6 research outputs found

    Coherent Crosstalk of an Optical Add/Drop Filter with Bragg Gratings in a PLC Mach-Zehnder Interferometer for Optical LAN

    Get PDF
    The coherent crosstalk of an add/drop filter with Bragg gratings written in a planar lightwave circuit Mach-Zehnder interferometer is investigated experimentally and theoretically. The filter is used to design an optical local area network without any optical amplifiers, based on the coherent crosstalk limitation

    Space station systems: A bibliography with indexes

    Get PDF
    This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station

    High speed nonlinear optical components for next-generation optical communications

    Get PDF
    Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration

    PAPER Performance Analysis of Coherent Ultrashort Light Pulse CDMA Communication Systems with Nonlinear Optical Thresholder ∗

    No full text
    SUMMARY We theoretically analyze the performance of coherent ultrashort light pulse code-division multiple-access (CDMA) communication systems with a nonlinear optical thresholder. The coherent ultrashort light pulse CDMA is a promising system for an optical local area network (LAN) due to its advantages of asynchronous transmission, high information security, multiple access capability, and optical processing. The nonlinear optical thresholder is based on frequency chirping induced by self-phase modulation (SPM) in optical fiber, and discriminates an ultrashort pulse from multiple access interference (MAI) with picosecond duration. The numerical results show that the thermal noise caused in a photodetector dominates the bit error rate (BER). BER decreases as the fiber length in the nonlinear thresholder and the photocurrent difference in the photodetector increase. Using the nonlinear optical thresholder allows for the response time of the photodetector to be at least 100 times the duration of the ultrashort pulses. We also show that the optimum cut-off frequency at the nonlinear thresholder to achieve the minimum BER increases with fiber length, the total number of users, and the load resistance in the photodetector. key words: coherent ultrashort light pulse code-division multiple-access (CDMA), nonlinear optical thresholder, self-phase modulation (SPM), frequency chirping, fiber-optic high-speed communications 1
    corecore