632 research outputs found

    Predictive task assignment in spatial crowdsourcing: A data-driven approach

    Get PDF
    With the rapid development of mobile networks and the widespread usage of mobile devices, spatial crowdsourcing, which refers to assigning location-based tasks to moving workers, has drawn increasing attention. One of the major issues in spatial crowdsourcing is task assignment, which allocates tasks to appropriate workers. However, existing works generally assume the static offline scenarios, where the spatio-temporal information of all the workers and tasks is determined and known a priori. Ignorance of the dynamic spatio-temporal distributions of workers and tasks can often lead to poor assignment results. In this work we study a novel spatial crowdsourcing problem, namely Predictive Task Assignment (PTA), which aims to maximize the number of assigned tasks by taking into account both current and future workers/tasks that enter the system dynamically with location unknown in advance. We propose a two-phase data-driven framework. The prediction phase hybrids different learning models to predict the locations and routes of future workers and designs a graph embedding approach to estimate the distribution of future tasks. In the assignment component, we propose both greedy algorithm for large-scale applications and optimal algorithm with graph partition based decomposition. Extensive experiments on two real datasets demonstrate the effectiveness of our framework

    SMAP: A Novel Heterogeneous Information Framework for Scenario-based Optimal Model Assignment

    Full text link
    The increasing maturity of big data applications has led to a proliferation of models targeting the same objectives within the same scenarios and datasets. However, selecting the most suitable model that considers model's features while taking specific requirements and constraints into account still poses a significant challenge. Existing methods have focused on worker-task assignments based on crowdsourcing, they neglect the scenario-dataset-model assignment problem. To address this challenge, a new problem named the Scenario-based Optimal Model Assignment (SOMA) problem is introduced and a novel framework entitled Scenario and Model Associative percepts (SMAP) is developed. SMAP is a heterogeneous information framework that can integrate various types of information to intelligently select a suitable dataset and allocate the optimal model for a specific scenario. To comprehensively evaluate models, a new score function that utilizes multi-head attention mechanisms is proposed. Moreover, a novel memory mechanism named the mnemonic center is developed to store the matched heterogeneous information and prevent duplicate matching. Six popular traffic scenarios are selected as study cases and extensive experiments are conducted on a dataset to verify the effectiveness and efficiency of SMAP and the score function

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Preference-aware Task Assignment in Spatial Crowdsourcing:from Individuals to Groups

    Get PDF

    A survey of spatial crowdsourcing

    Get PDF

    Allocating Heterogeneous Tasks in Participatory Sensing with Diverse Participant-Side Factors

    Get PDF
    This paper proposes a novel task allocation framework, PSTasker, for participatory sensing (PS), which aims to maximize the overall system utility on PS platform by coordinating the allocation of multiple tasks. While existing studies mainly optimize the task allocation from the perspective of the task organizer (e.g., maximizing coverage or minimizing incentive cost), PSTasker further considers diverse factors on the participants' side, including user work bandwidth, user availability, devices' sensor configuration, task completion likelihood, and mobility pattern. Furthermore, by considering the heterogeneity in three dimensions (i.e., task, time and space), it adopts a novel model to measure task sensing quality and overall system utility. In PSTasker, it first calculates the utlity of a given task allocation plan by jointly fusing different participant-side factors into one unified estimation function, and then employs an iterative greedy process to optimize the task allocation. Extensive evaluations based on real-world mobility traces demonstrate that PSTasker outperforms the baseline methods under various settings

    Transit-based Task Assignment in Spatial Crowdsourcing

    Get PDF

    Multi-modal Spatial Crowdsourcing for Enriching Spatial Datasets

    Get PDF

    A survey of spatial crowdsourcing

    Get PDF
    corecore