6 research outputs found

    Decidability of the interval temporal logic ABBar over the natural numbers

    Get PDF
    In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets", "begins", and "begun by" (ABBar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties,such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the proble

    Crossing the Undecidability Border with Extensions of Propositional Neighborhood Logic over Natural Numbers

    Get PDF
    Propositional Neighborhood Logic (PNL) is an interval temporal logic featuring two modalities corresponding to the relations of right and left neighborhood between two intervals on a linear order (in terms of Allen's relations, meets and met by). Recently, it has been shown that PNL interpreted over several classes of linear orders, including natural numbers, is decidable (NEXPTIME-complete) and that some of its natural extensions preserve decidability. Most notably, this is the case with PNL over natural numbers extended with a limited form of metric constraints and with the future fragment of PNL extended with modal operators corresponding to Allen's relations begins, begun by, and before. This paper aims at demonstrating that PNL and its metric version MPNL, interpreted over natural numbers, are indeed very close to the border with undecidability, and even relatively weak extensions of them become undecidable. In particular, we show that (i) the addition of binders on integer variables ranging over interval lengths makes the resulting hybrid extension of MPNL undecidable, and (ii) a very weak first-order extension of the future fragment of PNL, obtained by replacing proposition letters by a restricted subclass of first-order formulae where only one variable is allowed, is undecidable (in contrast with the decidability of similar first-order extensions of point-based temporal logics)

    An Optimal Decision Procedure for Right Propositional Neighborhood Logic

    No full text
    Propositional interval temporal logics are quite expressive temporal logics that allow one to naturally express statements that refer to time intervals. Unfortunately, most such logics turned out to be (highly) undecidable. To get decidability, severe syntactic and/or semantic restrictions have been imposed to interval-based temporal logics that make it possible to reduce them to point-based ones. The problem of identifying expressive enough, yet decidable, new interval logics or fragments of existing ones which are genuinely interval-based is still largely unexplored. In this paper, we focus our attention on interval logics of temporal neighborhood. We address the decision problem for the future fragment of Neighborhood Logic (Right Propositional Neighborhood Logic, RPNL for short) and we positively solve it by showing that the satisfiability problem for RPNL over natural numbers is NEXPTIME-complete. Then, we develop a sound and complete tableau-based decision procedure and we prove its optimality

    An optimal decision procedure for Right Propositional Neighborhood Logic

    No full text
    Propositional interval temporal logics are quite expressive temporal logics that allow one to naturally express statements that refer to time intervals. Unfortunately, most such logics turn out to be (highly) undecidable. In order to get decidability, severe syntactic or semantic restrictions have been imposed to interval-based temporal logics to reduce them to point-based ones. The problem of identifying expressive enough, yet decidable, new interval logics or fragments of existing ones that are genuinely interval-based is still largely unexplored. In this paper, we focus our attention on interval logics of temporal neighborhood. We address the decision problem for the future fragment of Neighborhood Logic (Right Propositional Neighborhood Logic, RPNL for short), and we positively solve it by showing that the satisfiability problem for RPNL over natural numbers is NEXPTIME-complete. Then, we develop a sound and complete tableau-based decision procedure, and we prove its optimality

    An optimal decision procedure for Right Propositional Neighborhood Logic

    No full text
    Propositional interval temporal logics are quite expressive temporal logics that allow one to naturally express statements that refer to time intervals. Unfortunately, most such logics turn out to be (highly) undecidable. In order to get decidability, severe syntactic or semantic restrictions have been imposed to interval-based temporal logics to reduce them to point-based ones. The problem of identifying expressive enough, yet decidable, new interval logics or fragments of existing ones that are genuinely interval-based is still largely unexplored. In this paper, we focus our attention on interval logics of temporal neighborhood. We address the decision problem for the future fragment of Neighborhood Logic (Right Propositional Neighborhood Logic, RPNL for short), and we positively solve it by showing that the satis\ufb01ability problem for RPNL over natural numbers is NEXPTIME-complete. Then, we develop a sound and complete tableau-based decision procedure, and we prove its optimality
    corecore