27,809 research outputs found

    In Silico Approaches and the Role of Ontologies in Aging Research

    Get PDF
    The 2013 Rostock Symposium on Systems Biology and Bioinformatics in Aging Research was again dedicated to dissecting the aging process using in silico means. A particular focus was on ontologies, as these are a key technology to systematically integrate heterogeneous information about the aging process. Related topics were databases and data integration. Other talks tackled modeling issues and applications, the latter including talks focussed on marker development and cellular stress as well as on diseases, in particular on diseases of kidney and skin

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    Constructing Ontology-Based Cancer Treatment Decision Support System with Case-Based Reasoning

    Full text link
    Decision support is a probabilistic and quantitative method designed for modeling problems in situations with ambiguity. Computer technology can be employed to provide clinical decision support and treatment recommendations. The problem of natural language applications is that they lack formality and the interpretation is not consistent. Conversely, ontologies can capture the intended meaning and specify modeling primitives. Disease Ontology (DO) that pertains to cancer's clinical stages and their corresponding information components is utilized to improve the reasoning ability of a decision support system (DSS). The proposed DSS uses Case-Based Reasoning (CBR) to consider disease manifestations and provides physicians with treatment solutions from similar previous cases for reference. The proposed DSS supports natural language processing (NLP) queries. The DSS obtained 84.63% accuracy in disease classification with the help of the ontology

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    Biological control networks suggest the use of biomimetic sets for combinatorial therapies

    Get PDF
    Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, but these "many-to-many" combinatorial control systems are poorly understood. Here we analyze distinct cellular networks (transcription factors, microRNAs, and protein kinases) and a drug-target network. Certain network properties seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ~8% of targets and the density of links is 2.5% \pm 1.2%. Links per node are predominantly exponentially distributed, implying conservation of the average, which we explain using a mathematical model of robustness in control networks. These findings suggest that optimal pharmacological strategies may benefit from a similar, many-to-many combinatorial structure, and molecular tools are available to test this approach.Comment: 33 page

    Cellular interactions in the tumor microenvironment: the role of secretome

    Get PDF
    Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.Agência financiadora Fundação de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) FAPESP 10/51168-0 12/06048-2 13/03839-1 National Council for Scientific and Technological Development (CNPq) CNPq 306216/2010-8 Fundacao para a Ciencia e a Tecnologia (FCT) UID/BIM/04773/2013 CBMR 1334info:eu-repo/semantics/publishedVersio

    Towards a New Science of a Clinical Data Intelligence

    Full text link
    In this paper we define Clinical Data Intelligence as the analysis of data generated in the clinical routine with the goal of improving patient care. We define a science of a Clinical Data Intelligence as a data analysis that permits the derivation of scientific, i.e., generalizable and reliable results. We argue that a science of a Clinical Data Intelligence is sensible in the context of a Big Data analysis, i.e., with data from many patients and with complete patient information. We discuss that Clinical Data Intelligence requires the joint efforts of knowledge engineering, information extraction (from textual and other unstructured data), and statistics and statistical machine learning. We describe some of our main results as conjectures and relate them to a recently funded research project involving two major German university hospitals.Comment: NIPS 2013 Workshop: Machine Learning for Clinical Data Analysis and Healthcare, 201
    • …
    corecore