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Abstract
In this work, space-time formulations andGalerkin discretizations for phase-field frac-
ture optimal control problems are considered. The fracture irreversibility constraint
is formulated on the time-continuous level and is regularized by means of penal-
ization. The optimization scheme is formulated in terms of the reduced approach
and then solved with a Newton method. To this end, the state, adjoint, tangent, and
adjoint Hessian equations are derived. The key focus is on the design of appropri-
ate function spaces and the rigorous justification of all Fréchet derivatives that require
fourth-order regularizations. Therein, a second-order time derivative on the phase-field
variable appears, which is reformulated as a mixed first-order-in-time system. These
derivations are carefully established for all four equations. Finally, the corresponding
time-stepping schemes are derived by employing a dG(r ) discretization in time.
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1 Introduction

Fracture propagation using variational approaches and phase-field methods is cur-
rently an important topic in applied mathematics and engineering. The approach was
established in [6, 12] and overview articles and monographs include [7, 8, 11, 31,
32] with numerous further references cited therein. While the major amount of work
concentrates on forward modeling of phase-field fracture, more recently some work
started on parameter identification employing Bayesian inversion [18, 28, 29, 33],
topology optimization with shape derivatives obtained with the adjoint method [10],
stochastic phase-field modeling [14], and optimal control [15–17, 25–27]. Due to
the irreversibility constraint on the fracture growth, optimization problems subject to
such an evolution become mathematical programs with complementarity constraints
(MPCC) [4, 21, 22] so that standard constraint qualifications like [30, 34] cannot hold.
In [17, 25–27] the complementarity constraint was replaced with a suitable penalty
term.

Specifically, based on [26, 27], a computational space-time framework for phase-
field fracture optimal control problems was designed in [17], including detailed tests
with six numerical examples. In particular, we employ Galerkin formulations in time
and discuss in detail how the crack irreversibility constraint is formulated using a
penalization [23, 26] and an additional viscous regularization [19, 27]. The optimiza-
tion problem is formulated in terms of the reduced approach by eliminating the state
variable with a control-to-state operator. Therein, Newton’s method requires the eval-
uation of the state, adjoint, tangent, and adjoint Hessian equations. The latter requires
the evaluation of second-order derivatives; see, e.g., [5], for parabolic optimization
problems. Based on these settings, concrete time-stepping schemes are derived. As
usual, the state and tangent equations run forward in time, whereas the adjoint and
adjoint Hessian equations run backward in time.

However, in [17] the directional derivative of the irreversibility constraint was
numerically approximated to obtain an efficient numerical scheme. The rigorous
mathematical treatment is the key objective in the current work. As it will turn out,
the justification of differentiability requires higher-order regularity in corresponding
space-time function spaces. To this end,we start froman energy functional and propose
suitable function spaces for the state and control variables. In addition, higher-order
derivatives of the penalty functional are established. Using these results, the weak
formulation of the state equation is derived. However, due to the crack irreversibility
regularization, a second-order time derivative on the phase-field variable arises, which
was not the case in [17] due to the previously mentioned numerical approximation.
Dealing with this (higher-order) time derivative, we follow a classical approach (see,
e.g., [3]), and formulate a mixed first-order-in-time system, which yields an additional
equation. For that mixed system, the space-time formulation and the resulting time-
stepping scheme are derived. Finally, the weak formulation serves as constraint in
the overall optimal control problem and, using the Lagrangian, the three additional
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equations are derived in a rigorous space-time fashion along with the resulting time-
stepping schemes.

The outline of this paper is as follows: In Sect. 2, we introduce the phase-field
fracture forward model and derive the derivatives of the fracture irreversibility penal-
ization. In Sect. 3, a Galerkin space-time discretization for the mixed system in its
weak form is provided. Next, in Sect. 4, we state the optimization problem, including
the reduced space approach. In the key Sect. 5, the Lagrangian and three auxiliary
equations are derived in full detail. Our work is summarized in Sect. 6.

2 Phase-Field Fracture ForwardModel

To formulate the state equation, we first introduce some basic notation and then pro-
ceed with the energy functional. In addition, we establish higher-order derivatives for
the penalty functional representing the crack irreversibility and we finally obtain a
regularized energy functional.

2.1 Notation

We consider a bounded domain � ⊂ R
2. The boundary is partitioned as ∂� = �D

.∪
�N where both �D and �N have nonzero Hausdorff measure. Next we define Hilbert
spaces V := Vu × Vϕ ⊂ L2(�;R3) with Vu := H1

D(�;R2) for the displacement
field u and Vϕ := H1(�) for the phase-field ϕ, and Q := L2(�N ;R2) for the control
force q, where

H1
D(�;R2) := {v ∈ H1(�;R2) : v|�D = 0}.

Moreover we consider a compact time interval I = [0, T ] and introduce the spaces

X := {u = (u, ϕ) ∈ L2(I , V ) : ϕ̇, ϕ̈ ∈ L2(I , Vϕ)}, W := L2(I , Q),

consequently ϕ ∈ Xϕ := H2(I , Vϕ) and ϕ̇ ∈ X ϕ̇ := H1(I , Vϕ). We denote natural
scalar products and norms with the space as index, such as (·, ·)Xϕ ≡ (·, ·)H2(I ,H1(�)),
L2 scalar products and norms with the domain, such as (·, ·)�N := (·, ·)L2(�N ;U ) or
‖ · ‖I×� := ‖ · ‖L2(I ,L2(�;U )) (omitting the image space U : either some Rd or R2×2),
and L p norms as ‖ · ‖L p(I×�) := ‖ · ‖L p(I ,L p(�)).

2.2 Energy Functional of Quasi-Static Variational Fracture Modeling

In the next stepwe introduce a functional Eγ η
ε : W ×X → R fromwhichwe derive our

forward problem. Here Eγ η
ε (q, u) is defined as the sum of the regularized total energy

of a crack plus penalty and convexification terms for the time dependent irreversibility
constraint ϕ̇ ≤ 0. The regularized total energy of a crack is given by
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Eε(q, u) := 1

2
(g(ϕ)Ce(u), e(u))I×� − (q, u)I×�N + Gc�ε(ϕ), (1)

where q denotes a force that is applied in orthogonal direction to �N ⊂ ∂�, C ∈
R
2×2×2×2 is the elasticity tensor and e(u) the symmetric gradient. Then, we have

under certain assumptions

Ce(u) = σ(u) = 2μe(u) + λ tr(e(u))I ,

where μ > 0, λ > −2/3μ are the Lamé parameters and I ∈ R
2×2 is the identity

matrix. The so-called degradation function g(ϕ) := (1−κ)ϕ2+κ > 0 helps to extend
the displacements to the entire domain �. Due to the bulk regularization parameter
κ > 0, the first term in Eε(q, u) is bounded away from zero even for ϕ = 0. The
term Gc�ε(ϕ) := 1

2ε‖1−ϕ‖2I×� + ε
2‖∇ϕ‖2I×� is a regularized form of the Hausdorff

measure [2]. Herein Gc > 0 denotes the critical energy release rate: for larger Gc more
energy is required to form a new fracture. The phase-field regularization parameter ε

represents the width of the transition zone 0 ≤ ϕ ≤ 1, i.e., of the zone between fully
broken material (ϕ = 0) and fully intact material (ϕ = 1). So far the problem consists
in finding a function u ∈ X that minimizes the regularized total energy (1) subject to
the irreversibility constraint ϕ̇(t, x) ≤ 0 a.e. in I × �.

2.3 Crack Irreversibility Penalization and its Differentiability

In the sequel, the constraint ϕ̇(t, x) ≤ 0 is being replaced by a penalty term, which is
defined as

R(ϕ) := 1

4
‖max{ϕ̇, 0}‖4L4(I×�)

= 1

4

∫
I

∫
�

max{ϕ̇(t, x), 0}4 dx dt .

To ensure Fréchet differentiability in Xϕ up to third order, which will be necessary for
the adjoint Hessian equation, we work with max{ϕ̇, 0}4, although max{ϕ̇, 0}3+ρ for
some ρ > 0 might suffice. Observe that ‖ f ‖4

L4(I×�)
exists for every f ∈ X ϕ̇ : from

f (t) ∈ Vϕ it follows that f (t) ∈ Lq(�) for any q ∈ [1,∞) due to the continuous
embedding Vϕ ↪→ Lq(�), and from f ∈ X ϕ̇ we similarly have f ∈ C(I , Vϕ). In
summary, any f ∈ X ϕ̇ is also in L4(I , L4(�)). We notice that this part differs from
the other penalizations used in [26] and [17]. In addition, we notice other theoretical
and numerical work on penalizations for phase-field fracture in [13, 24]. Later we will
minimize (1) by solving the corresponding necessary optimality conditions of first
order. In order to compute the Fréchet derivatives of R, we first prove an estimate for
the L2 norm of a product and then we use the directional derivative of the maximum
operator h( f ) := max{ f , 0} in direction g:

(Dgh( f ))(x) =

⎧⎪⎨
⎪⎩

g(x), f (x) > 0,

max{g(x), 0}, f (x) = 0,

0, f (x) < 0.

(2)
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Differentiating R(ϕ) for given directions ψi leads to L2 norms of products of time
derivatives ψ̇i . In order to prove Fréchet differentiability of R we have to bound these
L2 norms in a proper way. The following proposition gives the required estimate with
respect to the Xϕ norm.

Proposition 2.1 Given ψ1, . . . , ψm ∈ Xϕ , m ∈ N, there exists C > 0 such that

‖ψ̇1 · · · ψ̇m‖I×� ≤ C
m∏

i=1

‖ψi‖Xϕ .

Proof For m = 1, ‖ψ̇‖I×� ≤ ‖ψ‖Xϕ holds by definition of the norms:

‖ψ̇‖2I×� =
∫

I

∫
�

|ψ̇ |2 dx dt ≤
∫

I

2∑
k=0

∫
�

(|∂k
t ψ |2 + 〈∇∂k

t ψ,∇∂k
t ψ〉) dx dt

=
∫

I

2∑
k=0

‖∂k
t ψ‖2Vϕ

dt = ‖ψ‖2Xϕ
.

For m > 1, set q := 2m and employ Hölder’s inequality (‖ f1 · · · fm‖Lr ≤ ∏
i‖ fi‖Lqi

for r , qi ∈ (1,∞) with 1/r = 1/q1 + · · · + 1/qm ; here r = 2, qi = q) together with
the continuous embedding Vϕ = H1(�) ↪→ Lq(�) (which holds in dimension 2 with
‖ f ‖Lq (�) ≤ c1‖ f ‖Vϕ , c1 > 0) to obtain

‖ψ̇1 · · · ψ̇m‖2I×� =
∫

I
‖ψ̇1 · · · ψ̇m‖2L2(�)

dt ≤
∫

I

m∏
i=1

‖ψ̇i‖2Lq (�) dt

≤
∫

I

m∏
i=1

c21‖ψ̇i‖2Vϕ
dt = c2m

1

∥∥∥
m∏

i=1

‖ψ̇i‖Vϕ

∥∥∥2
L2(I )

.

The last norm is finite: ‖ψ̇i‖Vϕ ∈ H1(I ) holds by definition since ψ̇i ∈ H1(I , Vϕ),
and the continuous embeddings H1(I ) ↪→ C(I ) ↪→ L∞(I ) ↪→ Lq(I ) for q ∈ [1,∞)

provide
∏

i‖ψ̇i‖Vϕ ∈ L∞(I ) ⊂ L2(I ). Now we apply Hölder’s inequality (again with
q = 2m) to the outer norm and bound the resulting Lq(I ) norms with the L∞(I ) norm
where ‖ f ‖Lq (I ) ≤ c2‖ f ‖L∞(I ):

∥∥∥
m∏

i=1

‖ψ̇i‖Vϕ

∥∥∥
L2(I )

≤
m∏

i=1

∥∥‖ψ̇i‖Vϕ

∥∥
Lq (I ) ≤ cm

2

m∏
i=1

∥∥‖ψ̇i‖Vϕ

∥∥
L∞(I ) .

Finally, we apply again the embedding H1(I ) ↪→ L∞(I ) (with ‖ f ‖L∞(I ) ≤
c3‖ f ‖H1(I )),

∥∥‖ψ̇i‖Vϕ

∥∥
L∞(I ) ≤ c3

∥∥‖ψ̇i‖Vϕ

∥∥
H1(I ) ≤ c3

∥∥‖ψi‖Vϕ

∥∥
H2(I ) = c3‖ψi‖Xϕ ,

which gives the desired result with C := cm
1 cm

2 cm
3 . �
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Proposition 2.2 The penalty functional R is three times Fréchet differentiable in Xϕ .
For directions ψ1, ψ2, ψ3 ∈ Xϕ the derivatives are given by

R′(ϕ)(ψ1) = (max{ϕ̇, 0}3, ψ̇1)I×�,

R′′(ϕ)(ψ1, ψ2) = 3(max{ϕ̇, 0}2, ψ̇1ψ̇2)I×�,

R′′′(ϕ)(ψ1, ψ2, ψ3) = 6(max{ϕ̇, 0}, ψ̇1ψ̇2ψ̇3)I×�.

Proof We have to show that the �-linear functionals R(�)(ϕ) are bounded with respect
to the Xϕ norm and that the resulting remainder terms of the Taylor expansion satisfy
r�(ψ) ∈ o(‖ψ‖�

Xϕ
), where

r1(ψ) := R(ϕ + ψ) − R(ϕ) − R′(ϕ)(ψ),

r2(ψ) := r1(ψ) − 1

2
R′′(ϕ)(ψ,ψ),

r3(ψ) := r2(ψ) − 1

6
R′′′(ϕ)(ψ,ψ,ψ).

After deriving the given expressions for the functionals and showing their bounded-
ness, we will actually prove the stronger estimates r�(ψ) ∈ O(‖ψ‖�+1

Xϕ
) using integral

representations of r�(ψ).
Substituting the directional derivative (2) gives the first derivative

R′(ϕ)(ψ) =
∫

I

∫
�

max{ϕ̇(t, x), 0}3
⎧⎨
⎩
ψ̇(t, x), ϕ̇(t, x) > 0
max{ψ̇(t, x), 0}, ϕ̇(t, x) = 0
0, ϕ̇(t, x) < 0

⎫⎬
⎭ dx dt

=
∫

I

∫
�

{
ϕ̇3ψ̇, ϕ̇ > 0
0, ϕ̇ ≤ 0

}
dx dt = (max{ϕ̇, 0}3, ψ̇)I×�.

This is clearly a linear functional on Xϕ , which is bounded by Proposition 2.1:

(max{ϕ̇, 0}3, ψ̇)I×� ≤ ‖max{ϕ̇, 0}3‖I×�‖ψ̇‖I×� ≤ ‖ϕ̇3‖I×�‖ψ‖Xϕ .

The second and third derivatives R′′(ϕ) and R′′′(ϕ) are derived in a similar manner.
Again by Proposition 2.1, these bilinear and trilinear functionals are bounded with

(max{ϕ̇, 0}2, ψ̇1ψ̇2)I×� ≤ C2‖ϕ̇2‖I×� ‖ψ1‖Xϕ‖ψ2‖Xϕ ,

(max{ϕ̇, 0}, ψ̇1ψ̇2ψ̇3)I×� ≤ C3‖ϕ̇‖I×� ‖ψ1‖Xϕ‖ψ2‖Xϕ‖ψ3‖Xϕ .
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It remains to show that r�(ψ) ∈ o(‖ψ‖�
Xϕ

) for � ∈ {1, 2, 3} and any ϕ,ψ ∈ Xϕ ,
where

r�(ψ) = R(ϕ + ψ) −
�∑

k=0

1

k! R(k)(ϕ)(ψ, . . . , ψ︸ ︷︷ ︸
k

)

=
∫ 1

0

(1 − s)�−1

(� − 1)! [R(�)(ϕ + sψ) − R(�)(ϕ)](ψ, . . . , ψ) ds,

see [1, Thm. 5.8]. As already mentioned, we will prove r�(ψ) ∈ O(‖ψ‖�+1
Xϕ

). The
first-order remainder reads

r1(ψ) =
∫ 1

0

∫
I×�

[max{ϕ̇ + sψ̇, 0}3 − max{ϕ̇, 0}3]ψ̇ dx dt ds.

A case distinction for the two maximum functions provides the following pointwise
estimate for the integrand (except on a set of measure zero):

|max{ϕ̇ + sψ̇, 0}3ψ̇ − max{ϕ̇, 0}3ψ̇ |
≤ |max{(ϕ̇ + sψ̇)3ψ̇ − ϕ̇3ψ̇, (ϕ̇ + sψ̇)3ψ̇,−ϕ̇3ψ̇, 0}|
≤ |(ϕ̇ + sψ̇)3ψ̇ − ϕ̇3ψ̇ | + |(ϕ̇ + sψ̇)3ψ̇ | + |ϕ̇3ψ̇ |
≤ 2|ϕ̇|3|ψ̇ | + 6s|ϕ̇|2|ψ̇ |2 + 6s2|ϕ̇||ψ̇ |3 + 2s3|ψ̇ |4
≤ 8

(
s|ϕ̇|2|ψ̇ |2 + s2|ϕ̇||ψ̇ |3 + s3|ψ̇ |4).

The term 8s|ϕ̇|2|ψ̇ |2 on the last line absorbs 2|ϕ̇|3|ψ̇ |+6 s|ϕ̇|2|ψ̇ |2 from the previous
line due to the relation |ϕ̇| ≤ s|ψ̇ |which holds in case 2 (ϕ̇ + sψ̇ > 0 with ϕ̇ ≤ 0) and
in case 3 (ϕ̇ + sψ̇ ≤ 0 with ϕ̇ > 0): these two cases produce 2|ϕ̇|3|ψ̇ | ≤ 2s|ϕ̇|2|ψ̇ |2.
Integrating s, s2, and s3 over [0, 1] now yields factors 1

2 ,
1
3 , and

1
4 , all of them ≤ 1

2 ,
which gives the claim using Proposition 2.1:

|r1(ψ)| ≤ 4
∫

I×�

(|ϕ̇|2|ψ̇ |2 + |ϕ̇||ψ̇ |3 + |ψ̇ |4) dx dt

≤ 4 ‖ψ̇2‖I×� ‖(|ϕ̇|2 + |ϕ̇||ψ̇ | + |ψ̇ |2)‖I×� ∈ O(‖ψ‖2Xϕ
).

The second-order remainder reads

r2(ψ) = 3
∫ 1

0

∫
I×�

(1 − s)[max{ϕ̇ + sψ̇, 0}2ψ̇2 − max{ϕ̇, 0}2ψ̇2] dx dt ds.
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We start again with a case distinction (where |ϕ̇|2|ψ̇ |2 ≤ s|ϕ̇||ψ̇ |3 in cases 2 and 3) to
obtain the pointwise estimate

|max{ϕ̇ + sψ̇, 0}2ψ̇2 − max{ϕ̇, 0}2ψ̇2|
≤ |max{(ϕ̇ + sψ̇)2ψ̇2 − ϕ̇2ψ̇2, (ϕ̇ + sψ̇)2ψ̇2,−ϕ̇2ψ̇2, 0}|
≤ |(ϕ̇ + sψ̇)2ψ̇2 − ϕ̇2ψ̇2| + |(ϕ̇ + sψ̇)2ψ̇2| + |ϕ̇2ψ̇2|
= |2sϕ̇ψ̇3 + s2ψ̇4| + |ϕ̇2ψ̇2 + 2sϕ̇ψ̇3 + s2ψ̇4| + |ϕ̇2ψ̇2|
≤ 6(s|ϕ̇||ψ̇ |3 + s2|ψ̇ |4).

Integrating (1 − s)sk over [0, 1] for k ∈ {1, 2} yields factors 1
6 and 1

12 , and hence

|r2(ψ)| ≤ 3
∫

I×�

(|ϕ̇||ψ̇ |3 + |ψ̇ |4) dx dt ∈ O(‖ψ‖3Xϕ
).

Finally, the third-order remainder reads

r3(ψ) = 6
∫ 1

0

∫
I×�

(1 − s)2

2
[max{ϕ̇ + sψ̇, 0}ψ̇3 − max{ϕ̇, 0}ψ̇3] dx dt ds.

Once again we derive a pointwise estimate for the integrand,

|max{ϕ̇ + sψ̇, 0}ψ̇3 − max{ϕ̇, 0}ψ̇3|
≤ |max{(ϕ̇ + sψ̇)ψ̇3 − ϕ̇ψ̇3, (ϕ̇ + sψ̇)ψ̇3,−ϕ̇ψ̇3, 0}|
≤ |(ϕ̇ + sψ̇)ψ̇3 − ϕ̇ψ̇3| + |(ϕ̇ + sψ̇)ψ̇3| + |ϕ̇ψ̇3|
= |sψ̇4| + |ϕ̇ψ̇3 + sψ̇4| + |ϕ̇ψ̇3|
≤ 2|ϕ̇||ψ̇ |3 + 2s|ψ̇ |4 ≤ 4s|ψ̇ |4.

Integrating (1 − s)2s over [0, 1] yields the factor 1
12 and hence

|r3(ψ)| ≤
∫

I×�

|ψ̇ |4 dx dt ∈ O(‖ψ‖4Xϕ
).

�

2.4 Convexification

One final modification of Eε is needed: we add the convexification term
η
2‖ϕ̇‖2I×� for

some η > 0. Indeed, in [27], the term η(ϕi − ϕi−1, ψ) in the time steps ti−1, ti was
considered for η > 0, where ϕi − ϕi−1 is the finite difference approximation of ϕ̇

and ψ is the test function. This term corresponds to a potential viscous regularization
of a rate-independent damage model [19]. We note that we extend this here to the
continuous time case.
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2.5 Regularized Energy Functional

Finally, the forward problem consists in finding u ∈ X that solves the following
optimization problem for given initial data ϕ0, ϕ̇0 ∈ Vϕ and given control q ∈ W :

min
u

Eγ η
ε (q, u) := Eε(q, u) + γ R(ϕ) + η

2
‖ϕ̇‖2I×�, (3)

with penalty parameter γ > 0 and convexification parameter η > 0. We notice that
having fourth powers in R(ϕ) will yield third-order terms in time in the first-order
necessary conditions on the PDE level. Conceptionally, the procedure is then similar
to the elastic wave equation, see e.g., [3], and we borrow ideas for our formulations
that will follow in the remainder of this paper. We notice that it holds 0 ≤ ϕ ≤ 1
(without imposing those bounds explicitly), by arguments from [27, Section 2].

Remark 2.1 (Convexification) We notice that strict positivity η > 0 improves the
numerical solution process of (4). For the quasi-static case of a related formulation
with a fourth-order regularization and time-discrete convexification, it was proved in
[27] that for sufficiently large values of η the control-to-state mapping associated with
(3) is single valued due to strict convexity of the energy corresponding to the equation.
However, the convexification term η

2‖ϕ̇‖2I×� also penalizes crack growth. To ensure
the dominance of the physically motivated term γ R(ϕ), a careful weighting of γ and
η is required with γ � η. As it is often the case in numerics, the weighting is chosen
heuristically or by experience since no rigorous numerical analysis exists. It is indeed a
drawback of the (simple) penalization approach that several regularization parameters
interact with material parameters and discretization parameters.

3 Space-TimeWeak Formulation and Discretization

In this section, a weak formulation is first derived. Due to the second-order time
derivative in the phase-field variable, we formulate an equivalent mixed first-order-
in-time system, which differs from our prior work [17]. These ideas are based on
[3]. Afterwards, our emphasis is on the Galerkin in time finite element discretization
for this mixed system. Finally, we briefly account for the spatial discretization by
employing finite elements, too.

3.1 Weak Formulation

Before we continue with the spatial discretization and the concrete time-stepping
scheme, we state the weak form of (3). To this end, we replace (3) by its first-order
optimality conditions ∂uEγ η

ε (q, u) = 0, see e.g., [26], yielding a coupled nonlinear
PDE system: given ϕ0, ϕ̇0 ∈ Vϕ and q ∈ W , find u ∈ X such that every test function
� = (�u,�ϕ) ∈ X satisfies
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(g(ϕ)Ce(u), e(�u))I×� − (q,�u)I×�N = 0,

Gcε(∇ϕ,∇�ϕ)I×� − Gc

ε
(1 − ϕ,�ϕ)I×� + (1 − κ)(ϕCe(u) : e(u),�ϕ)I×�

+ γ (max{ϕ̇, 0}3, �̇ϕ)I×� + η(ϕ̇, �̇ϕ)I×� = 0. (4)

In order to derive the state equation from (4), we first combine the two equations into
a single equation,

(g(ϕ)Ce(u), e(�u))I×� − (q,�u)I×�N + Gcε(∇ϕ,∇�ϕ)I×�

−Gc

ε
(1 − ϕ,�ϕ)I×� + (1 − κ)(ϕCe(u) : e(u),�ϕ)I×�

+γ (max{ϕ̇, 0}3, �̇ϕ)I×� + η(ϕ̇, �̇ϕ)I×� = 0 ∀� ∈ X . (5)

To simplify the notation, let us collect the energy-related terms of (5) as follows.

Definition 3.1 The spatial semi-linear form a : Q × V × V → R is defined as

a(q, u)(�) := (g(ϕ)Ce(u), e(�u))� + Gcε(∇ϕ,∇�ϕ)� − Gc

ε
(1 − ϕ,�ϕ)�

+(1 − κ)(ϕCe(u) : e(u),�ϕ)� − (q,�u)�N . (6)

For every subinterval J ⊆ I , a corresponding semi-linear form a J : W × X × X → R

is defined as time integral over J ,

a J (q, u)(�) :=
∫

J
a(q(t), u(t))(�(t)) dt .

Next, we have to perform integration by parts in order to move the time derivatives in
(5) from the test functions to the phase-field ϕ:

(ϕ̇, �̇ϕ)I×� =
∫

I

∫
�

ϕ̇�̇ϕ dx dt = −
∫

I

∫
�

ϕ̈�ϕ dx dt +
∫

�

[
ϕ̇�ϕ

]t=T
t=0 dx

= −(ϕ̈,�ϕ)I×� + (ϕ̇(T ),�ϕ(T ))� − (ϕ̇(0),�ϕ(0))�

and similarly

(max{ϕ̇, 0}3, �̇ϕ)I×� = −(∂t max{ϕ̇, 0}3,�ϕ)I×� + (max{ϕ̇(T ), 0}3,�ϕ(T ))�

− (max{ϕ̇(0), 0}3,�ϕ(0))�.

Thus (5) becomes

aI (q, u)(�) − γ (∂t max{ϕ̇, 0}3,�ϕ)I×� − η(ϕ̈,�ϕ)I×�

+ γ (max{ϕ̇(T ), 0}3,�ϕ(T ))� + η(ϕ̇(T ),�ϕ(T ))�

− γ (max{ϕ̇(0), 0}3,�ϕ(0))� − η(ϕ̇(0),�ϕ(0))� = 0 ∀� ∈ X .

(7)
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Additional focus has to be put on the second-order time derivative of ϕ. Following the
approach of [3, Sect. 3.1], we introduce an additional variable ϕ′ ∈ X ϕ̇ that represents
the first-order time derivative of the phase-field,

ϕ′(t, x) := ϕ̇(t, x). (8)

By this we replace every time derivative of ϕ in (7) with the new variable ϕ′ and attach
the weak form of (8) as an additional equation. Consequently, (7) is replaced by a
first-order mixed system in weak form: Given ϕ0, ϕ̇0 ∈ Vϕ and q ∈ W , find u ∈ X
and ϕ′ ∈ X ϕ̇ such that the following equations hold for all � = (�u,�ϕ) ∈ X and
ψ ∈ Xϕ :

(ϕ̇ − ϕ′, ψ)I×� + (ϕ(0) − ϕ0, ψ(0))� = 0,

−γ (∂t max{ϕ′, 0}3,�ϕ)I×� − η(ϕ̇′,�ϕ)I×� + aI (q, u)(�)

+(ϕ′(0) − ϕ̇0,�ϕ(0))I×�

+γ (max{ϕ′(T ), 0}3,�ϕ(T ))� + η(ϕ′(T ),�ϕ(T ))�

−γ (max{ϕ′(0), 0}3,�ϕ(0))� − η(ϕ′(0),�ϕ(0))� = 0. (9)

Remark 3.2 In contrast to [3, Eq. (3.16)], the starting point for our investigations is
given by a weak PDE and not a strong formulation. Consequently, we define the mixed
system and already include the initial values as in [3, Eq. (3.17)]. The initial conditions
for ϕ are specified in the first equation of (9) and the initial conditions for ϕ′ = ϕ̇ in
the second equation.

3.2 Galerkin Time Discretization

Using a time grid 0 = t0 < · · · < tM = T , we first partition the interval I into M
left-open subintervals Im = (tm−1, tm],

I = {0} ∪ I1 ∪ · · · ∪ IM .

By using the discontinuous Galerkin method, here dG(r ), we seek for a solution u
in the space Xr

k of piecewise polynomials of degree r . The subindex k denotes the
time-discretized function space in order to distinguish it from the continuous space X .
To this end, we have

Xr
k := {v ∈ X : vϕ(0) ∈ Vϕ and v|Im ∈ Pr (Im, V ), m = 1, . . . , M}.

To work with the discontinuities in Xr
k , we introduce the standard notation

v+
m := v(tm+), v−

m := v(tm−) = v(tm), [v]m := v+
m − v−

m .

We keep following the approach of [3] with special focus on [3, Eq. (3.27)–(3.30)].
Notice that in (9) we work with two terms involving time derivatives, and one of them
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even involves a maximum. Moreover, all time derivatives are only applied to ϕ and
not to the full variable u as in [3]. Since ϕ′ is in Y := X ϕ̇ , we define the corresponding
discretized space as

Y r
k := {v ∈ X ϕ̇ : v(0) ∈ Vϕ and v|Im ∈ Pr (Im, Vϕ), m = 1, . . . , M}.

Consequently, the semi-discretized state equation consists in finding u ∈ Xr
k and

ϕ′ ∈ Y r
k for a given control q such that for every � ∈ Xr

k and ψ ∈ Y r
k it holds

M∑
m=1

(ϕ̇, ψ)Im×� +
M−1∑
m=0

([ϕ]m, ψ+
m )� −

M∑
m=1

(ϕ′, ψ)Im×� (10a)

+ (ϕ(0) − ϕ0, ψ(0))� = 0, (10b)

−
M∑

m=1

η(ϕ̇′,�ϕ)Im×� −
M∑

m=1

γ (∂t max{ϕ′, 0}3,�ϕ)Im×� (10c)

−
M−1∑
m=0

([ηϕ′]m + [γ max{ϕ′, 0}3]m,�+
ϕ,m)� (10d)

+ aI (q, u)(�) (10e)

+ (ϕ′(0) − ϕ̇0,�ϕ(0))� (10f)

+ γ (max{ϕ′(T ), 0}3,�ϕ(T ))� + η(ϕ′(T ),�ϕ(T ))� (10g)

− γ (max{ϕ′(0), 0}3,�ϕ(0))� − η(ϕ′(0),�ϕ(0))� = 0. (10h)

Here the first line (10a) represents the dG(r ) discretization of the term

(ϕ̇, ψ)I×� − (ϕ′, ψ)I×�

while (10c) and (10d) result from the dG(r ) discretization of

−γ (∂t max{ϕ′, 0}3,�ϕ)I×� − η(ϕ̇′,�ϕ)I×�.

In (10b) and (10f) we have the respective initial conditions for ϕ and ϕ′, and in (10e)
the physical terms (energy). The last two lines (10g) and (10h) contain the temporal
boundary terms due to the integration by parts that we did before.

Remark 3.3 In (10) the sums of jump terms start with m = 0, whereas in [3] they start
with m = 1. The reason is that our later derivations follow [5] where the sums also
start with m = 0. Both formulations are in fact equivalent, which follows from [20,
Remark 3.2].

By shifting the index of the jump terms by one, all summations range from m = 1
to m = M and can therefore be combined into a single sum for each equation. This
yields our final form of the full state equation.

123



1234 Journal of Optimization Theory and Applications (2023) 199:1222–1248

Proposition 3.1 The state equation in dG(r) form reads: Find u ∈ Xr
k and ϕ′ ∈ Y r

k
for a given control q such that for every � ∈ Xr

k and ψ ∈ Y r
k it holds

M∑
m=1

[
(ϕ̇, ψ)Im×� + ([ϕ]m−1, ψ

+
m−1)� − (ϕ′, ψ)Im×�

]

+ (ϕ(0) − ϕ0, ψ(0))� = 0,
M∑

m=1

[
−η(ϕ̇′,�ϕ)Im×� − γ (∂t max{ϕ′, 0}3,�ϕ)Im×�

− ([ηϕ′]m−1 + [γ max{ϕ′, 0}3]m−1,�
+
ϕ,m−1)� + aIm (q, u)(�)

]

+ (ϕ′(0) − ϕ̇0,�ϕ(0))�

+ γ (max{ϕ′(T ), 0}3,�ϕ(T ))� + η(ϕ′(T ),�ϕ(T ))�

− γ (max{ϕ′(0), 0}3,�ϕ(0))� − η(ϕ′(0),�ϕ(0))� = 0.

(11)

The discontinuous in time trial and test functions (�, ψ) ∈ Xr
k ×Y r

k allow for sequen-
tial decoupling from which we obtain the time-stepping scheme.

Proposition 3.2 The time-stepping for the state equation (10) starts with solving the
initial conditions at m = 0:

(ϕ(0) − ϕ0, ψ(0))� = 0,

(ϕ′(0) − ϕ̇0,�ϕ(0))� − γ (max{ϕ′(0), 0}3,�ϕ(0))� − η(ϕ′(0),�ϕ(0))� = 0.

(12)

Then the equations for m = 1, . . . , M − 1 need to be solved in a forward recursion:

(ϕ̇, ψ)Im×� + ([ϕ]m−1, ψ
+
m−1)� − (ϕ′, ψ)Im×� = 0,

− η(ϕ̇′,�ϕ)Im×� − γ (∂t max{ϕ′, 0}3,�ϕ)Im×�

− ([ηϕ′]m−1 + [γ max{ϕ′, 0}3]m−1,�
+
ϕ,m−1)� + aIm (q, u)(�) = 0.

(13)

Finally, we have to solve the terminal conditions at m = M:

(ϕ̇, ψ)IM ×� + ([ϕ]M−1, ψ
+
M−1)� − (ϕ′, ψ)IM ×� = 0,

− η(ϕ̇′,�ϕ)IM ×� − γ (∂t max{ϕ′, 0}3,�ϕ)IM ×�

− ([ηϕ′]M−1 + [γ max{ϕ′, 0}3]M−1,�
+
ϕ,M−1)� + aIM (q, u)(�)

+ γ (max{ϕ′(T ), 0}3,�ϕ(T ))� + η(ϕ′(T ),�ϕ(T ))� = 0.

(14)

3.3 Spatial Discretization

For the spatial discretization, we employ again a Galerkin finite element scheme by
introducing H1 conforming discrete spaces. We consider two-dimensional shape-
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regular meshes with quadrilateral elements K forming the mesh Th = {K }; see [9].
The spatial discretization parameter is the diameter hK of the element K . On the mesh
Th we construct a finite element space Vh := Vuh × Vϕh as usual:

Vuh := {v ∈ Vu : v|K ∈ Qs(K ) for K ∈ Th},
Vϕh := {v ∈ Vϕ : v|K ∈ Qs(K ) for K ∈ Th}.

Herein Qs(K ) consists of shape functions that are obtained as bilinear transformations
of functions defined on the master element K̂ = (0, 1)2, where Q̂s(K̂ ) is the space of
tensor product polynomials up to degree s in dimension d, defined as

Q̂s(K̂ ) := span

{
d∏

i=1

x̂αi
i : αi ∈ {0, 1 . . . , s}

}
.

Specifically, for s = 1 and d = 2 we have

Q̂1(K̂ ) = span{1, x̂1, x̂2, x̂1 x̂2}.

Similar to the state variables, the control variables need to be discretized in time and
space. The polynomial degrees of the discrete spaces may differ, and for the control
we denote them by r ′ and s′. To this end, we employ a dG(r ′) discretization in time
and a cG(s′) discretization in space. The semi-discrete control space is denoted by Wk

and the fully discrete space is denoted by Wkh .
We notice for the next two sections that the following derivations are independent

of the specific spatial discretization and for this reason the subindex h is omitted.

4 Optimization with Phase-Field Fracture

Weformulate the following nonlinear optimal control problemwith a standard tracking
type cost functional. For given ϕ0, ϕ̇0 ∈ Vϕ we seek a solution (q, u, ϕ′) ∈ Wk × Xr

k ×
Y r

k of

min
q,u,ϕ′ J (q, u) ≡

M∑
m=1

Jm(q, u) :=
M∑

m=1

[
1

2
‖ϕ − ϕd‖2Im×� + α

2
‖q − qd‖2Im×�N

]

s.t. (q, u, ϕ′) solves (12), (13), and (14),

(15)

where ϕd ∈ Vϕ is some desired time-independent phase-field and qd ∈ W is a suit-
able nominal control that can be used for numerical stabilization. The second norm
represents a common Tikhonov regularization with the Tikhonov parameter α > 0.

Remark 4.1 We notice that the existence of a global solution in W × X has been proved
for a related problem in [26, Thm. 4.3]. That problem differs from (15) in that it is
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posed in the primal form with a tracking type functional for the displacements u and
a penalization in discrete time (also of order four).

4.1 Reduced Optimization Problem and Solution Algorithm

We solve (15) by a reduced space approach. To this end, we assume the existence of a
solution operator S : W → X × Y , q �→ (u, ϕ′), via equation (9). With this solution
operator the cost functional J (q, u) reduces to j : W → R, j(q) := J (q, S(q)).
(The component ϕ′ ∈ Y = X ϕ̇ of S(q) is not used in J but will be needed later.) As
a result we can replace (15) by the unconstrained optimization problem

min
q

j(q). (16)

The reduced problem is solved by Newton’s method applied to j ′(q) = 0, and
hence we need computable representations of the derivatives j ′ and j ′′. The estab-
lished approach in [5] expresses the directional derivatives j ′ and j ′′ in terms of the
Lagrangian L(q, u, ϕ′, z, z′

ϕ) ≡ L(q, ū, z̄), whose precise form is defined in (23)
using the notation

ū := (u, ϕ′), z̄ := (z, z′
ϕ), δū := (δu, δϕ′), δz̄ := (δz, δz′

ϕ), �̄ := (�, ψ).

For given δq ∈ W , a state solution ū = S(q), and any z̄, the directional derivative
j ′(q)(δq) reads

j ′(q)(δq) = L′
q(q, ū, z̄)(δq) + L′̄

u(q, ū, z̄)(S′(q)(δq)). (17)

By determining an adjoint solution z̄ from (20), the second term in (17) vanishes. For
two directions δq1, δq2 ∈ W and the solutions ū of (19) and z̄ of (20), the second
derivative of j is expressed in a similar way as

j ′′(q)(δq1, δq2) = L′′
qq (q, ū, z̄)(δq1, δq2) + L′′

qū(q, ū, z̄)(δq1, S′(q)(δq1))

+ L′
qz̄(q, ū, z̄)(δq1, T ′(q)(δq2)) + L′′̄

uq (q, ū, z̄)(S′(q)(δq1), δq2)

+ L′′̄
uū(q, ū, z̄)(S′(q)(δq1), S′(q)(δq2)) + L′′̄

uz̄(q, ū, z̄)(S′(q)(δq1), T ′(q)(δq2))

+ L′′̄
zq (q, ū, z̄)(T ′(q)(δq1), δq2) + L′′̄

zū(q, ū, z̄)(T ′(q)(δq1), S′(q)(δq2)).

(18)

Herein T : Q → X × Y denotes the solution operator of the adjoint equation (20).
Below, computing a tangent solution from (21) and an adjoint Hessian solution from
(22) eliminates most of the terms from (22) and leads to a short representation of j ′′.
In summary, the following four equations have to be solved:

1. State equation: given q ∈ W , find ū ∈ X ×Y such that (4) holds for all �̄ ∈ X ×Y :

L′̄
z(q, ū, z̄)(�̄) = 0. (19)
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2. Adjoint equation: given q ∈ W and ū = S(q) from (19), find z̄ ∈ X × Y such that
for all �̄ ∈ X × Y

L′̄
u(q, ū, z̄)(�̄) = 0. (20)

3. Tangent equation: given q ∈ W , ū = S(q), and a direction δq ∈ W , find δū ∈
X × Y such that for all �̄ ∈ X × Y

L′′
qz̄(q, ū, z̄)(δq, �̄) + L′′̄

uz̄(q, ū, z̄)(δū, �̄) = 0. (21)

4. Adjoint Hessian equation: given q ∈ W , ū = S(q), z̄ ∈ X × Y from (20),
δū ∈ X × Y from (21), and a direction δq ∈ W , find δz̄ ∈ X × Y such that for all
�̄ ∈ X × Y

L′′
qū(q, ū, z̄)(δq, �̄) + L′′̄

uū(q, ū, z̄)(δū, �̄) + L′′̄
zū(q, ū, z̄)(δz̄, �̄) = 0. (22)

Solving these equations in a specific order (see for instance [5, 20]) leads to the
following representations of the derivatives that we need for Newton’s method:

j ′(q)(δq) = L′
q(q, ū, z̄)(δq) ∀δq ∈ W ,

j ′′(q)(δq1, δq2) = L′′
qq(q, ū, z̄)(δq1, δq2) + L′′̄

uq(q, ū, z̄)(δū, δq2) +
L′′̄

zq(q, ū, z̄)(δz̄, δq2) ∀δq1, δq2 ∈ W .

5 Lagrangian and Auxiliary Equations

In the following main section, we specify the previously given abstract formulations
in detail. We first derive the Lagrangian and then the three auxiliary equations (20)–
(22). Specific emphasis is on the regularization terms for the crack irreversibility and
the convexification. The Lagrangian is defined based on the dG(r ) formulation, and
this Galerkin discretization yields naturally the adjoint, tangent and adjoint Hessian.
Furthermore, this approach exhibits the property that optimization and discretization
interchange.

5.1 Lagrangian

The Lagrangian L : W × (X × Y )× (X × Y ) → R corresponding to (9) is defined as

L(q, ū, z̄) := J (q, u) − (ϕ̇, z′
ϕ)I×� + (ϕ′, z′

ϕ)I×� − (ϕ(0) − ϕ0, z′
ϕ(0))�

+ γ (∂t max{ϕ′, 0}3, zϕ)I×� + η(ϕ̇′, zϕ)I×�

− (ϕ′(0) − ϕ̇0, zϕ(0))� − aI (q, u)(z)

− γ (max{ϕ′(T ), 0}3, zϕ(T ))� − η(ϕ′(T ), zϕ(T ))�

+ γ (max{ϕ′(0), 0}3, zϕ(0))� + η(ϕ′(0), zϕ(0))�.

(23)
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The discrete time Lagrangian Lr
k : Wk × (Xr

k × Y r
k )× (Xr

k × Y r
k ) → R corresponding

to (10) is defined directly in the dG(r ) form as

Lr
k(q, ū, z̄) := J (q, u)

−
M∑

m=1

[
(ϕ̇, z′

ϕ)Im×� + ([ϕ]m−1, z′+
ϕ,m−1)� − (ϕ′, z′

ϕ)Im×�

]

− (ϕ(0) − ϕ0, z′
ϕ(0))�

−
M∑

m=1

[
−η(ϕ̇′, zϕ)Im×� − γ (∂t max{ϕ′, 0}3, zϕ)Im×� −

([ηϕ′]m−1 + [γ max{ϕ′, 0}3]m−1, z+
ϕ,m−1)� + aIm (q, u)(z)

]

− (ϕ′(0) − ϕ̇0, zϕ(0))�

− γ (max{ϕ′(T ), 0}3, zϕ(T ))� − η(ϕ′(T ), zϕ(T ))�

+ γ (max{ϕ′(0), 0}3, zϕ(0))� + η(ϕ′(0), zϕ(0))�.

(24)

5.2 Adjoint Equation

In this section we derive a time-stepping scheme for the adjoint equation (20) from
the discrete time Lagrangian (24). In the adjoint for dG(r ) we seek z̄ = (z, z′

ϕ) =
(zu, zϕ, z′

ϕ) ∈ Xr
k × Y r

k such that

L′̄
u(q, ū, z̄)(�̄) = 0 for all �̄ = (�, ψ) ∈ Xr

k × Y r
k .

When calculating the partial derivative of L with respect to ū, some care has to be
taken with the temporal boundary values from prior integration by parts, i.e., with the
last two lines in (24). We first formulate the adjoint equation in the continuous time
weak form and later in the dG(r ) setting:

0 = J ′
u(q, u)(�) (25a)

+ (ż′
ϕ,�ϕ)I×� + (ψ, z′

ϕ)I×� − (�ϕ(0), z′
ϕ(0))� (25b)

− (�ϕ(T ), z′
ϕ(T ))� + (�ϕ(0), z′

ϕ(0))� (25c)

− 3γ (max{ϕ′, 0}2ψ, żϕ)I×� − η(ψ, żϕ)I×� (25d)

+ 3γ (max{ϕ′(T ), 0}2ψ(T ), zϕ(T ))� + η(ψ(T ), zϕ(T ))� (25e)

− 3γ (max{ϕ′(0), 0}2ψ(0), zϕ(0))� − η(ψ(0), zϕ(0))� (25f)

− (ψ(0), zϕ(0))� (25g)

− a′I
u (q, u)(�, z) (25h)

− 3γ (max{ϕ′(T ), 0}2ψ(T ), zϕ(T ))� − η(ψ(T ), zϕ(T ))� (25i)

+ 3γ (max{ϕ′(0), 0}2ψ(0), zϕ(0))� + η(ψ(0), zϕ(0))�. (25j)
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Here a′I
u denotes the integral of a′

u over I , and the terms (25c), (25e), and (25f) arise
from the integration by parts (i.b.p.) applied to the partial derivatives

−(ϕ̇, z′
ϕ)I×�

deriv.→ −(�̇ϕ, z′
ϕ)I×�

i.b.p.→ (�ϕ, ż′
ϕ)I×� − BT ,

η(ϕ̇′, zϕ)I×�
deriv.→ η(ψ̇ϕ, zϕ)I×�

i.b.p.→ −η(ψ, żϕ)I×� + BT ,

γ (∂t max{ϕ′, 0}3, zϕ)I×�
deriv.→ 3γ (∂t

(
max{ϕ′, 0}2ψ), zϕ)I×�

i.b.p.→ −3γ (max{ϕ′, 0}2ψ, żϕ)I×� + BT ,

where BT denotes the corresponding boundary terms in (25c), (25e), and (25f). Note
that the integration by parts is necessary in these cases because after computing the
partial derivative the time derivative is applied to the direction �ϕ or ψ and not to the
adjoint z̄.

Now we see that the last term in (25b) cancels with the second term in (25c), and
so do the terms in (25e), (25f) with those in (25i), (25j). Consequently we obtain the
adjoint equation in dG(r ) form as

0 = J ′
u(q, u)(�) +

M∑
m=1

(ż′
ϕ,�ϕ)Im×� +

M−1∑
m=0

([z′
ϕ]m,�−

ϕ,m)�

+ (ψ, z′
ϕ)I×� − (�ϕ(T ), z′

ϕ(T ))�

−
M∑

m=1

3γ (max{ϕ′, 0}2ψ, żϕ)Im×�

−
M−1∑
m=0

3γ (max{ϕ′−
m , 0}2ψ−

m , [zϕ]m)�

−
M∑

m=1

η(ψ, żϕ)Im×� −
M−1∑
m=0

η(ψ−
m , [zϕ]m)�

− (ψ(0), zϕ(0))� − a′I
u (q, u)(�, z).

(26)

Herein a′I
u is the time integral of the partial derivative

a′
u(q, u)(�, z) = ([(1 − κ)ϕ2 + κ]Ce(�u), e(zu))� + 2(ϕ(1 − κ)�ϕCe(u), e(zu))�

+ Gcε(∇�ϕ,∇zϕ)� + Gc

ε
(�ϕ, zϕ)�

+ (1 − κ)(�ϕCe(u) : e(u), zϕ)� + 2(ϕ(1 − κ)Ce(�u) : e(u), zϕ)�.

Next we exploit the separability property of the cost functional J to expand the time
integrals (ψ, z′

ϕ)I×� and a′I
ū (q, u)(�̄, z) intom subintegrals. After that we distinguish

between the terms for m = 0, . . . , M − 1 and m = M and combine them. Finally,
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we obtain the desired dG(r ) form of the adjoint equation wherein J ′
u,m denotes the

partial derivative of Jm with respect to u.

Proposition 5.1 The adjoint equation in dG(r) form (where we write tM for T ) reads:
Find z̄ ∈ Xr

k × Y r
k such that every �̄ ∈ Xr

k × Y r
k satisfies

[
J ′
u,M (q, u)(�) + (ż′

ϕ,�ϕ)IM ×� + (ψ, z′
ϕ)IM ×�

− 3γ (max{ϕ′, 0}2ψ, żϕ)IM ×� − η(ψ, żϕ)IM ×�

− (�ϕ(tM ), z′
ϕ(tM ))� − a′IM

u (q, u)(�, z)
]

+
M−1∑
m=1

[
J ′
u,m(q, u)(�) + (ż′

ϕ,�ϕ)Im×� + ([z′
ϕ]m,�−

ϕ,m)� + (ψ, z′
ϕ)Im×�

− 3γ (max{ϕ′, 0}2ψ, żϕ)Im×� − 3γ (max{ϕ′−
m , 0}2ψ−

m , [zϕ]m)�

− η(ψ, żϕ)Im×� − η(ψ−
m , [zϕ]m)� − a′Im

u (q, u)(�, z)
]

+
[
([z′

ϕ]0,�−
ϕ,0)� − 3γ (max{ϕ′−

0 , 0}2ψ−
0 , [zϕ]0)� − η(ψ−

0 , [zϕ]0)�
− (ψ(0), zϕ(0))�

]
.

(27)

This leads immediately to the resulting time-stepping scheme.

Proposition 5.2 The adjoint time-stepping for (27) starts with solving the terminal
conditions at m = M for z(tM ) and z′

ϕ(tM ):

J ′
u,M (q, u)(�) + (ż′

ϕ,�ϕ)IM ×� − (�ϕ(tM ), z′
ϕ(tM ))� − a′IM

u (q, u)(�, z) = 0,

(ψ, z′
ϕ)IM ×� − 3γ (max{ϕ′, 0}2ψ, żϕ)IM ×� − η(ψ, żϕ)IM ×� = 0.

Then the equations for m = M − 1, . . . , 1 need to be solved in a backward recursion:

J ′
u,m(q, u)(�) + (ż′

ϕ,�ϕ)Im×� + ([z′
ϕ]m,�−

ϕ,m)� − a′Im
u (q, u)(�, z) = 0,

(ψ, z′
ϕ)Im×� − 3γ (max{ϕ′, 0}2ψ, żϕ)Im×� − 3γ (max{ϕ′−

m , 0}2ψ−
m , [zϕ]m)�

− η(ψ, żϕ)Im×� − η(ψ−
m , [zϕ]m)� = 0.

Finally, we have to solve the initial conditions at m = 0:

([z′
ϕ]0,�−

ϕ,0)� = 0,

− 3γ (max{ϕ′−
0 , 0}2ψ−

0 , [zϕ]0)� − η(ψ−
0 , [zϕ]0)� − (ψ(0), zϕ(0))� = 0.

123



Journal of Optimization Theory and Applications (2023) 199:1222–1248 1241

5.3 Tangent Equation

The second auxiliary equation is the tangent equation. In this equation we seek δū =
(δu, δϕ′) ∈ Xr

k × Y r
k such that

L′′
qz̄(q, ū, z̄)(δq, �̄) + L′′̄

uz̄(q, ū, z̄)(δū, �̄) = 0 ∀�̄ ∈ Xr
k × Y r

k .

Here we will apply the same procedure as for the state equation. Recall thatL(q, ū, z̄)
contains the integral aI (q, u)(z) with z entering linearly. Hence the partial derivative
required for L′′̄

uz̄(q, ū, z̄)(δū, �̄) is simply a′I
u (q, u)(δu,�), and the partial derivative

required for L′′
qz̄(q, ū, z̄)(δq, �̄) is derived from (6) as the integral a′I

q (q, u)(δq,�):

a′
q(q, u)(δq,�) = (δq,�u)�N ,

a′I
q (q, u)(δq,�) = (δq,�u)I×�N .

(28)

Furthermore, J (q, u) does not depend on z or z′
ϕ , hence J ′′

qz̄ and J ′′
ū z̄ vanish. In

contrast to the adjoint we formulate the tangent equation directly including the dG(r )
jump terms:

0 =
M∑

m=1

[
−a′Im

q (q, u)(δq,�) − a′Im
ū (q, u)(δu,�)

]

−
M∑

m=1

(δϕ̇, ψ)Im×� −
M−1∑
m=0

([δϕ]m, ψ−
m )� +

M∑
m=1

(δϕ′, ψ)Im×� − (δϕ(0), ψ(0))�

+
M∑

m=1

3γ (∂t (max{ϕ′, 0}2δϕ′),�ϕ)Im×� +
M−1∑
m=0

3γ ([max{ϕ′, 0}2δϕ′]m,�−
ϕ,m)�

+
M∑

m=1

η(δϕ̇′,�ϕ)Im×� +
M−1∑
m=0

η([δϕ′]m,�−
ϕ,m)� − (δϕ′(0),�ϕ(0))�

− 3γ (max{ϕ′(T ), 0}2δϕ′(T ),�ϕ(T ))� − η(δϕ′(T ),�ϕ(T ))�

+ 3γ (max{ϕ′(0), 0}2δϕ′(0),�ϕ(0))� + η(δϕ′(0),�ϕ(0))�.

As for the state equation we shift the summation index for the jump terms by one and
combine all sums into a single one.
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Proposition 5.3 The tangent equation in dG(r) form reads:

0 =
M∑

m=1

[
−a′Im

q (q, u)(δq,�) − a′Im
ū (q, u)(δu,�)

− (δϕ̇, ψ)Im×� − ([δϕ]m−1, ψ
−
m−1)�

+ (δϕ′, ψ)Im×�

+ 3γ (∂t (max{ϕ′, 0}2δϕ′),�ϕ)Im×�

+ 3γ ([max{ϕ′, 0}2δϕ′]m−1,�
−
ϕ,m−1)�

+ η(δϕ̇′,�ϕ)Im×� + η([δϕ′]m−1,�
−
ϕ,m−1)�

]

− (δϕ(0), ψ(0))� − (δϕ′(0),�ϕ(0))�

− 3γ (max{ϕ′(T ), 0}2δϕ′(T ),�ϕ(T ))� − η(δϕ′(T ),�ϕ(T ))�

+ 3γ (max{ϕ′(0), 0}2δϕ′(0),�ϕ(0))� + η(δϕ′(0),�ϕ(0))�.

Again we readily obtain the resulting time-stepping scheme.

Proposition 5.4 The tangent time-stepping starts with solving the initial conditions at
m = 0:

(δϕ(0), ψ(0))� = 0,

− (δϕ′(0),�ϕ(0))� + 3γ (max{ϕ′(0), 0}2δϕ′(0),�ϕ(0))�
+ η(δϕ′(0),�ϕ(0))� = 0.

(29)

Then the equations for m = 1, . . . , M − 1 need to be solved in a forward recursion:

− (δϕ̇, ψ)Im×� − ([δϕ]m−1, ψ
−
m−1)� + (δϕ′, ψ)Im×� = 0,

3γ (∂t (max{ϕ′, 0}2δϕ′),�ϕ)Im×� + 3γ ([max{ϕ′, 0}2δϕ′]m−1,�
−
ϕ,m−1)�

+ η(δϕ̇′,�ϕ)Im×� + η([δϕ′]m−1,�
−
ϕ,m−1)�

− a′Im
ū (q, u)(δu,�) − a′Im

q (q, u)(δq,�) = 0.

(30)

Finally, we need to solve the terminal conditions at m = M:

− (δϕ̇, ψ)IM ×� − ([δϕ]M−1, ψ
−
M−1)� + (δϕ′, ψ)IM ×� = 0,

3γ (∂t (max{ϕ′, 0}2δϕ′),�ϕ)IM ×� + 3γ ([max{ϕ′, 0}2δϕ′]M−1,�
−
ϕ,M−1)�

+ η(δϕ̇′,�ϕ)IM ×� + η([δϕ′]M−1,�
−
ϕ,M−1)�

− a′IM
ū (q, u)(δu,�) − a′IM

q (q, u)(δq,�)

− 3γ (max{ϕ′(T ), 0}2δϕ′(T ),�ϕ(T ))� − η(δϕ′(T ),�ϕ(T ))� = 0.

(31)
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5.4 Adjoint Hessian Equation

The third and last auxiliary equation is the adjoint Hessian equation. In this equation
we seek δz̄ = (δz, δz′

ϕ) ∈ Xr
k × Y r

k such that for all �̄ ∈ Xr
k × Y r

k the following
equation holds:

L′′
qū(q, ū, z̄)(δq, �̄) + L′′̄

uū(q, ū, z̄)(δū, �̄) + L′′̄
zū(q, ū, z̄)(δz̄, �̄) = 0. (32)

First we see that L′′
qū(q, ū, z̄)(δq, �̄) = 0 since q and ū are decoupled. The derivative

of aI in L′′̄
zū(q, ū, z̄)(δz̄, �̄) is given by a′I

u (q, u)(�, δz) due to the linearity of z in
aI . However, a′′I

uu arises as a genuine second-order derivative in L′′̄
uū(q, ū, z̄)(δū, �̄)

where

a′′
uu(q, u)(δu,�, z) =

2(ϕ(1 − κ)�ϕCe(δu), e(zu))� + 2(δϕ(1 − κ)�ϕCe(u), e(zu))�

+ 2(ϕ(1 − κ)Ce(u), e(zu))�δϕ + 2(ϕ(1 − κ)Ce(�u) : e(δu), zϕ))�

+ 2(δϕ(1 − κ)Ce(�u) : e(u), zϕ)� + 2(�ϕCe(δu) : e(u), zϕ)�.

(33)

Now we obtain the adjoint Hessian equation

J ′′
uu(q, u)(δu,�) − a′′I

uu(q, u)(δu,�, z) − a′I
u (q, u)(�, δz) (34a)

+ 6γ (∂t (max{ϕ′, 0}ψδϕ′), zϕ)I×� (34b)

− 6γ (max{ϕ′(T ), 0}ψ(T )δϕ′(T ), zϕ(T ))� (34c)

+ 6γ (max{ϕ′(0), 0}ψ(0)δϕ′(0), zϕ(0))� (34d)

− (�̇ϕ, δz′
ϕ)I×� + (ψ, δz′

ϕ)I×� − (�ϕ(0), δz′
ϕ(0))� (34e)

+ 3γ (∂t (max{ϕ′, 0}2ψ), δzϕ)I×� + η(ψ̇ϕ, δzϕ)I×� − (ψ(0), δzϕ(0))� (34f)

− 3γ (max{ϕ(T )′, 0}2ψ(T ), δzϕ(T ))� − η(ψ(T ), δzϕ(T ))� (34g)

+ 3γ (max{ϕ(T )′, 0}2ψ(T ), δzϕ(T ))� + η(ψ(T ), δzϕ(T ))� = 0. (34h)

The following result guarantees that the least regular term (34b) is well-defined.

Proposition 5.5 The partial derivative ∂t (max{ϕ′, 0}ψδϕ′) is in L2(I , L2(�)).

Proof Similar to (2), an elementary calculation for ϕ′ ∈ X ϕ̇ = H1(I , Vϕ) gives

∂t max{ϕ′(t, x), 0} =

⎧⎪⎨
⎪⎩

ϕ̇′(t, x) ϕ′(t, x) > 0,

max{ϕ̇′(t, x), 0} ϕ′(t, x) = 0,

0, ϕ′(t, x) < 0.

The product rule together with the estimate |max{c, 0}| ≤ |c| for c ∈ R then yields

‖∂t (max{ϕ′, 0}2ψδϕ′)‖I×� ≤ ‖ϕ̇′ψδϕ′‖I×� + ‖ϕ′ψ̇δϕ′‖I×� + ‖ϕ′ψδϕ̇′‖I×�.
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The factors ϕ̇′, δϕ̇′ are in L2(I , Vϕ); all other factors in the right-hand side norms are
in X ϕ̇ ↪→ L∞(I , Vϕ) while Vϕ = H1(�) ↪→ Lq(�) for every q ≥ 2. Arguing as in
Proposition 2.1, this gives the finiteness of the first product norm (and similarly of the
two other ones):

‖ϕ̇′ψδϕ′‖2I×� =
∫

I
‖ϕ̇′ψδϕ′‖2L2(�)

dt ≤
∫

I
‖ϕ̇′‖2L6(�)

‖ψ‖2L6(�)
‖δϕ‖2L6(�)

dt

≤ C1‖ψ‖2L∞(I ,Vϕ)‖δϕ‖2L∞(I ,Vϕ)

∫
I
‖ϕ̇′‖2Vϕ

dt = C2‖ϕ̇′‖2L2(I ,Vϕ)
.

�
Remark 5.1 This proposition together with Proposition 2.2 shows why we chose a
fourth order penalization for the fracture irreversibility constraint: this provides just
sufficient regularity for the derivative ∂t (max{ϕ′, 0}ψδϕ′) to be in L2(I , L2(�)). A
third order penalization would instead lead to nonexistent derivatives.

Next we will apply integration by parts to (34b), to the first term in (34e), and to
the first and second term in (34f):

γ (∂t (max{ϕ′, 0}ψδϕ′), zϕ)I×� = −γ (max{ϕ′, 0}ψδϕ′, żϕ)I×�

+ γ (max{ϕ′(T ), 0}ψ(T )δϕ′(T ), zϕ(T ))�

− γ (max{ϕ′(0), 0}ψ(0)δϕ′(0), zϕ(0))�,

−(�̇ϕ, δz′
ϕ)I×� = (�ϕ, δż′

ϕ)I×�

− (�ϕ(T ), δz′
ϕ(T ))�

+ (�ϕ(0), δz′
ϕ(0))�,

γ (∂t (max{ϕ′, 0}2ψ), δzϕ)I×� = −γ (max{ϕ′, 0}2ψ, δżϕ)I×�

+ γ (max{ϕ′(T ), 0}2ψ(T ), δzϕ(T ))�

− γ (max{ϕ′(0), 0}2ψ(0), δzϕ(0))�,

η(ψ̇ϕ, δzϕ)I×� = −η(ψ, δżϕ)I×�

+ η(ψ(T ), δzϕ(T ))�

− η(ψ(0), δzϕ(0))�.

Consequently (34) becomes

J ′′
uu(q, u)(δu,�) − a′′I

uu(q, u)(δu,�, z) − a′I
u (q, u)(�, δz)

− 6γ (max{ϕ′, 0}ψδϕ′, żϕ)I×�

+ (�ϕ, δż′
ϕ)I×� + (ψ, δz′

ϕ)I×� − (�ϕ(T ), δz′
ϕ(T ))�

− 3γ (max{ϕ′, 0}2ψ, δżϕ)I×� − η(ψ, δżϕ)I×� − (ψ(0), δzϕ(0))� = 0.

Finally, we apply dG(r ) to the terms involving δżϕ and δż′
ϕ . We do not need to apply

dG(r ) to (max{ϕ′, 0}2ψδϕ′, żϕ)I×� since it is part of L′′̄
uū(q, ū, z̄)(δū, �̄): this acts

as a right hand side as it does not involve the solution variable δz̄.
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Proposition 5.6 The adjoint Hessian equation in dG(r) form reads:

M∑
m=1

[
J ′′
uu,m(q, u)(δu,�) − a′′Im

uu (q, u)(δu,�, z) − a′Im
u (q, u)(�, δz)

− 6γ (max{ϕ′, 0}ψδϕ′, żϕ)Im×� + (ψ, δz′
ϕ)Im×� + (�ϕ, δż′

ϕ)Im×�

− 3γ (max{ϕ′, 0}2ψ, δżϕ)Im×� − η(ψ, δżϕ)Im×�

]

+
M−1∑
m=0

[
(�−

ϕ,m, [δz′
ϕ]m)� − 3γ (max{ϕ′−

m , 0}2ψ−
ϕ,m, [δzϕ]m)� − η(ψ−

ϕ,m, [δzϕ]m)�

]

− (�ϕ(T ), δz′
ϕ(T ))� − (ψ(0), δzϕ(0))� = 0.

The resulting time-stepping scheme is again immediate.

Proposition 5.7 The time-stepping for the adjoint Hessian equation starts with solving
the terminal conditions at m = M:

J ′′
uu,M (q, u)(δu,�) − a′′IM

uu (q, u)(δu,�, z) − a′IM
u (q, u)(�, δz)

+ (�ϕ, δż′
ϕ)IM ×� − (�ϕ(T ), δz′

ϕ(T ))� = 0,

− 6γ (max{ϕ′, 0}ψδϕ′, żϕ)IM ×� + (ψ, δz′
ϕ)IM ×�

− 3γ (max{ϕ′, 0}2ψ, δżϕ)IM ×� − η(ψ, δżϕ)IM ×� = 0.

(35)

Then the equations for m = M −1, . . . , 1 need to be solved in a backward recursion:

J ′′
uu,m(q, u)(δu,�) − a′′Im

uu (q, u)(δu,�, z) − a′Im
u (q, u)(�, δz)

+ (�ϕ, ∂tδz′
ϕ)Im×� + (�−

ϕ,m, [δz′
ϕ]m)� = 0,

− 6γ (max{ϕ′, 0}ψδϕ′, żϕ)Im×� + (ψ, δz′
ϕ)Im×�

− 3γ (max{ϕ′, 0}2ψ, δżϕ)Im×� − η(ψ, δżϕ)Im×�

− 3γ (max{ϕ′−
m , 0}2ψ−

m , [δzϕ]m)� − η(ψ−
m , [δzϕ]m)� = 0.

(36)

Finally we have to solve the initial conditions at m = 0:

(�−
ϕ,0, [δz′

ϕ]0)� = 0,

− 3γ (max{ϕ′−
0 , 0}2ψ−

0 , [δzϕ]0)� − η(ψ−
0 , [δzϕ]0)� − (ψ(0), δzϕ(0))� = 0.

(37)

Remark 5.2 In this work we have considered a continuous-time cost functional for the
phase-field ϕ. A discrete-time cost functional

M∑
m=0

wm

2
‖ϕ(tm) − ϕd‖2�
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with weights wm ≥ 0 can easily be added (or be used instead). In the four equations
to be solved and in the associated time-stepping schemes this will produce objective
terms similar to the current ones form = 1, . . . , M plus additional terms at t0 = 0. The
Tikhonov regularization might also be formulated in discrete time, with contributions
‖q(tm) − qd(tm)‖2�. However, then we would have to replace W with C(I , Q) or a
subspace thereof so that the point evaluations of q and qd are well-defined.

6 Conclusions

In this paper,we established rigorous space-time formulations for the state, adjoint, tan-
gent, and adjoint Hessian equations of phase-field fracture optimal control problems.
Due to the crack irreversibility constraint a higher-order penalization was adopted that
allowed us to prove Fréchet differentiability. On the other hand, this higher-order term
yielded a second-order time derivative of the phase-field variable. To this end, a mixed
first-order-in-time system was formulated. Based on this system the Lagrangian and
auxiliary equations were established. By using a discontinuous Galerkin discretiza-
tion in time, the time integrals decouple and we derived the resulting time-stepping
schemes. Possible extensions of the current work include the implementation as this
mixed phase-field system has not been addressed in the numerical realization so
far. Along with the implementation, comparisons of gradient methods, quasi-Newton
approaches (BFGS), and the proposed full Newtonmethod could be undertaken. How-
ever, the main computational challenges are the linear and nonlinear solvers of the
forward problem as they become severely expensive due to numerous forward and
backward runs within the optimization loop. This holds true for two-dimensional con-
figurations, as shown in our prior work [17], as well as three-dimensional extensions.
Conceptionally, numerically and implementation-wise three-dimensional configura-
tions can be addressed by our model, while some mathematical statements must be
carefully revisited, and the major challenge is the numerical cost. Another interest-
ing extension benefits from the space-time formulation as the temporal part could be
solved with higher-order in time Galerkin finite elements as for instance dG(1) meth-
ods in which linear elements per time interval are employed. A final modification can
be the replacement of the penalty method by an augmented Lagrangian or primal-dual
active set method, wherein the mathematical theory will be more involved. Numer-
ically, we have implemented in other works (see references in the monograph [31,
Chapter 5]) such alternative penalizations of the crack irreversibility constraint. The
broader impact of the current work is reflected by the fact that in phase-field fracture
numerous papers on forward modeling have been published to date, but due to math-
ematical and numerical challenges only a few have been published on optimization
(which are cited in our introduction). Consequently, the present work provides one
possibility of formulating phase-field fracture optimization problems.
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