to its logarithm. This
improves upon the previous approaches [2, 6] by reduction to safety games whose (time and
space) complexity is proportional either to the number of edges or to the number of vertices
of the universal graph.

Section 3 applies this result for mean payoff objectives implying that the value iteration
algorithm due to Brim, Chaloupka, Doyen, Gentilini, and Raskin [3] is an instance of the
family of algorithms based on universal graphs. The rest of the paper gives upper and lower
bounds on the size of universal graphs for mean payoff games along two parameters: the
largest weight N in absolute value and the number k of distinct weights.

Section 4: Universal graphs parametrised by the largest weight

The universal graph underlying the value iteration algorithm of [3] has size nN . We show
that this can be improved by constructing a universal graph of size at most 2n2N1−1/n,
which is asymptotically smaller than nN when N is exponential in n. This induces a new
algorithm with time complexity O(nm(nN)1−1/n) and space complexity O(n log(N)). We
then prove a matching lower bound: all universal graphs have size at least N1−1/n. This
implies that the linear dependence in N cannot be significantly improved for algorithms
using universal graphs.

Section 5: Universal graphs parametrised by the number k of different weights

There is a universal graph of size O(nk) for solving mean payoff games of size n with at
most k weights. We prove an almost matching lower bound: for all k, there exists a set of k
weights such that all corresponding universal graphs have size at least Ω(nk−2). This implies
that algorithms using universal graphs cannot break the O(nΩ(k)) barrier, and in particular
do not have quasipolynomial complexity.

2 Universal graphs and value iteration algorithms

In this section we define universal graphs and show how they yield algorithms for solving
games. There are two existing approaches both constructing reductions to safety games. The
most direct one [6] yields algorithms whose (time and space) complexity is proportional to
the number of edges of the universal graph. A better complexity is obtained by relating
universal graphs to separating automata as introduced in [2] and yields algorithms whose
(time and space) complexity is proportional to the number of vertices of the universal graph.

The core of this section is to show that universal graphs also yield a family of value
iteration algorithms, whose time complexity is proportional to the number of vertices of the
universal graph. The main benefit is in the space complexity, which becomes proportional to
the logarithm of the number of vertices of the universal graph. The developments of this
section are very general as they apply to any objective which is positionally determined. We
will instantiate this to the class of mean payoff objectives in the next section.

We write [i, j] for the interval {i, i+ 1, . . . , j − 1, j}, and use parentheses to exclude
extremal values, so [i, j) is {i, i+ 1, . . . , j − 1}. We let C denote a set of colours and write C∗
for finite sequences of colours (also called finite words), C+ for finite non-empty sequences,
and Cω for infinite sequences (also called infinite words).

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:5

Universal graphs
We deliberately postpone the definitions related to games: indeed the notion of universal
graphs is a purely combinatorial notion on graphs and ignores the interactive aspects of
games.

Graphs

We consider edge labelled directed graphs: a graph is given by a (finite) set V of vertices and
a (finite) set E ⊆ V × C × V of edges. A vertex v for which there exists no outgoing edge
(v, `, v′) ∈ E is called a sink. We let n denote the number of vertices and m the number of
edges. The size of a graph is its number of vertices.

Homomorphisms

For two graphs G,G′, a homomorphism φ : G→ G′ maps the vertices of G to the vertices of
G′ such that

(v, `, v′) ∈ E =⇒ (φ(v), `, φ(v′)) ∈ E′.

As a simple example that will be useful later on, note that if G′ is a super graph of G,
meaning they have the same set of vertices and every edge in G is also in G′, then the identity
is a homomorphism G→ G′. We say that G maps into G′ if there exists a homomorphism
G→ G′.

Paths

A path π is a (finite or infinite) sequence of consecutive edges, where consecutive means
that the third component of a triple in the sequence matches the first component of the
next triple. In the case of a finite path we write last(π) for the last vertex in π. We
write π = (v0, `0, v1)(v1, `1, v2) · · · and let π≤i denote the prefix of π of length i, meaning
π≤i = (v0, `0, v1) · · · (vi−1, `i−1, vi).

Objectives

An objective is a set Ω ⊆ Cω of infinite sequences of colours. A sequence of colours belonging
to Ω is said to satisfy Ω. We say that a path in a graph satisfies Ω, or that it is winning
when Ω is clear from context, if the sequence of labels it visits belongs to Ω. A path is said
to be maximal if it is either infinite or ends in a sink.

In the remainder of this section we will work with a generic objective Ω. However it is
convenient to assume that Ω is prefix independent. Formally, this means that Ω = C∗ · Ω, or
equivalently for all w ∈ C∗ and ρ ∈ Cω, we have ρ ∈ Ω ⇐⇒ w · ρ ∈ Ω. This assumption
can be lifted at the price of working with graphs with a distinguished initial vertex v0 which
must be preserved by homomorphisms. Although all results extend, we chose not to work in
this slightly more general setting since the mean payoff objective is prefix independent.

I Definition 1 (Graphs satisfying an objective). Let Ω be a prefix independent objective. A
graph satisfies Ω if all maximal paths are infinite and winning.

Note that if a graph contains a sink, it does not satisfy Ω because it contains some finite
maximal path.

MFCS 2020

34:6 Universal Graphs and Mean Payoff Games

I Definition 2 (Universal graphs). Let Ω be a prefix independent objective. A graph U is
(n,Ω)-universal if it satisfies the following two properties:
1. it satisfies Ω,
2. for any graph G of size n satisfying Ω, there exists a homomorphism φ : G→ U .
When considering a universal graph U we typically let VU and EU denote the sets of vertices
and edges of U , respectively.

It is not clear that for any objective Ω and n ∈ N there exists an (n,Ω)-universal graph.
Indeed, the definition creates a tension between “satisfying Ω”, which restricts the structure,
and “mapping any graph of size n satisfying Ω”, implying that the graph witnesses varied
behaviours. A simple construction of an (n,Ω)-universal graph is to take the disjoint union
of all graphs of size n satisfying Ω. Since up to renaming of vertices there are finitely many
such graphs for a fixed n, this yields a very large but finite (n,Ω)-universal graph.

Solving games using universal graphs by reduction to safety games

We now introduce infinite duration games on graphs and describe two first approaches for
solving games using universal graphs by reduction to safety games [2, 6]. We start with the
most direct one [6] as it does not require any deeper understanding of universal graphs, and
then briefly discuss the second one which actually relies on their connections to separating
automata [2].

Arenas

An arena is given by a graph containing no sink together with a partition VEve]VAdam of
its set V of vertices describing which player controls each vertex.

Games

A game is given by an arena and an objective. We often let G denote a game, its size is the
size of the underlying graph. It is played as follows. A token is placed on some initial vertex
vinit, and the player who controls this vertex pushes the token along an edge, reaching a
new vertex; the player who controls this new vertex takes over, and this interaction goes on
forever describing an infinite path.

Strategies

We write PathEveG (vinit) for the set of finite paths of G starting from vinit and ending in
VEve. A strategy for Eve from vinit is a map σ : PathEveG (vinit) → E such that for all
π ∈ PathEveG (vinit), σ(π) is an edge in E from last(π). Note that we always take the point of
view of Eve, so a strategy implicitely means a strategy of Eve, and winning means winning
for Eve. We say that an infinite path π = (v0, `0, v1)(v1, `1, v2) · · · is consistent with the
strategy σ if for all i, if vi ∈ VEve, then σ(π≤i) = (vi, `i, vi+1).

A strategy σ is winning from vinit if all infinite paths starting from vinit and consistent
with σ are winning. Solving a game is the following decision problem:

INPUT: a game G and an initial vertex vinit

OUTPUT: “yes” if Eve has a winning strategy from vinit, “no” otherwise.
We say that vinit is a winning vertex of G when the answer to the above problem is

positive.

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:7

Positional strategies

Positional strategies make decisions only considering the current vertex: σ : VEve → E. A
positional strategy induces a strategy σ̂ : PathEveG (vinit)→ E by σ̂(π) = σ(last(π)), where by
convention the last vertex of the empty path is the initial vertex vinit.

I Definition 3 (Positionally determined objectives). We say that an objective Ω is positionally
determined if for every game with objective Ω and initial vertex vinit, whenever there exists a
winning strategy from vinit then there exists a positional winning strategy from vinit.

Given a game G, an initial vertex vinit, and a positional strategy σ we let G[σ, vinit] denote
the graph obtained by restricting G to vertices reached by σ from vinit and to the moves
prescribed by σ. Formally, the set of vertices and edges is

V [σ, vinit] = {v ∈ V : there exists a path from vinit to v consistent with σ} ,
E[σ, vinit] = {(v, `, v′) ∈ E : v ∈ VAdam or (v ∈ VEve and σ(v) = (v, `, v′))}

∩ V [σ, vinit]× C × V [σ, vinit].

Our assumption that games do not contain sinks is essential for the following fact.

I Fact 1. Let Ω be a prefix independent objective, G a game, vinit an initial vertex, and
σ a positional strategy. Then the strategy σ is winning from vinit if and only if the graph
G[σ, vinit] satisfies Ω.

Safety games

The safety objective Safe on two colours C = {ε,Lose} is given by Safe = {εω}. In words,
an infinite path is winning if it avoids the colour Lose. The following lemma is folklore.

I Lemma 4. Given a safety game with m edges, there exists an algorithm running in time
and space O(m) which computes the set of winning vertices.

Consider a game G with objective Ω of size n and an (n,Ω)-universal graph U , we construct
a safety game G . U as follows. The arena for the game G . U is given by the following set of
vertices and edges

V′Eve = VEve × VU] VU × E,
V′Adam = VAdam × VU ,
E′ = {((v, s), ε, (s, `, v′)) : s ∈ VU , (v, `, v′) ∈ E}

∪ {((s, `, v′), ε, (v′, s′)) : (s, `, s′) ∈ EU , v′ ∈ V }
∪ {((s, `, v′),Lose, (s, `, v′)) : s ∈ VU , (v, `, v′) ∈ E}

In words: the game G . U simulates G. From (v, s), the following two steps occur. First,
the player who controls v picks an edge (v, `, v′) ∈ E as he would in G, and second, Eve
chooses which edge (s, `, s′) to follow in the universal graph U . If Eve is unable to play
in U (because there are no outgoing edges of the form (s, `, s′)), she is forced to choose
((s, `, v′),Lose, (s, `, v′)) and lose the safety game.

I Theorem 5. Let Ω be a prefix independent positionally determined objective. Let G be a
game of size n with objective Ω and U an (n,Ω)-universal graph. Let vinit be a vertex. Then
Eve has a winning strategy in G from vinit if and only if there exists a vertex sinit in U such
that she has a winning strategy in the safety game G . U from (vinit, sinit).

MFCS 2020

34:8 Universal Graphs and Mean Payoff Games

This theorem can be used to reduce games with objective Ω to safety games, yielding an
algorithm whose complexity is proportional to the number of edges of U . Indeed, recall that
the complexity of solving a safety game is proportional to the number of edges. The number
of edges of G . U is O(n ·mU) so the overall complexity is O(n ·mU).

Moving towards more efficient algorithms, we proceed to describing the structure of
saturated universal graphs.

I Definition 6 (Linear graphs). A graph G is linear if there exists a total order ≤ on the
vertices of G satisfying the following two properties:

if v′ ≤ v and (v′, `, v′′) ∈ E, then (v, `, v′′) ∈ E,
if (v, `, v′) ∈ E and v′′ ≤ v′, then (v, `, v′′) ∈ E.

We refer to the first property as left composition and the second as right composition.

The following lemma can be seen as a consequence of a result from [6], which we adapt
to our vocabulary.

I Lemma 7 (from Lemma 9 in [6]). Let Ω be a prefix independent positionally determined
objective. Then for every graph G satisfying Ω, there exists a linear graph G′ no larger than
G and a homomorphism φ : G→ G′.

A direct consequence of Lemma 7 is if there exists an (n,Ω)-universal graph U , then there
exists an (n,Ω)-universal linear graph no larger than U .

This is the key ingredient for determinising universal graphs [6]: an (n,Ω)-universal graph
is deterministic if for every vertex s ∈ VU and colour ` ∈ C there exists at most one edge
(s, `, s′) ∈ EU . We state the result but do not elaborate further.

I Corollary 8. Let Ω be a prefix independent positionally determined objective and U an
(n,Ω)-universal graph. There exists a deterministic (n,Ω)-universal graph no larger than U .

This yields an algorithm of improved time and space complexity O(n|C| · nU) using the
reduction to the safety game G . U .

Solving games using universal graphs by value iteration
We now further analyse the structure of universal graphs in order to define a notion of
progress measures which in turn will allow us to construct value iteration algorithms. This
improves on the two previous approaches by drastically decreasing the space complexity.

Let us consider a linear (n,Ω)-universal graph U . We let U> denote the linear graph U
extended with a vertex > and the edges (>, `,>) for all ` ∈ C, as well as (>, `, s) for s ∈ VU .
We extend ≤ to U> by making > maximal, which makes U> linear. We define a notion of
progress measures for games extending the notion of homomorphisms for graphs.

I Definition 9 (Progress measures). A progress measure for the game G is a function
φ : V → VU> such that:

for v ∈ VEve, there exists (v, `, v′) ∈ E such that (φ(v), `, φ(v′)) ∈ EU> ,
for v ∈ VAdam, for all (v, `, v′) ∈ E we have (φ(v), `, φ(v′)) ∈ EU> .

We let Π denote the set of functions φ : V → VU> and equip it with the pointwise order
induced by ≤: we say that φ ≤ φ′ if for all vertices v ∈ V we have φ(v) ≤ φ′(v).

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:9

I Theorem 10. Let Ω be a prefix independent positionally determined objective, G a game
with objective Ω, and U an (n,Ω)-universal linear graph. There exists a unique minimal
progress measure φ ∈ Π and it has the following property: for all vertices vinit ∈ V , we have
φ(vinit) 6= > if and only if Eve has a winning strategy from vinit.

The value iteration algorithm constructs the minimal progress measure. The key insight
is to approach this task as a smallest fixed point computation: progress measures are seen
as the pre fixed points of a set of operators, and the algorithm computes the smallest fixed
point for this set of operators, i.e. the minimal progress measure.

Let U be an (n,Ω)-universal linear graph. We let sinit the smallest vertex in U . We let
δ : VU ×C → VU denote the function defined by δ(s′, `) = min {s : (s, `, s′) ∈ EU}. Note that
s ≥ δ(s′, `) if and only if (s, `, s′) ∈ EU thanks to left composition in U .

We introduce a set of operators Liftv for each vertex v ∈ V . For a vertex v ∈ V the
operator Liftv : Π→ Π is defined by

Liftv(φ)(v) = max {min({δ(φ(v′), `) : (v, `, v′) ∈ E}), φ(v)} for v ∈ VEve
Liftv(φ)(v) = max {max({δ(φ(v′), `) : (v, `, v′) ∈ E}), φ(v)} for v ∈ VAdam
Liftv(φ)(v′) = φ(v′) for v′ 6= v

We reformulate the definition of φ being a progress measure using the lift operators as
follows.

I Lemma 11. The function φ : V → VU> is a progress measure if and only if for all v ∈ V
we have φ ≥ Liftv(φ).

The algorithm is given in Algorithm 1, it is an instance of Kleene’s fixed point algorithm
in a finite complete lattice with a set of inflationary and monotone operators. The next
lemma states the properties implying the correctness of this algorithm.

Algorithm 1 The value iteration algorithm.

Data: A game G of size n with objective Ω and an (n,Ω)-universal linear graph.
for v ∈ V do

φ(v)← sinit ;
repeat

Choose v ∈ V such that φ 6≥ Liftv(φ) ;
φ← Liftv(φ) ;

until ∀v ∈ V, φ ≥ Liftv(φ);
return φ

I Lemma 12. The set Π with the pointwise order induced from VU> is a finite complete lattice.
For all v ∈ V , the operator Liftv is inflationary, meaning φ ≤ Liftv(φ), and monotone,
meaning φ ≤ φ′ implies Liftv(φ) ≤ Liftv(φ′).

I Theorem 13. Let Ω be a prefix independent positionally determined objective, G a game
with objective Ω, and U an (n,Ω)-universal linear graph. The value iteration algorithm
outputs the minimal progress measure in time O(m · nU) and space O(n · log(nU)).

MFCS 2020

34:10 Universal Graphs and Mean Payoff Games

3 Universal graphs for mean payoff games

We now focus on universal graphs for mean payoff objectives. Let W ⊆ Z be the set of
colours, then

MeanPayoffW =
{
w = (w0, w1, . . .) : lim inf

`

1
`

`−1∑
i=0

wi ≥ 0
}
.

The set W is called the set of weights. Mean payoff objectives are prefix independent and
positionally determined [11, 32] and extend parity objectives in the following sense. Let d be
a natural number, we consider the set of colours [1, d] called priorities. Let us define

Parityd = {w : the largest priority appearing infinitely many times in w is even} .

Let n be a natural number and W = {(−n)p : p ∈ [1, d]}, then for all arenas A of size at
most n and initial vertex vinit, Eve has a winning strategy from vinit in the game induced by
A and the objective MeanPayoffW if and only if she has a winning strategy from vinit in the
game induced by A and the objective Parityd.

Let us state in the following theorem the existing results about universal graphs for parity
objectives.

I Theorem 14 ([8, 5]). For all n, d:
There exists an (n,Parityd)-universal graph of size nO(log(d)).
All (n,Parityd)-universal graphs have size at least nΩ(log(d)).

The remainder of this paper extends this study to mean payoff objectives, hence for any
set of weights W . We consider two parameters on W : the largest weight N in absolute value
in Section 4, in other words the case where W = (−N,N), and the number of weights, i.e.
the cardinality of W , in Section 5.

The construction of a universal graph
Recall that a graph satisfies mean payoff if all maximal paths are infinite and satisfy mean
payoff. This can be easily characterised using cycles: a cycle is a path of length ` such
that v0 = v`. A cycle (v0, w0, v1) · · · (v`−1, w`−1, v0) is negative if its total weight is negative,
meaning

`−1∑
i=0

wi < 0.

I Fact 2. A graph satisfies mean payoff if and only if it does not contain any sinks or
negative cycles.

Let W be a set of weights. We speak of a W -graph if all the weights in the graph belong
to W , and of an (n,W)-graph if additionally its size is at most n. We define a class of graphs
called integer graphs. An integer W -graph is given by a finite subset A of the integers: the
set of vertices is A and for any v, v′ ∈ A and w ∈W there is an edge from v to v′ labelled by
w if v′ − v ≤ w. When defining integer graphs we drop W when it is clear from the context
or irrelevant.

Some remarks are in order. First, integer graphs satisfy mean payoff, which follows from
the fact that they do not contain sinks (thanks to the self loop labelled by 0) nor negative
cycles. The translation A + p of an integer graph A by p ∈ Z is isomorphic to A. It also

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:11

holds that for A,B two integer W -graphs, A maps into B if and only if there exists p ∈ Z
such that A+ p ⊆ B. Finally, integer graphs are linear as defined in the previous section for
the natural order on integers.

The key yet simple observation for understanding universal graphs for mean payoff is
that given a graph with no negative cycles we can define a distance between vertices: the
distance dist(v, v′) from a vertex v to another vertex v′ is the smallest sum of the weights
along a path from v to v′ (when such a path exists).

We let ΣW,n denote the set of sums of at most n− 1 terms from W .

I Lemma 15. Let G be a (n,W)-graph satisfying MeanPayoffW . There exists an integer
graph L of size at most n such that G homomorphically maps into L. Further, L maps into
the integer W -graph [0, nN) and into the integer W -graph ΣW,n, and two consecutive integers
in L are no more than N apart.

This lemma has two important consequences. The first is upper bounds on the size of
universal graphs for mean payoff objectives for both parameters.

I Corollary 16.
The integer (−N,N)-graph [0, nN) is (n, MeanPayoff(−N,N))-universal and has size nN .
For every W of cardinality k, the integer W -graph ΣW,n is (n, MeanPayoffW)-universal
and has size O(nk).

The second corollary will be useful for proving lower bounds as we will restrict our
attention to integer graphs.

I Corollary 17. For every (n, MeanPayoffW)-universal graph, there exists an
(n, MeanPayoffW)-universal integer graph of at most the same size.

We state here a simple result that we will use several times later on about homomorphisms
into integer graphs.

I Lemma 18. Let G be a graph, A an integer graph, φ : G→ A a homomorphism. Consider
a cycle (v0, w0, v1) · · · (v`−1, w`−1, v0) in G of total weight 0. Then for i ∈ [0, `), we have
φ(vi+1)− φ(vi) = wi, where by convention v` = v0.

The value iteration algorithm
Let W be a set of weights with W ⊆ (−N,N) and |W | ≤ k. We can now instantiate
Theorem 13 for mean payoff objectives using the two universal graphs constructed in
Corollary 16. The first one (parameterised by N) yields exactly the algorithm constructed by
Brim, Chaloupka, Doyen, Gentilini, and Raskin [3]: identical data structures and complexity
analysis. We note that the two tasks whose complexity were assumed to be constant, namely
computing δ(s, `) for s and `, and checking whether s ≤ s′, are indeed unitary operations as
they manipulate numbers of order nN . Assuming these operations take constant time and
space (as was done in [3]), we obtain an algorithm with time complexity O(nmN) and space
complexity O(n log(N)). The second one (parameterised by k) yields the same algorithm
but the time complexity becomes O(mnk) and the space complexity O(nk log(n)).

I Corollary 19.
There exists an algorithm for solving mean payoff games with weights in (−N,N) of time
complexity O(nmN) and space complexity O(n log(N)).
There exists an algorithm for solving mean payoff games with k weights of time complexity
O(mnk) and space complexity O(nk log(n)).

MFCS 2020

34:12 Universal Graphs and Mean Payoff Games

4 Parametrised by the largest weight

In this section we focus on the largest weight of W in absolute value as parameter, so we fix
W = (−N,N). We already explained how to construct an (n, MeanPayoff(−N,N))-universal
graph of size nN , yielding an algorithm matching the best known complexity. We improve
on this upper bound when N is exponential in n, and prove a matching lower bound.

I Theorem 20.
There exists an (n, MeanPayoff(−N,N))-universal graph of size at most 2n2N1−1/n.
All (n, MeanPayoff(−N,N))-universal graphs have size at least N1−1/n.

Since n is polynomial in the size of the input, one may say that n is “small”, while N is
exponential in the size of the input when weights are given in binary, hence “large”. With
this intuition in mind, the multiplicative gap between upper and lower bound is bounded by
2n2, hence small.

Let us now discuss the significance of the difference between N to N1−1/n. For N ≤ 2n

we have N1−1/n ≥ 1
2N so N1−1/n is essentially linear in N . However when N ≥ 2Ω(n1+ε) for

ε > 0 then 2n2N1−1/n = o(nN), so the new universal graph is indeed asymptotically smaller
than the previous one. It follows that the new universal graph yields an improved algorithm
in this regime. To appreciate the relevance of this condition, let us recall an old result of
Frank and Tardos [15] which implies that one can in polynomial time transform a mean
payoff game into an equivalent one where N ≤ 24n3

mm+3. Our new algorithm improves over
the previous one for the range N ∈ [2Ω(n1+ε), 24n3

mm+3].

I Corollary 21. There exists an algorithm for solving mean payoff games with time complexity
O(mn(nN)1−1/n) and with space complexity O(n log(N)).

This new algorithm improves over the first algorithm when N = 2Ω(n1+ε), but under this
assumption the second algorithm is faster. The improvement is on the space complexity,
where our algorithm performs as well as the first algorithm and much better than the second
algorithm.

Upper bound
I Theorem 22. There exists an (n, MeanPayoff(−N,N))-universal graph of size

2
(
nN − ((nN)1/n − 1)n

)
.

As discussed above, the size of this new universal graph is not always smaller than the
first universal graph of size nN , but it is asymptotically smaller when N = 2Ω(n2). We now
give some intuition for the construction. The construction in Lemma 15 shows that the
integer graph [0, nN) is (n, MeanPayoff(−N,N))-universal. In this construction the initial
vertex vinit is always mapped to 0 by the homomorphism. By allowing ourselves to map
vinit anywhere in the integer graph, we get some slack which enables us to remove some
values from [0, nN) while remaining universal. As a drawback we need to double the range
to [0, 2nN), which is why this new construction is not always smaller than the original one
of size nN .

Lower bound
I Theorem 23. Any (n, MeanPayoff(−N,N))-universal graph has size at least N1−1/n.

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:13

5 Parametrised by the number of weights

In this section we focus on the cardinality of W as a parameter. Recall that the very simple
integer graph ΣW,n is universal and has size nk. We now give an almost matching lower
bound.

I Theorem 24. For all k, for n large enough, there exists W ⊆ Z of cardinality k such that
all (n, MeanPayoffW)-universal graphs have size at least Ω(nk−2).

Theorem 24 follows from the following Lemma. We let T = 1 + n+ n2 + · · ·+ nk−2 and
W =

{
1, n, n2, . . . , nk−2,−n−1

k−1T
}
. Note that W has indeed cardinality k.

I Lemma 25. Let U be an (n, MeanPayoffW)-universal graph. Then |U| ≥
(

n−1
(k−1)2

) (k−1)2
k .

Conclusions

In this paper we have shown how to extend to mean payoff games the ideas developed for
constructing quasipolynomial algorithms for parity games using the combinatorial notion of
universal graphs. This yields a family of algorithms for mean payoff games which includes
the value iteration algorithm of Brim, Chaloupka, Doyen, Gentilini, and Raskin [3]. We give
almost matching lower bounds against two parameters: the largest weight in absolute value
and the number of weights. Against the first parameter we obtain an improvement in the
case where the largest weight is exponential in the size of the game. The lower bound against
the second parameter implies that algorithms based on universal graphs cannot solve mean
payoff games in quasipolynomial time.

Our lower bounds show that for pathological sets of weights universal graphs are very
large. A more positive note is to consider W = {(−n)p : p ∈ [1, d]}, the set of weights
corresponding to parity games: in this case we know that there exist (n,W)-universal graphs
of quasipolynomial size (specifically nO(log(d))). This motivates a deeper understanding of
the size of (n, MeanPayoffW)-universal graphs: for which sets of weights W do there exist
small universal graphs? Is there a meaningful hierarchy between parity and mean payoff
games?

This paper represents a new milestone in the fruitful line of research constructing
algorithms for solving games using universal graphs. We have construct a family of value
iteration algorithms with very efficient space complexity which can be instantiated for
any positionally determined objective. So far only parity and mean payoff objectives have
been studied under this light. There are many more important positionally determined
objectives, such as the Rabin objectives which play an important role in LTL synthesis, and
the combination of mean payoff and parity objectives [9]. Another direction is to construct
algorithms for games played on subclasses of graphs such as planar graphs, bounded clique
or tree width graphs.

References
1 Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Combinatorial

simplex algorithms can solve mean payoff games. SIAM Journal on Optimization, 24(4):2096–
2117, 2014. doi:10.1137/140953800.

2 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox, February 2018. URL:
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf.

MFCS 2020

https://doi.org/10.1137/140953800
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf

34:14 Universal Graphs and Mean Payoff Games

3 Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-François Raskin.
Faster algorithms for mean-payoff games. Formal Methods in System Design, 38(2):97–118,
2011. doi:10.1007/s10703-010-0105-x.

4 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In STOC, pages 252–263, 2017. doi:10.1145/3055399.
3055409.

5 Thomas Colcombet and Nathanaël Fijalkow. Parity games and universal graphs. CoRR,
abs/1810.05106, 2018. arXiv:1810.05106.

6 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games auto-
mata: New tools for infinite duration games. In FoSSaCS, pages 1–26, 2019. doi:
10.1007/978-3-030-17127-8_1.

7 Carlo Comin and Romeo Rizzi. Improved pseudo-polynomial bound for the value problem
and optimal strategy synthesis in mean payoff games. Algorithmica, 77(4):995–1021, 2017.
doi:10.1007/s00453-016-0123-1.

8 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić, and
Paweł Parys. Universal trees grow inside separating automata: Quasi-polynomial lower bounds
for parity games. In SODA, pages 2333–2349, 2019. doi:10.1137/1.9781611975482.142.

9 Laure Daviaud, Marcin Jurdziński, and Ranko Lazić. A pseudo-quasi-polynomial algorithm
for mean-payoff parity games. In LICS, pages 325–334, 2018. doi:10.1145/3209108.3209162.

10 Dani Dorfman, Haim Kaplan, and Uri Zwick. A faster deterministic exponential time algorithm
for energy games and mean payoff games. In ICALP, pages 114:1–114:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.114.

11 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Interna-
tional Journal of Game Theory, 109(8):109–113, 1979. doi:10.1007/BF01768705.

12 John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In SPIN,
pages 112–121, 2017.

13 Nathanaël Fijalkow. An optimal value iteration algorithm for parity games. CoRR,
abs/1801.09618, 2018. arXiv:1801.09618.

14 Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann. The complexity of mean
payoff games using universal graphs. CoRR, abs/1812.07072, 2018. arXiv:1812.07072.

15 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.

16 Ofer Freedman, Paweł Gawrychowski, Patrick K. Nicholson, and Oren Weimann. Optimal
distance labeling schemes for trees. In PODC, pages 185–194. ACM, 2017.

17 Paweł Gawrychowski, Fabian Kuhn, Jakub Łopuszański, Konstantinos Panagiotou, and Pascal
Su. Labeling schemes for nearest common ancestors through minor-universal trees. In SODA,
pages 2604–2619. SIAM, 2018.

18 Vladimir A. Gurvich, Aleksander V. Karzanov, and Leonid G. Khachiyan. Cyclic games
and an algorithm to find minimax cycle means in directed graphs. USSR Computational
Mathematics and Mathematical Physics, 28:85–91, 1988.

19 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
LICS, pages 1–9, 2017. doi:10.1109/LICS.2017.8005092.

20 Marcin Jurdziński and Rémi Morvan. A universal attractor decomposition algorithm for parity
games. CoRR, abs/2001.04333, 2020. arXiv:2001.04333.

21 Gil Kalai. A subexponential randomized simplex algorithm (extended abstract). In STOC,
pages 475–482, 1992. doi:10.1145/129712.129759.

22 Gil Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Program.,
79:217–233, 1997. doi:10.1007/BF02614318.

23 Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992.

https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
http://arxiv.org/abs/1810.05106
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/s00453-016-0123-1
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.1145/3209108.3209162
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.1007/BF01768705
http://arxiv.org/abs/1801.09618
http://arxiv.org/abs/1812.07072
https://doi.org/10.1007/BF02579200
https://doi.org/10.1109/LICS.2017.8005092
http://arxiv.org/abs/2001.04333
https://doi.org/10.1145/129712.129759
https://doi.org/10.1007/BF02614318

N. Fijalkow, P. Gawrychowski, and P. Ohlmann 34:15

24 Karoliina Lehtinen. A modal-µ perspective on solving parity games in quasi-polynomial time.
In LICS, pages 639–648, 2018.

25 Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. Improving the complexity of parys’
recursive algorithm. CoRR, abs/1904.11810, 2019. arXiv:1904.11810.

26 Y.M. Lifshits and D.S. Pavlov. Potential theory for mean payoff games. Journal of Mathematical
Sciences, 145:4967–4974, 2007. doi:10.1007/s10958-007-0331-y.

27 Jivr’i Matouvsek, Micha Sharir, and Emo Welzl. A subexponential bound for linear program-
ming. Algorithmica, 16(4/5):498–516, 1996. doi:10.1007/BF01940877.

28 Paweł Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In MFCS, pages
10:1–10:13, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

29 Paweł Parys. Parity games: Another view on lehtinen’s algorithm. In CSL, pages 32:1–32:15,
2020. doi:10.4230/LIPIcs.CSL.2020.32.

30 Steve Smale. Mathematical problems for the next century. The Mathematical Intelligencer,
20(2):7–15, 1998. doi:10.1007/BF03025291.

31 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

32 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

MFCS 2020

http://arxiv.org/abs/1904.11810
https://doi.org/10.1007/s10958-007-0331-y
https://doi.org/10.1007/BF01940877
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.4230/LIPIcs.CSL.2020.32
https://doi.org/10.1007/BF03025291
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/0304-3975(95)00188-3

	Introduction
	Universal graphs and value iteration algorithms
	Universal graphs for mean payoff games
	Parametrised by the largest weight
	Parametrised by the number of weights

