5 research outputs found

    Space-Time Mixed System Formulation of Phase-Field Fracture Optimal Control Problems

    Get PDF
    In this work, space-time formulations and Galerkin discretizations for phase-field fracture optimal control problems are considered. The fracture irreversibility constraint is formulated on the time-continuous level and is regularized by means of penalization. The optimization scheme is formulated in terms of the reduced approach and then solved with a Newton method. To this end, the state, adjoint, tangent, and adjoint Hessian equations are derived. The key focus is on the design of appropriate function spaces and the rigorous justification of all Fréchet derivatives that require fourth-order regularizations. Therein, a second-order time derivative on the phase-field variable appears, which is reformulated as a mixed first-order-in-time system. These derivations are carefully established for all four equations. Finally, the corresponding time-stepping schemes are derived by employing a dG(r) discretization in time

    An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters

    Get PDF
    This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field variational inequality system, with the phase field function and the elastic displacements of the solid material as independent variables. Using a penalization strategy, this variational inequality system is transformed into a variational equality system, which is the formulation we take as the starting point for our algorithmic developments. The proposed scheme involves a partitioning of this model into two subproblems; phase field and mechanics, with added stabilization terms to both subproblems for improved efficiency and robustness. We analyze the convergence of the proposed scheme using a fixed point argument, and find that under a natural condition, the elastic mechanical energy remains bounded, and, if the diffusive zone around crack surfaces is sufficiently thick, monotonic convergence is achieved. Finally, the proposed scheme is validated numerically with several bench-mark problems.publishedVersio

    An Optimal Control Problem Governed by a Regularized Phase-Field Fracture Propagation Model

    No full text
    Abstract. This paper is concerned with an optimal control problem governed by a fracture model using a phase-field technique. To avoid the non-differentiability due to the irreversibility constraint on the fracture growth, the phase-field fracture model is relaxed using a penalization approach. Existence of a solution to the penalized fracture model is shown and existence of at least one solution for the regularized optimal control problem is established. Moreover, the linearized fracture model is considered and used to establish first order necessary conditions as well as to discuss QP-approximations to the nonlinear optimization problem. A numerical example suggests that these can be used to obtain a fast convergent algorithm. 1
    corecore