29,346 research outputs found

    An Optimal Bound on the Solution Sets of One-Variable Word Equations and its Consequences

    Get PDF
    We solve two long-standing open problems on word equations. Firstly, we prove that a one-variable word equation with constants has either at most three or an infinite number of solutions. The existence of such a bound had been conjectured, and the bound three is optimal. Secondly, we consider independent systems of three-variable word equations without constants. If such a system has a nonperiodic solution, then this system of equations is at most of size 17. Although probably not optimal, this is the first finite bound found. However, the conjecture of that bound being actually two still remains open

    An Optimal Bound on the Solution Sets of One-Variable Word Equations and its Consequences

    Get PDF
    We solve two long-standing open problems on word equations. Firstly, we prove that a one-variable word equation with constants has either at most three or an infinite number of solutions. The existence of such a bound had been conjectured, and the bound three is optimal. Secondly, we consider independent systems of three-variable word equations without constants. If such a system has a nonperiodic solution, then this system has at most 17 equations. Although probably not optimal, this is the first finite bound found. However, the conjecture of that bound being actually two still remains open

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Large dispersion, averaging and attractors: three 1D paradigms

    Full text link
    The effect of rapid oscillations, related to large dispersion terms, on the dynamics of dissipative evolution equations is studied for the model examples of the 1D complex Ginzburg-Landau and the Kuramoto-Sivashinsky equations. Three different scenarios of this effect are demonstrated. According to the first scenario, the dissipation mechanism is not affected and the diameter of the global attractor remains uniformly bounded with respect to the very large dispersion coefficient. However, the limit equation, as the dispersion parameter tends to infinity, becomes a gradient system. Therefore, adding the large dispersion term actually suppresses the non-trivial dynamics. According to the second scenario, neither the dissipation mechanism, nor the dynamics are essentially affected by the large dispersion and the limit dynamics remains complicated (chaotic). Finally, it is demonstrated in the third scenario that the dissipation mechanism is completely destroyed by the large dispersion, and that the diameter of the global attractor grows together with the growth of the dispersion parameter
    • …
    corecore