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AN OPTIMAL BOUND ON THE SOLUTION SETS
OF ONE-VARIABLE WORD EQUATIONS AND ITS

CONSEQUENCES∗

DIRK NOWOTKA† AND ALEKSI SAARELA‡

Abstract. We solve two long-standing open problems on word equations. Firstly, we prove
that a one-variable word equation with constants has either at most three or an infinite number of
solutions. The existence of such a bound had been conjectured, and the bound three is optimal.
Secondly, we consider independent systems of three-variable word equations without constants. If
such a system has a nonperiodic solution, then this system has at most 17 equations. Although
probably not optimal, this is the first finite bound found. However, the conjecture of that bound
being actually two still remains open.
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1. Introduction. If n words satisfy a nontrivial relation, they can be written
as products of n− 1 words. This folklore result is known as the defect theorem, and
it can be seen as analogous to the simple fact of linear algebra that the dimension
of the solution space of a homogeneous n-variable linear equation is n − 1. If an
independent equation is added to a system of linear equations, the dimension of the
solution space decreases. This gives an upper bound n for the size of independent
systems of linear equations. No such results are known for word equations. In fact,
the maximal size of independent systems of constant-free word equations has been one
of the biggest open questions in combinatorics on words for many decades. In 1983,
Culik II and Karhumäki [4] pointed out that a conjecture of Ehrenfeucht about test
sets of formal languages can be equivalently formulated as claiming that every infinite
system of word equations is equivalent to a finite subsystem. Ehrenfeucht’s conjecture
was proved by Albert and Lawrence [1] and independently by Guba [9], and it follows
that independent systems cannot be infinite, but no finite upper bounds depending
only on the number of variables have been found. Independent systems of size Θ(n4)
on n variables were constructed by Karhumäki and Plandowski [15], and the hidden
constant in Θ(n4) was improved in [16]. This is the best known lower bound.

The case of three variables is particularly interesting. In this case, it is easy to find
systems of size two that are independent and have a nonperiodic solution, or systems
of size three that are independent but have no nonperiodic solution, and Culik II and
Karhumäki conjectured that there are no larger such systems, but no finite upper
bounds have been found even in this case. In fact, despite Ehrenfeucht’s conjecture,
even the existence of a bound is not guaranteed, because in principle it might be
possible that there are unboundedly large finite independent systems. This case of
three variables is very striking because it is the simplest nontrivial case, but the gap
between the almost trivial lower bound and the infinite upper bound has remained
huge despite the considerable attention the problem has received. Some results about
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2 D. NOWOTKA AND A. SAARELA

systems of specific forms are known [10, 5, 6], and some upper bounds that depend on
the sizes of the equations have been proved [20, 11, 18]. The best current bound is
logarithmic with respect to the size of the smallest equation in the system [18].

Moving from constant-free equations to the more general family of word equations
with constants. The algorithmic problem of determining whether a given word equation
has a solution, also known as the satisfiability problem, can be easily proved to be
NP-hard. Proving upper bounds for the complexity is much more challenging. The
best known result is that the problem is in NSPACE(n), as proved by Jeż [14]. For
constant-free equations, there are variations of the satisfiability problem that are as
difficult as the general satisfiability problem [23]. However, if the number of variables
is small, equations with constants can be more complex than constant-free equations.
In particular, for constant-free equations, the three-variable case is the first nontrivial
one, but for equations with constants, already the one-variable case is interesting.
One-variable equations have been studied in many articles [8, 7, 17], and the main
open question about them is the maximal number of solutions such an equation can
have if we exclude equations with infinitely many solutions (if the solution set is
infinite, it is known to be of a very specific form). Even finding an example with
exactly two solutions is not entirely trivial, but a simple example was given by Laine
and Plandowski [17]. An example with exactly three solutions was recently found [18].
No fixed upper bound, or even the existence of an upper bound, has been proved.
The best known result is a bound that depends logarithmically on the number of
occurrences of the variable in the equation [17]. It can be noted that the solutions of
a one-variable equation can be found in linear time in the RAM model [13].

In this article, we solve the open problem about sizes of solution sets of one-variable
equations by proving that a one-variable equation has either infinitely many solutions
or at most three, which is optimal. As a consequence, we prove the first upper bound
for the sizes of independent systems of constant-free three-variable equations, thus
settling the old open question about the existence of such a bound. More specifically,
we prove that if an independent system of constant-free three-variable equations is
independent and has a nonperiodic solution, then the system is of size at most 17
(if the system is not required to have a nonperiodic solution, then the size can be at
most one larger). This bound is probably not optimal and the conjecture of Culik
and Karhumäki remains open, as does the more general question about n-variable
equations. In addition to independent systems, we also study decreasing chains of
equations and prove a similar result for them.

Two previous articles provide crucial tools for our proofs. The first article is [22]
(or its earlier conference version [21]), where new methods were introduced to solve a
certain open problem on word equations. We use and further develop these methods
to analyze one-variable equations. The second article is [18], where a surprising
connection between the two topics we have discussed above was found: It was proved
that a bound for the maximal size of a finite solution set of a one-variable equation
implies a (larger) bound for the maximal size of independent systems of constant-free
three-variable equations.

This article is an extended version of the conference article [19]. One difference
between the two versions is that many of the proofs, for example those in Section 6,
were omitted from the conference version to save space. Another difference is that in
this article we consider decreasing chains in addition to independent systems.

2. Preliminaries. We begin this section by giving some standard definitions.
A word x is a prefix of a word w if w = xy for some word y. Similarly, a word x is
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a suffix of a word w if w = yx for some word y. The empty word is denoted by ε.
The length of a word w is denoted by |w| and the number of occurrences of a letter
a in w is denoted by |w|a. A nonempty word is primitive if it is not a power of a
shorter word. If Γ1 and Γ2 are alphabets, then a mapping h : Γ∗1 → Γ∗2 is a morphism
if h(xy) = h(x)h(y) for all x, y ∈ Γ∗1.

Next, we consider constant-free word equations. Let Ξ be an alphabet of variables
and Γ an alphabet of constants. A constant-free word equation is a pair (U, V ) ∈ Ξ∗×Ξ∗.
A solution of this equation is a morphism h : Ξ∗ → Γ∗ such that h(U) = h(V ). A
solution h is periodic if there exists p ∈ Γ∗ such that h(X) ∈ p∗ for allX ∈ Ξ. Otherwise,
h is nonperiodic. It is well-known that h is periodic if and only if h(PQ) = h(QP ) for
all words P,Q ∈ Ξ∗.

Example 2.1. Let Ξ = {X,Y, Z} and consider the equation (XY Z,ZY X). For all
p, q ∈ Γ∗ and i, j, k ≥ 0, the morphism h defined by h(X) = (pq)ip, h(Y ) = (qp)jq,
h(Z) = (pq)kp is a solution of this equation because

h(XY Z) = (pq)ip · (qp)jq · (pq)kp = (pq)i+j+k+1p = (pq)kp · (qp)jq · (pq)ip = h(ZY X).

Every nonperiodic solution of the equation is of this form.

A set of equations is a system of equations. A morphism is a solution of a system if
it is a solution of every equation in the system. Two equations or systems are equivalent
if they have exactly the same solutions. A system of equations is independent if it is
not equivalent to any of its proper subsets.

Example 2.2. Let Ξ = {X,Y, Z} and Γ = {a, b}. The system of equations S =
{(XYZ ,ZYX ), (XY Y Z,ZY Y X)} is independent and has a nonperiodic solution h
defined by h(X) = a, h(Y ) = b, h(Z) = a. To see independence, note that S is not
equivalent to (XY Z,ZY X), because the morphism h defined by h(X) = a, h(Y ) = b,
h(Z) = aba is a solution of (XY Z,ZY X) but not of S, and S is not equivalent
to (XY Y Z,ZY Y X), because the morphism h defined by h(X) = a, h(Y ) = b,
h(Z) = abba is a solution of (XY Y Z,ZY Y X) but not of S.

The following question is a renowned open problem on word equations: If a system
of constant-free three-variable equations is independent and has a nonperiodic solution,
then how large can the system be? The largest known examples are of size two, see
Example 2.2, and it has been conjectured that these examples are optimal. Even the
following weaker conjecture is open.

Conjecture 2.3. There exists a number c such that every independent system
of constant-free three-variable equations with a nonperiodic solution is of size c or less.

Currently, the best known result is the following.

Theorem 2.4 ([18]). Every independent system of constant-free three-variable
equations is of size O(log n), where n is the length of the shortest equation.

A sequence of equations E1, . . . , EN is a decreasing chain if the systems of equations
E1, . . . , Ei−1 and E1, . . . , Ei are nonequivalent for all i ∈ {1, . . . , N} (the case i = 1
means that E1 cannot be equivalent to the empty system, that is, E1 cannot be a
trivial equation (U,U)). A morphism is a solution of a decreasing chain if it is a
solution of every equation in the chain. The equations of an independent system,
ordered in any way, form a decreasing chain. Decreasing chains have been studied in,
for example, [12], [16] and [18].

If a decreasing chain of constant-free three-variable equations has a nonperiodic
solution, then how long can the chain be? The largest known examples are of length
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four, see Example 2.7. We can state a conjecture and a theorem that are analogous to
Conjecture 2.3 and Theorem 2.4.

Conjecture 2.5. There exists a number c such that every decreasing chain of
constant-free three-variable equations with a nonperiodic solution is of length c or less.

Theorem 2.6 ([18]). Every decreasing chain of constant-free three-variable equa-
tions is of length O(log n), where n is the length of the first equation.

Example 2.7. Let Ξ = {X,Y, Z} and Γ = {a, b}. The sequence

(XY Z,ZXY ), (XYXZY Z,ZXZY XY ), (XZ,ZX), (Z, ε)

is a decreasing chain and has a nonperiodic solution. This can be seen as follows:
1. The morphism h defined by h(X) = a, h(Y ) = ε, h(Z) = b is not a solution

of (XY Z,ZXY ).
2. The morphism h defined by h(X) = a, h(Y ) = b, h(Z) = abab is a solution of

(XY Z,ZXY ) but not of (XYXZY Z,ZXZY XY ).
3. The morphism h defined by h(X) = a, h(Y ) = b, h(Z) = ab is a solution of

(XY Z,ZXY ) and (XYXZY Z,ZXZY XY ) but not of (XZ,ZX).
4. The morphism h defined by h(X) = ε, h(Y ) = ε, h(Z) = a is a solution of

(XY Z,ZXY ), (XYXZY Z,ZXZY XY ) and (XZ,ZX) but not of (Z, ε).
5. The morphism h defined by h(X) = a, h(Y ) = b, h(Z) = ε is nonperiodic and

a solution of all the equations.

Next, we consider word equations with constants. As before, let Ξ be an alphabet
of variables and Γ an alphabet of constants. A word equation with constants is a pair
(U, V ) ∈ (Ξ ∪ Γ)∗ × (Ξ ∪ Γ)∗. A solution of this equation is a constant-preserving
morphisms h : (Ξ ∪ Γ)∗ → Γ∗ such that h(U) = h(V ). If U = V , then the equation is
trivial.

In this article, we are interested in the one-variable case Ξ = {X}. We use the
notation [u] for the constant-preserving morphism h : ({X} ∪ Γ)∗ → Γ∗ defined by
h(X) = u. If S is a set of words, we use the notation [S] = {[u] | u ∈ S}. If [u] is a
solution of a one-variable equation E, then u is called a solution word of E. The set
of all solutions of E is denoted by Sol(E).

Example 2.8. Let Γ = {a, b}. The equation (Xab, abX) has infinitely many solu-
tions [(ab)i], where i ≥ 0. The equation (XaXbab, abaXbX) has exactly two solutions
[ε] and [ab]. The equation (XXbaaba, aabaXbX) has exactly two solutions [a] and
[aaba]. The equation

(XaXbXaabbabaXbabaabbab, abaabbabaXbabaabbXaXbX)

has exactly three solutions [ε], [ab], [abaabbab].

The following is a well-known open problem: If a one-variable equation has only
finitely many solutions, then what is the maximal number of solutions it can have?
Example 2.8 shows that the answer is at least three, but no upper bound is known.
Currently, the best known result is the following.

Theorem 2.9 ([17, Theorems 23, 26, 29]). If the solution set of a one-variable
equation is finite, then it has size at most 8 log n + O(1), where n is the number of
occurrences of the variable.

If the solution set is infinite and the equation is not trivial, then there are words
p, q such that pq is primitive and the solution set is [(pq)∗p].
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We will need the following lemma, or rather its corollary.

Lemma 2.10 ([7, Lemma 1]). Let E be a one-variable equation and let pq be
primitive. The set

Sol(E) ∩ [(pq)+p]

is either [(pq)+p] or has at most one element.

Corollary 2.11. Let E be a one-variable equation with only finitely many solu-
tions and let pq be primitive. The set

Sol(E) ∩ [(pq)∗p]

has at most two elements.

A connection between constant-free three-variable equations and one-variable
equations with constants was recently found [18]. Here we give the relevant special
cases of one of the results.

Theorem 2.12 ([18]). If every one-variable word equation has either infinitely
many solutions or at most three, then Conjecture 2.3 is true for c = 17.

Theorem 2.13 ([18]). If every one-variable word equation has either infinitely
many solutions or at most three, then Conjecture 2.5 is true for c = 20.

In this article, we will prove that every one-variable word equation has either
infinitely many solutions or at most three, and thus Conjecture 2.3 is true for c = 17
and Conjecture 2.5 is true for c = 20.

3. Sums of words. In this section, we will give some definitions and ideas that
will be used in our proofs. Most of these were introduced in [21].

We can assume that the alphabet Γ is a subset of R. Then we define Σ(w) to be
the sum of the letters of a word w ∈ Γ∗, that is, if w = a1 · · · an and a1, . . . , an ∈ Γ,
then Σ(w) = a1 + · · ·+ an. Words w such that Σ(w) = 0 are called zero-sum words. If
w is zero-sum, then the morphism [w] is also called zero-sum. The largest and smallest
letters in a word w are denoted by max(w) and min(w), respectively.

The prefix sum word of w = a1 · · · an is the word psw(w) = b1 · · · bn, where
bi = Σ(a1 · · · ai) for all i. Of course, psw(w) is usually not a word over Γ, but over
some other alphabet. The mapping psw is injective and length-preserving. We also
use the notation pswr(w) = c1 · · · cn, where r ∈ R and ci = bi + r for all i.

Example 3.1. Let w = bbcaac, where a = 1, b = 2, and c = −3. We have |w| = 6,
max(w) = 2, and min(w) = −3. Because Σ(w) = 2 + 2 − 3 + 1 + 1 − 3 = 0, w is
a zero-sum word. The prefix sum word of w is psw(w) = 241230, and max(psw(w)) = 4
and min(psw(w)) = 0.

For a word w, we define its height H(w) and area A(w):

H(w) = max(psw(w)) = max{Σ(u) | ε 6= u v w},

A(w) = Σ(psw(w)) =
∑
uvw

Σ(u),

where u v w means that u is a prefix of w. For the empty word, H(ε) = −∞ and
A(ε) = 0.

These definitions have the following graphical interpretation: A word w = a1 · · · an
can be represented by a polygonal chain by starting at the origin, moving a1 steps up,
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one step to the right, a2 steps up, one step to the right, and so on. The end point of
this curve is then (|w|,Σ(w)). The biggest y-coordinate (after the initial line segment
starting at the origin) is H(w). The number A(w) is the area under the curve, defined
in the same way as a definite integral, that is, parts below the x-axis count as negative
areas. See Figure 3.1 for an example.

•

•
(|w|,Σ(w))

H(w)

A1

A2

A3

A(w) = A1 −A2 +A3

Fig. 3.1. Representation of the word w = aaabbaa, where a = 1 and b = −2. We have |w| = 7,
Σ(w) = 1, H(w) = 3, and A(w) = 7.

Lemma 3.2. For words w1, . . . , wn, we have

Σ(w1 · · ·wn) = Σ(w1) + · · ·+ Σ(wn),

psw(w1 · · ·wn) =

n∏
i=1

pswΣ(w1···wi−1)(wi),

H(w1 · · ·wn) = max{Σ(w1 · · ·wi−1) +H(wi) | 1 ≤ i ≤ n},

A(w1 · · ·wn) =

n∑
i=1

(A(wi) + Σ(w1 · · ·wi−1)|wi|).

Proof. Follows easily from the definitions.

When studying words from a combinatorial point of view, the choice of the alphabet
is arbitrary (except for the size of the alphabet), so we can assign numerical values
to the letters in any way we like, as long as no two letters get the same value. The
next lemma shows that, given any word w, the alphabet can be normalized so that w
becomes a zero-sum word.

Lemma 3.3 ([21, Lemma 3]). Let w ∈ Γ∗. There exists an alphabet ∆ and an
isomorphism h : Γ∗ → ∆∗ such that h(w) is zero-sum.

4. Equations in normal form. If a one-variable equation has more occurrences
of the variable on the left-hand side than on the right-hand side, or vice versa, then it
is easy to see by a length argument that it can have at most one solution. Therefore
every one-variable equation with more than one solution can be written in the form

(4.1) (u0Xu1 · · ·Xun, v0Xv1 · · ·Xvn),

where X is the variable, n ≥ 1, and u0, . . . , un, v0, . . . , vn are constant words. Clearly,
it must be |u0 · · ·un| = |v0 · · · vn|. If the equation is nontrivial, x1, x2 are solution
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words, and |x1| ≤ |x2|, then it is quite easy to see that x1 is a prefix and a suffix of x2.
We say that the equation (4.1) is in normal form if the following conditions are

satisfied:
(N1) It has the empty solution and at least one other zero-sum solution,
(N2) |u0 · · ·ui| < |v0 · · · vi| for all i ∈ {0, . . . , n− 1},
(N3) |u0 · · ·ui| ≤ |v0 · · · vi−1| for all i ∈ {0, . . . , n}.
It follows from these conditions that u0 = vn = ε. By the next two lemmas, it is
usually sufficient to consider equations in normal form.

Lemma 4.1. Let E be a one-variable equation, Sol(E) = {[x0], . . . , [xm]}, and
|x0| ≤ |xi| for all i. There exists a one-variable equation E′ such that Sol(E′) =
{[ε], [x−1

0 x1], . . . , [x−1
0 xm]}.

Proof. If m = 0, the claim is clear. Otherwise, we can assume that E is of the
form (4.1). Let E′ be the equation we get from E by replacing X by x0X:

E′ : (u0x0Xu1 · · ·x0Xun, v0x0Xv1 · · ·x0Xvn).

Because E is nontrivial, x0 is a prefix of every xi. Clearly, the word x−1
0 xi is a solution

word of E′. On the other hand, if x is a solution word of E′, then x0x is a solution
word of E. This proves the claim.

Next we will give an example of how to transform an equation that satisfies
Condition N1 into an equation in normal form. After the example, we will prove that
this can always be done. The example is preceded by a lemma that is often useful
when working with word equations.

Lemma 4.2. Let (UU ′, V V ′) be a word equation. Assume that |U | = |V | and
|U |X = |V |X for every variable X. Then the equation (UU ′, V V ′) is equivalent to the
system (U, V ), (U ′, V ′).

Proof. It is clear that every solution of the system is also a solution of the equation
(UU ′, V V ′). If h is a solution of (UU ′, V V ′), then h(U) and h(V ) are both prefixes of
h(UU ′) = h(V V ′), and by the assumption about U and V , they have the same length.
Thus they are equal, and then also h(U ′) = h(V ′), so h is a solution of the system
(U, V ), (U ′, V ′). This shows the equivalence.

Example 4.3. Consider the equation

(XabXababXaabaXbX, abXXXababaXaXbab).

By using Lemma 4.2 repeatedly, we see that the equation is equivalent to the system
of equations

(Xab, abX), (X,X), (ababX,Xabab), (a, a), (abaXbX,XaXbab).

We can drop the trivial equations (X,X) and (a, a), and then switch the left-hand
and right-hand sides of the equations (ababX,Xabab) and (abaXbX,XaXbab) to get
the system

(Xab, abX), (Xabab, ababX), (XaXbab, abaXbX).

Then we can combine these equations into the equation

(XabXababXaXbab, abXababXabaXbX),
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which satisfies Conditions N2 and N3. (Actually, this equation is equivalent to the
equation (XaXbab, abaXbX).)

Lemma 4.4. Let E be a nontrivial one-variable equation with the empty solution
and at least one other solution. There exists an equation not longer than E and in
normal form that is equivalent to E up to a renaming of the letters.

Proof. We can assume that E has a nonempty zero-sum solution by Lemma 3.3.
We can also assume that E is a shortest equation among all the equivalent equations,
and E is written as (4.1). Finally, we can let j ∈ {0, . . . , n} be the smallest index such
that |u0 · · ·uj | ≥ |v0 · · · vj | (the inequality holds for j = n, so j exists), and assume
that there does not exists an equivalent equally long equation for which the index j
would be larger.

We are going to prove that E is in normal form. We already know that Condition N1
holds.

If it were j < n and |u0 · · ·uj | = |v0 · · · vj |, then for any word x we would have
the sequence of equivalences

u0xu1 · · ·xun = v0xv1 · · ·xvn
⇐⇒ u0xu1 · · ·xuj = v0xv1 · · ·xvj ∧ uj+1xuj+2 · · ·xun = vj+1xvj+2 · · ·xvn
⇐⇒ u0xu1 · · ·xujuj+1xuj+2 · · ·xun = v0xv1 · · ·xvjvj+1xvj+2 · · ·xvn.

(here we have essentially used Lemma 4.2). Thus E would be equivalent to the shorter
equation

(u0Xu1 · · ·Xujuj+1Xuj+2 · · ·Xun, v0Xv1 · · ·Xvjvj+1Xvj+2 · · ·Xvn),

which would contradict the minimality of E. On the other hand, if it were j < n
and |u0 · · ·uj | > |v0 · · · vj |, then there would exist words p, q such that uj = pq
and |u0 · · ·uj−1p| = |v0 · · · vj |, and for any word x we would have the sequence of
equivalences

u0xu1 · · ·xun = v0xv1 · · ·xvn
⇐⇒ u0xu1 · · ·xuj−1xp = v0xv1 · · ·xvj ∧ qxuj+1 · · ·xun = xvj+1 · · ·xvn
⇐⇒ u0xu1 · · ·xuj−1xpxvj+1 · · ·xvn = v0xv1 · · ·xvjqxuj+1 · · ·xun,

so E would be equivalent to the equation

((u0Xu1 · · ·Xuj−1XpXvj+1 · · ·Xvn, v0Xv1 · · ·XvjqXuj+1 · · ·Xun).

But this contradicts the assumption that there does not exists an equivalent equally
long equation for which the index j would be larger. We conclude that the only
possibility is that j = n, so Condition N2 holds.

If there were an index i ∈ {0, . . . , n} such that |u0 · · ·ui| > |v0 · · · vi−1|, then there
would exist words p, q, r such that ui = pq, vi = qr, and |u0 · · ·ui−1p| = |v0 · · · vi−1|,
and for any word x we would have the sequence of equivalences

u0xu1 · · ·xun = v0xv1 · · ·xvn
⇐⇒ u0xu1 · · ·xui−1xp = v0xv1 · · ·xvi−1x ∧ xui+1 · · ·xun = rxvi+1 · · ·xvn
⇐⇒ u0xu1 · · ·xui−1xpxui+1 · · ·xun = v0xv1 · · ·xvi−1xrxvi+1 · · ·xvn,
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so E would be equivalent to the shorter equation

(u0Xu1 · · ·Xui−1XpXui+1 · · ·Xun = v0Xv1 · · ·Xvi−1XrXvi+1 · · ·Xvn),

which would contradict the minimality of E. This shows that also Condition N3 holds,
so E is in normal form.

5. Sums and heights of solutions. In this section, we prove lemmas about
the sums and heights of solution words of one-variable equations in normal form.

Lemma 5.1. All solutions of an equation in the normal form are zero-sum.

Proof. Let the equation be (4.1). Let u′i = u0 · · ·ui−1 and v′i = v0 · · · vi−1 for all
i. After applying a solution [x] on the left-hand side and taking the area we get

A(u0xu1 · · ·xun)

=

n∑
i=0

(A(ui) + Σ(u0xu1 · · ·ui−1x)|ui|) +

n∑
i=1

(A(x) + Σ(u0xu1 · · ·xui−1)|x|)

=

n∑
i=0

(A(ui) + Σ(u′i)|ui|+ iΣ(x)|ui|) +

n∑
i=1

(A(x) + Σ(u′i)|x|+ (i− 1)Σ(x)|x|)

=A(u0 · · ·un) + Σ(x)

n∑
i=0

i|ui|+ nA(x) + |x|
n∑

i=1

Σ(u′i) +
(n− 1)n

2
· Σ(x)|x|.

We get a similar formula for A(v0xv1 · · ·xvn). Because u0xu1 · · ·xun = v0xv1 · · ·xvn,
we get

0 = A(u0xu1 · · ·xun)−A(v0xv1 · · ·xvn)

= A(u0 · · ·un)−A(v0 · · · vn) + Σ(x)

n∑
i=0

i(|ui| − |vi|) + |x|
n∑

i=1

(Σ(u′i)− Σ(v′i))

= Σ(x)

n∑
i=0

i(|ui| − |vi|) + |x|
n∑

i=1

(Σ(u′i)− Σ(v′i)).

(5.1)

By the definition of normal form, the equation has a nonempty zero-sum solution [x1].
Replacing x by x1 in (5.1) gives

0 = |x1|
n∑

i=1

(Σ(u′i)− Σ(v′i)).

Because |x1| > 0, we have
∑n

i=1(Σ(u′i)− Σ(v′i)) = 0. Then (5.1) takes the form

0 = Σ(x)

n∑
i=0

i(|ui| − |vi|),

so either Σ(x) = 0 or
∑n

i=0 i(|ui| − |vi|) = 0. The latter is not possible, because

n∑
i=0

i(|ui| − |vi|) =

n∑
i=1

(|ui · · ·un| − |vi · · · vn|)

=

n∑
i=1

(|u0 · · ·un| − |u′i| − (|v0 · · · vn| − |v′i|)) =

n∑
i=1

(−|u′i|+ |v′i|) > 0,
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by Condition N2 in the definition of normal form. Thus every solution [x] is zero-sum.

Lemma 5.2. Consider a nontrivial equation (4.1). Let si = Σ(u0 · · ·ui−1) and
ti = Σ(v0 · · · vi−1) for all i. If the equation has at least two zero-sum solutions, then
(s1, . . . , sn) is a permutation of (t1, . . . , tn).

Proof. Let [x] and [y] be two zero-sum solutions and let |x| > |y|. Because y is
a prefix and a suffix of x, also pswr(y) is a prefix and a suffix of pswr(x) for every
r. If a is any letter that appears in pswr(y), and if its last occurrence in pswr(y) is
at position k, then its last occurrence in pswr(x) is at a later position k + |x| − |y|.
Consequently, every letter that appears in pswr(y) appears more often in pswr(x).
Let (s′1, . . . , s

′
n) be the permutation of (s1, . . . , sn) such that s′i ≤ s′i+1 for all i, and

let (t′1, . . . , t
′
n) be the permutation of (t1, . . . , tn) such that t′i ≤ t′i+1 for all i. Let j be

the largest index such that s′j 6= t′j (if there is no such index, then we have proved the
lemma). Without loss of generality, let s′j > t′j . Let a = H(x) + s′j . Then

0 =|psw(u0xu1 · · ·xun)|a − |psw(v0xv1 · · ·xvn)|a
− |psw(u0yu1 · · · yun)|a + |psw(v0yv1 · · · yvn)|a(5.2)

=psw(u0) +

n∑
i=1

(|pswsi(x)|a + |pswsi(ui)|a)

− psw(v0)−
n∑

i=1

(|pswti(x)|a + |pswti(vi)|a)

− psw(u0)−
n∑

i=1

(|pswsi(y)|a + |pswsi(ui)|a)

+ psw(v0) +

n∑
i=1

(|pswti(y)|a + |pswti(vi)|a)(5.3)

=

n∑
i=1

(|pswsi(x)|a − |pswti(x)|a − |pswsi(y)|a + |pswti(y)|a)(5.4)

=

n∑
i=1

(|psws′i
(x)|a − |pswt′i

(x)|a − |psws′i
(y)|a + |pswt′i

(y)|a)(5.5)

=

j∑
i=1

(|psws′i
(x)|a − |pswt′i

(x)|a − |psws′i
(y)|a + |pswt′i

(y)|a)(5.6)

=

j∑
i=1

(|psws′i
(x)|a − |psws′i

(y)|a)(5.7)

≥|psws′j
(x)|a − |psws′j

(y)|a > 0,(5.8)

a contradiction. Here, (5.2) follows from x and y being solution words, (5.3) from
them being zero-sum, (5.4) from cancelling the terms related to the ui and vi words,
(5.5) from permuting the order of the terms in the sums, (5.6) from the definition of
j, (5.7) from a > H(x) + t′j ≥ H(x) + t′i ≥ H(y) + t′i for all i ∈ {1, . . . , j}, and (5.8)
from |psws′j

(x)|a > 0 and the fact that for all r, every letter that appears in pswr(y)

appears more often in pswr(x).

Lemma 5.3. Let (4.1) be an equation in normal form. Let

(5.9) h = H(u0 · · ·un)−max{Σ(u0 · · ·ui) | i ∈ {0, . . . , n− 1}}.
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If the equation has at least three nonempty solutions, then every nonempty solution is
of height h. If the equation has two nonempty solutions, then the shorter one is of
height h and the longer one of height at least h.

Proof. The idea of the proof is to look at the first occurrences of the highest points
on the curves of the left-hand side and the right-hand side of the equation; these must
match. If the length of the solution changes, these first occurrences often move with
respect to each other so that they no longer match; this puts a limit on the number of
solutions under certain conditions.

A first occurrence can be either inside a constant part or inside a variable. We
will see that if the first occurrences are inside constant parts on both sides, then the
solution is empty, if they are inside variables on both sides, then the solution is of
height at least h and there can be at most one solution of height more than h, and if
the first occurrence is inside a constant part on one side and inside a variable on the
other side, then the solution is of height h, and if there is a solution of height more
than h, then there can be at most one solution of height h.

For any word w, let φ(w) be its shortest prefix such that Σ(φ(w)) = H(w). For
any solution [x], we have

(5.10) φ(u0xu1 · · ·xun) = φ(v0xv1 · · ·xvn).

Let si = Σ(u0 · · ·ui−1) and ti = Σ(v0 · · · vi−1) for all i. Let i and j be such that
φ(u0 · · ·un) = u0 · · ·ui−1φ(ui) and φ(v0 · · · vn) = v0 · · · vj−1φ(vj). Because [ε] is a
solution, we have φ(u0 · · ·un) = φ(v0 · · · vn) and thus

(5.11) |u0 · · ·ui−1|+ |φ(ui)| = |v0 · · · vj−1|+ |φ(vj)|.

By (5.11) and Condition N3 in the definition of normal form, we have i > j.
Because [ε] is a solution, we have H(u0 · · ·un) = H(v0 · · · vn), and by Lemma 5.2,

max{Σ(u0 · · ·ui) | i ∈ {0, . . . , n− 1}} = max{Σ(v0 · · · vi) | i ∈ {0, . . . , n− 1}}.

From this and (5.9) it follows that

h = H(v0 · · · vn)−max{Σ(v0 · · · vi) | i ∈ {0, . . . , n− 1}}.

Let k and l be the smallest indices such that sk = max{s1, . . . , sn} and tl =
max{t1, . . . , tn}. Then

h = H(u0 · · ·un)− sk = H(v0 · · · vn)− tk.

To determine φ(u0xu1 · · ·xun), let us look at sums of prefixes of u0xu1 · · ·xun. If
u′r is a prefix of ur, we have

Σ(u0xu1 · · ·ur−1xu
′
r) = Σ(u0 · · ·ur−1u

′
r) ≤ H(u0 · · ·un) = sk + h,

and equality is first reached for r = i and u′r = φ(ui). If x′ is a prefix of x, we have

Σ(u0xu1 · · ·xur−1x
′) = Σ(u0 · · ·ur−1x

′) = sr + Σ(x′) ≤ sk +H(x),

and equality is first reached for r = k and x′ = φ(x). Thus

φ(u0xu1 · · ·xun) =

{
u0xu1 · · ·ui−1xφ(ui) if H(x) < h or if H(x) = h and i < k,

u0xu1 · · ·xuk−1φ(x) if H(x) > h or if H(x) = h and i ≥ k.
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Similarly, we see that

φ(v0xv1 · · ·xvn) =

{
v0xv1 · · · vj−1xφ(vj) if H(x) < h or if H(x) = h and j < l,

v0xv1 · · ·xvl−1φ(x) if H(x) > h or if H(x) = h and j ≥ l,

This means that, for a given x, (5.10) can take one of four possible forms:
(i) If H(x) < h or if H(x) = h, i < k and j < l, then

u0xu1 · · ·ui−1xφ(ui) = v0xv1 · · · vj−1xφ(vj)

and thus

|u0 · · ·ui−1|+ |φ(ui)|+ (i− j)|x| = |v0 · · · vj−1|+ |φ(vj)|.

Because i > j, it follows that this equality can hold for at most one |x|, so there
is only one possible x in this case, namely, the empty word.

(ii) If H(x) = h, i < k and j ≥ l, then

u0xu1 · · ·ui−1xφ(ui) = v0xv1 · · ·xvl−1φ(x),

but

|u0xu1 · · ·ui−1xφ(ui)| = |u0 · · ·ui−1|+ |φ(ui)|+ i|x|
=|v0 · · · vj−1|+ |φ(vj)|+ i|x| > |v0 · · · vl−1|+ l|x| ≥ |v0xv1 · · ·xvl−1φ(x)|

by (5.11) and i > j ≥ l, a contradiction.
(iii) If H(x) > h or if H(x) = h, i ≥ k and j ≥ l, then

u0xu1 · · ·xuk−1φ(x) = v0xv1 · · ·xvl−1φ(x)

and thus

|u0 · · ·uk−1|+ (k − l)|x| = |v0 · · · vl−1|.

By Condition N2 in the definition of normal form, k > l. It follows that this
equality can hold for at most one |x|, so there is only one possible x in this case.

(iv) If H(x) = h, i ≥ k and j < l, then

u0xu1 · · ·xuk−1φ(x) = v0xv1 · · · vj−1xφ(vj)

and thus

(5.12) |u0 · · ·uk−1|+ |φ(x)|+ (k − 1− j)|x| = |v0 · · · vj−1|+ |φ(vj)|.

If x and x′ are solution words, then one of them is a prefix of the other, so if they
have the same height, then φ(x) = φ(x′). Therefore, (5.12) can hold for more
than one solution word x of height h only if k − 1− j = 0. In general, this can
happen (for example, if the equation has infinitely many solutions). However, if
there exists a solution word of height more than h, then it follows from Case (iii)
that k > l. Then j < l < k, so k − 1 > j and there is at most one solution word
x of height h.
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This proves that the equation cannot have nonempty solution words of height less
than h, and if the equation has a solution word of height more than h, then there is at
most one other nonempty solution word, and it has height h.

Example 5.4. Consider the equation

(XaXbXaabbabaXbabaabbab, abaabbabaXbabaabbXaXbX)

that was mentioned in Example 2.8. Let a = 1 and b = −1. The equation has
exactly three solutions [ε], [ab], [abaabbab]. All of them are zero-sum, and their heights
are −∞, 1, 2, respectively. If we use the notation of the proof of Lemma 5.3, then
i = 3, j = 0, k = 2, l = 1, and h = 1. We have φ(ui) = φ(aabbaba) = aa,
φ(vj) = φ(abaabbaba) = abaa, φ(ab) = a, and φ(abaabbab) = abaa. Then

φ(xaxbxaabbabaxbabaabbab) =

{
xaxbxaa if x = ε,

xaφ(x) if x = abaabbab or if x = ab,

φ(abaabbabaxbabaabbxaxbx) =

{
abaa if x = ε or if x = ab,

abaabbabaφ(x) if x = abaabbab.

6. Some Lemmas. In this section, we state many lemmas about one-variable
equations that will be used in the proof of the main result.

A subset Z of Γ∗ is called a code if the elements of Z do not satisfy any nontrivial
relations. In other words, Z is a code if and only if for all x1, . . . , xm, y1, . . . , yn ∈ Z,
x1 · · ·xm = y1 · · · yn implies m = n and xi = yi for all i ∈ {1, . . . ,m}. If Z is a code,
then Z∗ is a free monoid. Conversely, the minimal generating set of a free monoid is a
code. If ∆ is an alphabet of the same size as Z, then the free monoids Z∗ and ∆∗ are
isomorphic. More information about codes and free monoids can be found in the book
of Berstel, Perrin and Reutenauer [2].

The next lemma can be used to compress an equation into a shorter one. We will
use it with two codes Z: The set of all minimal zero-sum words (those zero-sum words
which cannot be written as a product of two shorter zero-sum words), and the set of
words of a specific length. The fact that the set of all minimal zero-sum words is a
code follows from [21, Lemma 4].

Lemma 6.1. Let E be the equation (4.1) and let Z be a code. If ui, vi ∈ Z∗ for all
i, then there exists an alphabet ∆ and an isomorphism h : Z∗ → ∆∗, and the equation

(6.1) (h(u0)Xh(u1) · · ·Xh(un), h(v0)Xh(v1) · · ·Xh(vn))

has the solution set {[h(x)] | [x] ∈ Sol(E), x ∈ Z∗}.
Proof. There exists an alphabet ∆ and an isomorphism h : Z∗ → ∆∗ by the

definition of code. If x ∈ Z∗ is a solution word of E, then

h(u0)h(x)h(u1) · · ·h(x)h(un) = h(u0xu1 · · ·xun)

= h(v0xv1 · · ·xvn) = h(v0)h(x)h(v1) · · ·h(x)h(vn),

so [h(x)] is a solution of (6.1). On the other hand, if [y] is a solution of (6.1), then
there exists x ∈ Z∗ such that h(x) = y, and

h(u0xu1 · · ·xun) = h(u0)yh(u1) · · · yh(un)

= h(v0)yh(v1) · · · yh(vn) = h(v0xv1 · · ·xvn),

so u0xu1 · · ·xun = v0xv1 · · ·xvn and [x] is a solution of E. This completes the proof.
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Note that the equation E in Lemma 6.1 can have solution words that are not in
Z∗, so (6.1) can have less solutions than E.

The next lemma can be used to cut off part of an equation so that all solutions are
preserved, except possibly the empty solution (and maybe some additional solutions
are added).

Lemma 6.2. Consider the equation (4.1). Let k ∈ {0, . . . , n} and let

d = |v0 · · · vk−1| − |u0 · · ·uk| ≥ 0.

If all nonempty solutions of the equation are of length at least d, and if y is the
common prefix of length d of all nonempty solution words, then each one of the
nonempty solutions is a solution of the equation

(6.2) (u0Xu1 · · ·Xuky, v0Xv1 · · · vk−1X).

Proof. If h is a nonempty solution of (4.1), then

h(u0Xu1 · · ·Xun) = h(v0Xv1 · · ·Xvn).

Here the left-hand side has a prefix h(u0Xu1 · · ·Xuky) and the right-hand side has a
prefix h(v0Xv1 · · · vk−1X). These prefixes are of the same length, so they are equal.
Thus h is a solution of (6.2).

Using Lemma 6.2 requires the existence of a suitable index k. The next two
lemmas can sometimes be used to find such an index. The proof of Lemma 6.3 is
somewhat similar to the proof of Lemma 5.3, but simpler.

Lemma 6.3. Let (4.1) be an equation in normal form. If it has at least three
nonempty solutions, and if there exists k ∈ {1, . . . , n− 1} such that

Σ(u0) = · · · = Σ(uk−1) = 0 6= Σ(uk),

then every nonempty solution is of length more than |v0 · · · vk−1| − |u0 · · ·uk|.
Proof. By symmetry, we can assume that Σ(uk) > 0. By Lemma 5.3, the nonempty

solutions have a common height h. For any word w of height at least Σ(uk) + h,
let ψ(w) be its shortest prefix such that H(ψ(w)) ≥ Σ(uk) + h. If [x] is a nonempty
solution, then there exist indices i, j and words u, v such that u is a nonempty prefix
of uix, v is a nonempty prefix of vjx and

ψ(u0xu1 · · ·xun) = u0xu1 · · ·ui−1xu, ψ(v0xv1 · · ·xvn) = v0xv1 · · · vj−1xv.

Here i, j, u, v are the same for all x, because every x has sum zero and height h, and
the shortest x is a prefix of every other x. Clearly i ≤ k, because

H(u0xu1 · · ·ukx) ≥ Σ(u0xu1 · · ·xuk) + h = Σ(uk) + h.

We know that ψ(u0xu1 · · ·xun) = ψ(v0xv1 · · ·xvn) (actually, we only need the fact
that these words have the same length). Because

|u0xu1 · · ·ui−1xu| = |v0xv1 · · · vj−1xv|

for more than one |x|, it must be i = j, and then |u0 · · ·ui−1u| = |v0 · · · vi−1v|. Because
|u0 · · ·ui| ≤ |v0 · · · vi−1| by Condition N3 in the definition of normal form, u cannot
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be a prefix of ui. This means that H(u0xu1 · · ·xui) < Σ(uk) + h. If i < k, then
ui is zero-sum and thus adding x after xui does not increase the height, so also
H(u0xu1 · · ·uix) < Σ(uk) + h, which is a contradiction. Therefore i = k. If there
exists a nonempty solution [x] of length at most |v0 · · · vk−1| − |u0 · · ·uk|, then

|u0 · · ·uk−1u| ≤ |u0 · · ·ukx| ≤ |v0 · · · vk−1| < |v0 · · · vk−1v|,

a contradiction.

Lemma 6.4. Let the equation (4.1) have the solution set [p∗] for some primitive
word p. Let u0 = vn = ε. Let j ∈ {0, . . . , n} be the largest index such that the lengths
of u0, . . . , uj−1 and v0, . . . , vj−1 are divisible by |p|. Then j > 0 and |v0 · · · vj−1| −
|u0 · · ·uj | < |p|.

Proof. If j = n, the claim is clear. Otherwise, at least one of |uj |, |vj | is not divisible
by |p|. Let m be such that |pm−1| ≥ |v0 · · · vj | − |u0 · · ·uj |. Let d = |v0 · · · vj−1| −
|u0 · · ·uj |.

Let r be the prefix of pm of length |pm| − |v0 · · · vj |+ |u0 · · ·uj | ≥ |p|, and let p′ be
the suffix of r of length |p|. Because p is primitive, p′ = p if and only if |r| is divisible
by |p|. We have u0p

mu1 · · ·ujpm = v0p
mv1 · · · pmvjr, and it follows that p = p′, so |r|

is divisible by |p|. This means that |uj | and |vj | are congruent modulo |p|, so neither
of them is divisible by |p|. Consequently, j 6= 0 and d is not divisible by |p|.

Let s be the prefix of pm of length d. If d > |p|, we can let p′′ be the suffix of s
of length |p|. Because p is primitive, p′′ = p if and only if |s| is divisible by |p|. We
have u0p

mu1 · · · pmujs = v0p
mv1 · · · vj−1p

m, and it follows that p = p′′, so |s| = d is
divisible by |p|. This is a contradiction, so d < |p|.

Lemma 6.2 does not guarantee that the new, shorter equation would have the
empty solution. Sometimes the next lemma can be used to get around this problem.

Lemma 6.5. If the equation (4.1) has a nonempty solution, un = uam for some
u ∈ Γ∗, a ∈ Γ and m ≥ 0, and u0 · · ·un−1u is a prefix of v0 · · · vn, then the equation
has the empty solution.

Proof. Let y be a word such that u0 · · ·un−1uy = v0 · · · vn. We say that words
p, q are abelian equivalent if |p|b = |q|b for all letters b. Because (4.1) has a solu-
tion, u0 · · ·un−1ua

m and v0 · · · vn are abelian equivalent. Thus u0 · · ·un−1uy and
u0 · · ·un−1ua

m are abelian equivalent, so y and am are abelian equivalent and y = am.
The claim follows.

7. Main results. Now we are ready to prove our main results.

Theorem 7.1. If a one-variable equation has only finitely many solutions, it has
at most three solutions.

Proof. Assume that there is a counterexample. Then there is one with an empty
solution by Lemma 4.1. Of all equations with the empty solution, at least three
nonempty solutions, and only finitely many solutions, let E1 be a shortest one. We are
going to prove a contradiction by showing that there exists a shorter equation with
these properties. By Lemma 4.4, we can assume that E1 is the equation (4.1) and it
is in normal form. By Lemma 5.1, each one of its solutions is zero-sum.

The idea of the proof is to cut off part of the equation to get a shorter equation
E2 that has at least three nonempty solutions but only finitely many. Unfortunately,
E2 does not necessarily have the empty solution. We map E2 with a length-preserving
mapping to get an equation E3 that has at least three nonempty solutions and also
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the empty solution. Unfortunately, E3 might have infinitely many solutions. We
analyze E3 to find another way to cut off part of E1 to get an equation E4, which is
then modified to an equation E5. For E5, we can finally prove that it has the empty
solution and at least three but only finitely many nonempty solutions.

If Σ(ui) = 0 for all i < n, then Σ(vi) = 0 for all i < n by Lemma 5.2, and then
also Σ(un) = 0, because Σ(u0 · · ·un) = Σ(v0 · · · vn) and vn = ε. Thus all ui, vi are
zero-sum. If it were ui, vi ∈ 0∗ for all i, then the equation would have infinitely many
solutions, which is not possible. We can use Lemma 6.1 with Z the set of all minimal
zero-sum words to get a shorter equation with the same number of solutions, one of
them empty.

For the rest of the proof, we assume that there exists a minimal k < n such that
Σ(uk) 6= 0. By symmetry, we can assume that Σ(uk) > 0. By Lemmas 6.3 and 6.2, we
get a shorter equation

E2 : (u0Xu1 · · ·Xuky, v0Xv1 · · · vk−1X)

that has at least all the same nonempty solutions as E1. It might have some other
solutions as well, but it cannot have infinitely many solutions, because the intersection
of an infinite solution set of a nontrivial one-variable equation and a finite solution set
of a one-variable equation is of size at most two by Theorem 2.9 and Corollary 2.11. If
it has also the empty solution, then we are done, but we do not know yet whether this
is the case. We can use Lemma 5.2 for E2 to see that (Σ(u0), . . . ,Σ(u0 · · ·uk−1)) and
(Σ(v0), . . . ,Σ(v0 · · · vk−1)) are permutations of each other. We know that u0, . . . , uk−1

are zero-sum, so also v0, . . . , vk−1 are zero-sum.
Let [x1] be the shortest nonempty solution of E1. Let {a, b} be an alphabet

and let g be the morphism that maps the letter min(psw(x1)) to b and every other
letter to a. Let f = g ◦ psw. Then f is length-preserving, and if w is zero-sum, then
f(ww′) = f(w)f(w′). If [x] is a nonempty solution of E1, then [f(x)] is a solution of
the equation

E3 : (f(u0)Xf(u1) · · ·Xf(uky), f(v0)Xf(v1) · · · f(vk−1)X).

We have f(uky) = f(uk)g(pswΣ(uk)(y)). Because Σ(uk) > 0 and y is a prefix of x1,
min(pswΣ(uk)(y)) > min(psw(x1)). Thus g(pswΣ(uk)(y)) ∈ a∗. Because u0 · · ·uk is a
prefix of v0 · · · vk−1, also f(u0 · · ·uk) = f(u0) · · · f(uk) is a prefix of f(v0 · · · vk−1) =
f(v0) · · · f(vk−1). We can use Lemma 6.5 with g(pswΣ(uk)(y)) as am, so E3 has the
empty solution. If it has only finitely many solutions, then we are done. For the rest
of the proof, we assume that it has infinitely many solutions. Then its solution set
is [(qp)∗q] for some primitive word qp by Theorem 2.9. From ε ∈ [(qp)∗q] it follows
that q = ε, so the solution set is [p∗] and p is primitive. Consequently, the length of
every solution word of E1 is divisible by |p|. Because the solution word f(x1) of E3

contains the letter b, also p must contain b. This means that p cannot be a suffix of
g(pswΣ(uk)(y)) ∈ a∗, so |p| > |y|.

We can use Lemma 6.4 for E3 to find an index j such that the lengths of u0, . . . , uj−1

and v0, . . . , vj−1 are divisible by |p| and, if j < k, we have |v0 · · · vj−1|−|u0 · · ·uj | < |p|
(remember that f is length-preserving). By letting z = y if j = k, or by using Lemma 6.2
with j as k for E1 otherwise, we get an equation

E4 : (u0Xu1 · · ·Xujz, v0Xv1 · · · vj−1X),

where z is the common prefix of length |v0 · · · vj−1| − |u0 · · ·uj | < |p| of all nonempty
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solution words of E1, and E4 has at least all the same nonempty solutions as E1. Like
in the case of E2, we see that E4 cannot have infinitely many solutions. The lengths
of all the constant words in E4 are divisible by |p|, and so are the lengths of at least
three nonempty solutions (the solutions of E1). We can use Lemma 6.1 with Z = Γ|p|

for E4. If h is the morphism of Lemma 6.1, then we get the equation

E5 : (h(u0)Xh(u1) · · ·Xh(ujz), h(v0)Xh(v1) · · ·h(vj−1)X).

It has at least three nonempty solutions, but only finitely many. Because |z| ≤ |p|,
we have h(ujz) = h(u)c, where u is a prefix of uj and c is a letter. Because u0 · · ·uj
is a prefix of v0 · · · vj−1, also h(u0 · · ·uj−1u) = h(u0) · · ·h(uj−1)h(u) is a prefix of
h(v0 · · · vk−1) = h(v0) · · ·h(vk−1). We can use Lemma 6.5 with c as a and m = 1, so
E5 has the empty solution. This contradicts the minimality of E1.

Theorem 7.2. If a system of constant-free three-variable equations is independent
and has a nonperiodic solution, then it has at most 17 equations.

Proof. Follows from Theorem 7.1 and Theorem 2.12.

Theorem 7.3. If a decreasing chain of constant-free three-variable equations has
a nonperiodic solution, then it has at most 20 equations.

Proof. Follows from Theorem 7.1 and Theorem 2.13.

8. Conclusion. We have proved that the maximal size of a finite solution set of a
one-variable word equation is three, and that the maximal size of an independent system
of constant-free three-variable equations with a nonperiodic solution is somewhere
between 2 and 17.

Improving the bound 17 is an obvious open problem. A possible approach would
be to improve the results in [18].

Another open problem is proving similar bounds for more than three variables.
The result in [18] is based on a characterization of three-generator subsemigroups
of a free semigroup by Budkina and Markov [3], or alternatively a similar result by
Spehner [24, 25]. This means that it is very specific to the three-variable case, and
analyzing the general case would require an entirely different approach.

Finally, characterizing possible solution sets of one-variable equations would be
interesting. The possible infinite solution sets are given by Theorem 2.9, and every
singleton set is possible, but for sets of size two or three the question is open.
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