
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

4-2020

Predictive task assignment in spatial crowdsourcing: A data-Predictive task assignment in spatial crowdsourcing: A data-

driven approach driven approach

Yan ZHAO

Kai ZHENG

Yue CUI

Han SU

Feida ZHU
Singapore Management University, fdzhu@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/372715238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5652&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yan ZHAO, Kai ZHENG, Yue CUI, Han SU, Feida ZHU, and Xiaofang ZHOU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5652

https://ink.library.smu.edu.sg/sis_research/5652

Predictive Task Assignment in Spatial
Crowdsourcing: A Data-driven Approach

Yan Zhao
School of Computer Science and Technology

Soochow University
Suzhou, China

zhaoyan@suda.edu.cn

Kai Zheng*

University of Electronic Science
and Technology of China

Chengdu, China
zhengkai@uestc.edu.cn

Yue Cui
University of Electronic Science

and Technology of China
Chengdu, China

cuipaofu@gmail.com

Han Su
University of Electronic Science

and Technology of China
Chengdu, China

hansu@uestc.edu.cn

Feida Zhu
Singapore Management University

Singapore
fdzhu@smu.edu.sg

Xiaofang Zhou
University of Queensland

Brisbane, Australia
zxf@itee.uq.edu.au

Abstract—With the rapid development of mobile networks and
the widespread usage of mobile devices, spatial crowdsourcing,
which refers to assigning location-based tasks to moving workers,
has drawn increasing attention. One of the major issues in
spatial crowdsourcing is task assignment, which allocates tasks to
appropriate workers. However, existing works generally assume
the static offline scenarios, where the spatio-temporal information
of all the workers and tasks is determined and known a priori.
Ignorance of the dynamic spatio-temporal distributions of work-
ers and tasks can often lead to poor assignment results. In this
work we study a novel spatial crowdsourcing problem, namely
Predictive Task Assignment (PTA), which aims to maximize the
number of assigned tasks by taking into account both current
and future workers/tasks that enter the system dynamically
with location unknown in advance. We propose a two-phase
data-driven framework. The prediction phase hybrids different
learning models to predict the locations and routes of future
workers and designs a graph embedding approach to estimate
the distribution of future tasks. In the assignment component,
we propose both greedy algorithm for large-scale applications
and optimal algorithm with graph partition based decomposition.
Extensive experiments on two real datasets demonstrate the
effectiveness of our framework.

Keywords-prediction, task assignment, spatial crowdsourcing

I. INTRODUCTION

Along with the ubiquity of GPS-equipped smart devices
and the high availability of wireless network, a new class
of crowdsourcing that has enabled people to move as multi-
modal sensors collecting and sharing various types of high-
fidelity spatio-temporal data instantaneously, also known as
Spatial Crowdsourcing (SC), has drawn increasing attention.
Specifically, with spatial crowdsourcing, requesters can issue
spatial tasks, such as taking photos/videos, monitoring traffic
condition and reporting local hot spots, to the SC server
dynamically and workers are assigned to these tasks by the
server based on their locations and other constrains, which is
referred to as task assignment.

* Corresponding author: Kai Zheng.

There have been extensive studies on task assignment in SC,
most of which are mainly based on the assumption of static
offline scenarios, i.e., the locations of workers and tasks are
known a priori either explicitly or implicitly. However, spatial
crowdsourcing is a real-time platform in practical scenarios,
on which workers and tasks become online dynamically with
locations unknown in advance. Some recent work has explored
the online assignment approaches in SC, where newly arrived
tasks are assigned to the suitable workers based on the current
task assignment [1]–[3]. Nevertheless they do not take into
account future workers/tasks that have not entered the system.

Existing studies have shown that most people make journeys
of a repetitive nature, such as going to and from a place of
work, which makes predicting the location/route of a worker
based on her previous traveling history possible [4]. In addi-
tion, by analyzing the task execution trajectories, along which
a worker performs spatial tasks, we can not only understand
individual’s mobility patterns but also obtain valuable insights
about her task execution behavior, which can be further
utilized to improve the quality of spatial crowdsourcing. Peng
et al. [5] are the first to utilize historical data to enhance the
quality of task assignment by predicting the spatial distribution
of workers/tasks in the next time instance. In this work we will
go further in this direction and use a data-driven approach
to predict locations/routes of workers and locations of tasks
for a longer time duration, and then optimize the global task
assignment based on this prediction.

Figure 1 illustrates an example of the dynamic spatial task
assignment problem with three workers’ paths indicated as
Pw1 , Pw2 and Pw3 , and spatial tasks shown as {s1, ..., s8}.
Each path is a sequence of locations with time stamps (i.e.,
location l28 and l39 of path Pw2

with time stamp 2 and 3
respectively), and the current time instance is 3. Each worker
is associated with her reachable distance range, which is set
to 1.2. In addition, each spatial task, published and expired at
different time instances, is labelled with its location where it

Spatiotemporal distribution of tasks

location publish time expiration
time

S1 (3.5, 3) 2 5

S2 (3.5, 2) 3 6

S3 (3, 1.5) 4 8

S4 (5, 2.5) 4 7

S5 (5.5, 1.5) 3 8

S6 (8, 1.5) 2 5

S7 (7.2, 2.8) 4 6

S8 (6.5, 2.8) 3 7

time

x

y

now

past future

S1

S2

S3

S4

w2

l71

(4,4)
l82

(4,3)

l11 (3,1)
l22 (4,1)

l33 (4,2)
l10

4 (3,2)

l11
5 (2,2) l12

6 (1,2)

l93

(3,3) l44 (5,2) l55 (5,1)

l66 (6,1)

l13
4

(8,2)

l14
5

(7,2)
l15

6

(7,3)

S5

S6

S7

S8

w1

w3

Task that has been published but has not been assigned

Future task that will be published in the future

Available task

Historical path

Future path

Path

Fig. 1. Running Example

will be performed only once. The online spatial crowdsourcing
problem in our work is to assign tasks to the suitable workers
at both current and future timestamps so as to maximize the
total number of assigned tasks. To better understand the spatio-
temporal distributions of workers and tasks, we map all the
location points of the 3D space (in Figure 1) into a 2D spatial
plane, as shown in Figure 2.

It is intuitive to assign the nearby tasks to workers without
violating the spatio-temporal constraint of workers and tasks
to maximize the current assignment at every instance of time,
referred to as Maximum Task Assignment (MTA) instance
problem [6]. Therefore, in our example, we assign task s1
to worker w2, and s2 to w1 at the present time to achieve
the maximal number of assigned tasks, i.e., 2. Similarly, in
the next time instance (i.e., 4), we can assign w1 with s3
and w3 with s6, achieving the maximal number of assigned
tasks at time instance 4, i.e., the maximal number equals to 2.
However, the remaining tasks cannot be assigned to workers
since workers are not able to arrive at the locations of the
remaining tasks after performing their own assigned tasks. As
a result, such an assignment strategy during a time period (e.g.,
time instance 3-6) leads to the overall number of assigned
tasks, 4 (= 2 + 2), which is depicted in Figure 2(a).

However, the above assignment approach just tries to max-
imize the current assignment (i.e., local optimization instead
of global optimization) without considering the future work-
ers/tasks that may dynamically appear in the future time in-
stances. When future workers/tasks are known a priori, the task
assignment problem can be reduced to the classic Maximum
Coverage Problem [7] and its variants. Nevertheless, the main
challenge with SC comes from the dynamism of the arriving
workers/tasks, which renders an optimal solution infeasible in
the online scenario.

To overcome this challenge, we propose a data-driven
framework, called Data-driven Predictive Spatial Task Assign-
ment (DPSTA), which consists of prediction phase and assign-
ment phase. The first phase aims to predict the spatio-temporal
distributions of workers/tasks in the future time instances. For
worker prediction, based on two different task assignment
(e.g., location/route-specific task assignment) strategies, we
introduce the Spatial Temporal Recurrent Neural Network (ST-
RNN) model to predict the appearance location for each future
worker, and design a hybrid model to predict the potential
route for each current/future worker based on her traveling
history. For task prediction, we design a Path Constrained

DeepWalk (PC-DeepWalk) algorithm to estimate the number
of future tasks, and then utilize the Kernel Density Estimation
(KDE) approach to predict the locations for future tasks by
considering the tasks as spatial point events. In the second
phase, the Location/Route-specific Maximal Valid Task Sets
(L/R-MaxVTSs, see Definition 6) are firstly calculated for each
worker based on the current and future workers/tasks. Then
we need to tackle the computation issue in the huge search
space when enumerating all possible combinations of the valid
task sets of each worker, which increases exponentially with
respect to the number of workers. For the sake of efficiency,
we propose a greedy algorithm that tries to assign each worker
with the maximal L/R-MaxVTSs from the unassigned tasks.
We also develop an exact graph partition based decomposition
algorithm that finds the optimal assignment result in terms
of the total number of assigned tasks. Figure 2(b) illustrates
the task scheduling and assignment by applying our exact
location-specific method that covers 6 tasks, and Figure 2(c)
shows the task assignment result by applying our exact route-
specific method, which covers 7 tasks.

The contributions of this paper can be summarized as
follows:

i) We provide a Data-driven Predictive Spatial Task As-
signment (DPSTA) framework for spatial crowdsourcing with
the aim of optimizing the global task assignment when both
workers and tasks appear dynamically in a given time duration.

ii) Two novel strategies are proposed to predict the future
locations and routes for workers based on their traveling
histories.

iii) We design an effective graph embedding mechanism to
estimate the spatio-temporal distributions for tasks.

iv) We propose greedy and optimal algorithms for task as-
signment to trade off assignment efficiency and effectiveness.

v) Extensive experiments are conducted with real-world
datasets, where the empirical results confirm that our solutions
are effective in assigning spatial tasks in a real-time manner.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work and Section III provides
notations and the proposed problem, along with a brief in-
troduction of the framework overview. In Section IV and V,
we design different prediction strategies for workers and tasks
respectively. The greedy and exact task assignment algorithms
are then presented in Section VI, followed by the experimental
results in Section VII. Finally, we conclude the paper in
Section VIII.

II. RELATED WORK

Spatial Crowdsourcing (SC) can be deemed as one of
the main enablers to complete location-based tasks [8]–[11].
According to the task publish mode, SC can be classified into
two categories namely Server Assigned Tasks (SAT) mode
and Worker Selected Tasks (WST) mode. Most existing works
adopt SAT mode, where the SC server takes charge of the
task assignment process. In SAT mode, the server assigns
proper tasks to nearby workers in order to achieve some system
optimization goals such as maximizing the number of assigned

S2

S1

S6

x

y

1 2 3 4 5 6 7 8

1

2

3

4

0

l33 l44

l55

l66

S5

S4
l93

l10
4l11

5

l12
6

l13
4

l14
5

l15
6

S3

S7S8

w2

w1

w3

scheduling route

(a) Snapshot Routes by MTA

S2

S1

S6

x

y

1 2 3 4 5 6 7 8

1

2

3

4

0

l33

S5

S4
l93

l13
4

S3

w2

w1

w3

scheduling route

S7S8

(b) Online Routes by Our Location-specific
Method

S2

S1

S6

x

y

1 2 3 4 5 6 7 8

1

2

3

4

0

l33 l44

l55

l66

S5

S4
l93

l10
4l11

5

l12
6

l13
4

l14
5

l15
6

S3

w2

w1

scheduling route

S7S8

w3

(c) Online Routes by Our Route-specific Method

Fig. 2. Task Scheduling and Assignment

tasks after collecting all the locations of workers/tasks [5],
[12], [13], or maximizing the coverage of required skills of
workers [14]. A majority of the research carried out so far
has been based on the assumption of static offline scenarios,
i.e., the spatio-temporal distributions of workers and tasks are
known a priori. It means that these studies do not consider the
challenges of real-time spatial task assignment, where workers
and tasks can come and go at any time.

However, SC is a real-time platform, through which both
workers and tasks occur dynamically. Recent studies focus
on devising algorithms to solve the online task assignment
problems in SC [1]–[3], [15], [16]. Specifically, in [1], the
online spatial task assignment problem is addressed by the
Online Minimum Bipartite Matching approach, where only
tasks are released dynamically following the random order
model. By considering the dynamic workers and tasks, [2]
focuses on online mobile micro-task allocation, which assumes
the spatial distributions of workers/tasks are known and their
arrival orders follow the random order model. However, the oc-
currences of workers/tasks are affected by complicated factors
that are hard to be captured by a single fixed model. The online
route planning problem for a crowd worker is also proposed
to maximize the number of completed tasks [16], in which
only the occurrence of tasks is dynamic. In order to assign
three types of objects (e.g., workers, tasks and workplaces)
that dynamically appear, Song et al. [3] design a Trichromatic
Online Matching model to maximize the total utility of worker-
task-workplace matching. The aforementioned works only
consider the current and newly released workers/tasks but

TABLE I
SUMMARY OF NOTATIONS

Notation Definition

s Spatial task
s.r Released time of spatial task s
s.l Location of spatial task s
s.e Expiration time of spatial task s
s.c Category of spatial task s
t A time instance
T Time instance set
w Available worker
w.φ Available time of worker w
w.range Reachable distance of worker w
w.P Route of worker w during her available time
Sw A task set for w
R A task sequence
t(l) Arrival time of particular location l
c(a, b) Travel time from a to b
L-V TS(w) A location-specific valid task set of w
R-V TS(w) A route-specific valid task set of w
L-MaxV TS(w) A location-specific maximal valid task set of w
R-MaxV TS(w) A route-specific maximal valid task set of w
A A spatial task assignment
A A spatial task assignment set

ignore the future ones.
The closest related research to ours is [5], which studies

the prediction-based online spatial task assignment problem.
However, it differs from our work in terms of the problem
setting and objectives. First, [5] assigns tasks by worker-task
matching based on the spatio-temporal distributions in the
current and next time instance, while we assign tasks by giving
a scheduled task sequence for each worker on the basis of the
spatio-temporal distributions in the current and multiple future
time instances. Second, the goal in [5] is to maximize the
overall quality score of assignments under the given traveling
cost budget constraints, whereas we aim to maximize the total
number of assigned tasks in the given time duration. It is
particularly noticeable that we compare the task assignment
results between [5] and our work in the experiments.

III. PROBLEM STATEMENT

In this section, we briefly introduce a set of preliminary
concepts in the context of self-incentivised single task assign-
ment in spatial crowdsourcing with SAT mode, and then give
an overview of our framework. Table I lists the major notations
used throughout the paper.

A. Preliminary Concepts

Definition 1 (Spatial Task): A spatial task, denoted by
s =< s.r, s.l, s.e, s.c >, is a task released at time s.r, to be
performed at location s.l, and will expire at s.e (s.r ≤ s.e),
where s.l : (x, y) is a point in the 2D space. Each task s is
also labelled with a category s.c.

For simplicity and without loss of generality, we assume:
1) single task assignment mode, i.e., the server assigns each
task to one worker only; 2) the processing time of each task
is 0, which means that a worker will go to the next task upon
finishing the current task. However, our proposed techniques
are not restricted to the above assumptions.

Definition 2 (Available Worker): Given a set of time in-
stances, T = {t, t + 1, ..., t + n} (t is the current time

instance), an available worker, w =< w.φ,w.range, w.P >,
is associated with her available time instances w.φ =
{t + k, t + k + 1, ..., t + g} (⊂ T), reachable distance
w.range, and the corresponding traveling route w.P, which
consists of a set of time-stamped locations (i.e., w.P =
(w.lt+k1 , w.lt+k+1

2 , ..., w.lt+g|w.φ|)).
Definition 3 (Task Sequence): Given a worker w and a set

of tasks assigned to her Sw, a task sequence on Sw, denoted
as R(Sw) = (s1, s2, ..., s|Sw|), represents the order by which
w visits each task in Sw. The arrival time of w at task si ∈
Sw (i.e., the time of completing task si) can be computed as
follows:

tw,R(si.l) =
{

tw,R(si−1.l) + c(si−1.l, si.l) if i 6= 1
tnow + c(w.l, s1.l) if i = 1,

where c(a, b) is the travel time from location a to location b,
tnow is the current time, and w.l denotes the starting location,
from which w begins to accept the task assignment. When the
context of w and R is clear, we use t(si.l) to denote tw,R(si.l).

Definition 4 (Location-specific Valid Task Set): Given a
time instance set T and a worker w’s starting location
w.l, a task set Sw is called a Location-specific Valid
Task Set (L-VTS) for w, if there exists a task sequence
R(Sw) = (s1, s2, ..., s|Sw|), such that ∀si ∈ Sw:

i) t(si.l) ≤ si.e, and
ii) t(si.l) ∈ w.φ (⊂ T), and
iii) d(w.l, si.l) ≤ w.range, where d(a, b) is a given distance

between location a and b.
Definition 5 (Route-specific Valid Task Set): Given a time

instance set T and a route w.P = (w.l1, w.l2, ..., w.l|w.φ|)
for worker w, a task set Sw is called a Route-specific Valid
Task Set (R-VTS) for w, if there exists a task sequence
R(Sw) = (s1, s2, ..., s|Sw|), such that ∀si ∈ Sw:

i) t(si.l) ≤ si.e, and
ii) t(si.l) ∈ w.φ (⊂ T), and
iii) D(si.l, w.P) ≤ w.range

2 , where D(a, b) is a given
distance of location a from route b.

Definition 6 (Location/Route-specific Maximal VTS):
Given a set of time instances T , a Location/Route-specific
Valid Task Set Sw is maximal if none of its super sets is still
valid for a worker w, which is called Location/Route-specific
Maximal Valid Task Set (L/R-MaxVTS).

Definition 7 (Spatial Task Assignment): Given a set of time
instances T = {t, t+ 1, ..., t+ n}, a set of workers and tasks
available during T , a spatial task assignment, denoted by A,
consists of a set of < worker, V TS > pairs in the form of
< w1, V TS(w1) >, < w2, V TS(w2) >, ...

Let A.S denote the set of tasks that are assigned to all
workers, i.e., A.S = ∪w∈WSw, and A denote all possible
ways of assignments. The problem investigated in our paper
can be formally stated as follows.

Problem Statement: Given a set of time instances T =
{t, t+1, ..., t+n} (t is the current time instance), the Predictive
Task Assignment (PTA) problem aims to find the global
optimal assignment Aopti, such that ∀ Ai ∈ A, |Ai.S| ≤
|Aopti.S|.

B. Framework Overview

The main novelty of our proposed DPSTA framework is that
the server will take into account the workers and tasks at not
only the current time instance but also the next consecutive
time instances. Therefore, an immediate challenge is to get
an accurate estimation of future distributions for both workers
and tasks in spatio-temporal dimensions. To this end, in this
paper we propose a novel spatial crowdsourcing framework
comprising of two components: worker/task prediction and
task assignment, as illustrated by Figure 3.

The first component aims to predict the future spatio-
temporal distributions of workers/tasks from the task execution
trajectory history of workers and the release history of tasks.
We propose different strategies for worker and task prediction
respectively. Specifically, by considering the task execution
history of a worker as sequential data, we utilize Sequential
Pattern Mining (SPM) method to mine the frequent time
instances when she is more likely to complete tasks as her
available time. Then we propose two strategies of spatial
distribution prediction for each worker in her available time: 1)
Spatial Temporal Recurrent Neural Network (ST-RNN) based
location prediction; 2) a hybrid model based route prediction.
As for task prediction, since spatial tasks can be regarded
as spatial point events, a Path Constraint DeepWalk (PC-
DeepWalk) model is designed to obtain the number of future
tasks at each time instance, and then the Kernel Density
Estimation (KDE) approach is employed to predict the location
distributions of tasks in the future time instances.

The second component needs to assign the tasks to the
suitable workers by scheduling a task sequence for each
worker in order to achieve the maximal task assignment. We
first calculate the whole MaxVTSs for every worker, and then
the subsequent task assignment has to tackle the computational
issue in the huge search space when enumerating all possible
combinations of the MaxVTSs of each worker. We propose
both Greedy Task Assignment (GTA) algorithm that tries to
assign each worker with the maximal MaxVTS from the unas-
signed tasks and Optimal Task Assignment (OTA) algorithm
that obtains the global optimal task assignment.

IV. WORKER PREDICTION

SC involves mobility in the physical world, influenced by
a range of location-dependent factors, among which workers’
behavioral patterns play a key role for task assignment. In
this part, we first utilize a frequent mining approach to detect
the available time for workers. Then the ST-RNN model
and a hybrid model (integrating pattern matching strategy
and spatio-temporal sequential correlation) are employed to
find the future locations and routes where a worker tends to
perform tasks during her available time.

A. Temporal Distribution Prediction

Considering the time-ordered task execution events as time-
series data, we mine the frequent time instances when a worker
is more likely to perform tasks from worker’s task execution
history by using a frequent pattern mining algorithm, which

Worker/task prediction

Spatio-temporal
distributions
of future
workers/tasks

GTA

OTA

Task scheduling and assignment

SPM

ST-RNN
MaxVTSs for
each worker

Current workers/tasks
and trip constraint

MaxVTS
generation

Workers’
history Locations of predicted workers

Available time of predicted workers

Routes of predicted workers

Temporal
distribution

Spatial
distribution

Tasks’
history

PC-DeepWalk
Locations of
predicted tasks at
each time instance

KDE
Number of
predicted tasks at
each time instance

Hybrid model

Fig. 3. DPSTA Framework Overview

has been studied extensively in time-series databases [17]. Let
Twk = {t1, t2, ..., tm} be a set of time-ordered time instances,
at which worker w performs tasks in the k-th day, and Tw =
{Tw1 , Tw2 , ..., Twn } denote all the time instances of n days for
worker w in her task execution history. A set of time instances,
of which the occurrence frequencies exceed a given minimum
support threshold, can be extracted by scanning Tw, and each
continuous time instance set is called available time (i.e., w.φ)
for worker w.

B. Spatial Distribution Prediction

Once the available time is obtained for each worker, we
propose two strategies to predict spatial distributions of future
workers. We assume each worker has a GPS device (e.g., a
GPS-enabled mobile phone) keeping track of her positions.

1) Location Prediction: Inspired by the success of ST-
RNN [18] model for finding the sequential correlations among
POIs, we apply it to predict the location of each future worker
at the beginning of her available time, from which the worker
tends to perform tasks.

In ST-RNN, given a set of potential workers W and a
set of locations L, pw ∈ Rd and ql ∈ Rd are the latent
vectors of worker w and location l respectively. Each location
is associated with its coordinate and each worker w has
a set of historical locations where she just passed by, i.e.,
Lw = {lwt1 , l

w
t2 , ...}. The architecture of ST-RNN model is

shown in Figure 4, which contains three layers: input layer,
hidden layer, and output layer. The input layer contains the
latent vector of the location worker w visits at time ti, i.e.,
qlwti
∈ Rd. The hidden layer is the key component of ST-RNN,

in which the vector representation of hidden layers for w at
current time instance t can be computed as follows:

hwt,lwt = f(
∑

lwti
∈Lw,t−v̂<ti<t

Slwt −lwti
Tt−tiqlwti

+ Chwt−v̂,lwt−v̂
),

where hwt,lwt is the representation of worker w at time t, v is the
width of time window, Slwt −lwti is the distance-specific transi-
tion matrix for geographical distance between lwt and lwti , Tt−ti
denotes the time-specific transition matrix for time interval
(e.g., t− ti), and C is the recurrent connection of the previous
status propagating sequential signals. The activation function
f(x) is chosen as a sigmod function f(x) = exp(1/1+e−x).
Note that the location lwt−v may not exist in the history Lw,
thus we use the approximate value v̂, the most closed value to
v, as the local window width to guarantee lwt−v̂ to be contained
in the history, i.e., lwt−v̂ ∈ Lw. Finally, the prediction of ST-
RNN can be yielded via calculating inner product of worker

× ×

...

w

it

w
t ll

S

ittT itvtT

w

it

w
vt ll

S

× ×

...

w

lvt w
vt

h
 ,

w

lvt w
vt

h
 ,

w

lt w
t

h
,

input layer

hidden layer

output layer

vtwO , vtwO ,twO ,

),(vtttLlq i

ww

t

w

t ii
),(ttvtLlq i

ww

t

w

t ii

Fig. 4. Diagram of ST-RNN Model

and location representations in the output layer. The prediction
of whether worker w would go to location l at time t can be
computed as:

Ow,t,l = (hw
t,l + pw)Tql, (1)

where hwt,l captures her dynamic interests under the specific
spatial and temporal contexts and pw is the permanent rep-
resentation of worker w indicating her interest and activity
range. To accurately estimate the location at the beginning of
worker’s available time, ST-RNN partitions time intervals and
geographical distances into discrete bins respectively, in which
it learns the transition matrices for the upper/lower bound of
the corresponding bins and calculates the transition matrices
for other time intervals/geographical distances by linear inter-
polation. Bayesian Personalized Ranking (BPR) [19] and Back
Propagation Through Time (BPTT) [20] are applied to learn
the parameters (i.e., S, T, C, p, q) in ST-RNN model.

2) Route Prediction: Since most individuals’ daily outdoor
movements are constrained by physical roads [21], we aim
to predict the potential routes of all workers based on the
GPS observations of workers’ past trips in a road network. It
has been proved to be an effective way to predict a moving
object’s future route based on the route pattern extracted from
its historical trajectory data [4]. However, Pattern Matching
Approach (PMA) suffers from sparsity problem, i.e., the
available historical trajectories are far from being able to
cover all possible trajectories, which may return no prediction
results. To tackle this issue, we employ ST-RNN model into
the prediction process when encountering no-pattern matching.
By this way, the route prediction accuracy and robustness can
be improved.

The overview of this hybrid model for a worker’s route

prediction is illustrated in Figure 5. The model first extracts
the road corners from massive historical trajectories by a
Characteristic Point-based Road Corner Extraction (CP-RCE)
method [21], and then both the historical trajectory data and
the query trajectory to be predicted are represented by the
trajectory mapping approach based on these road corners to
generate road corner-centric routes. During the process of
route prediction, Pattern Matching Approach (PMA) is used
to predict the future route on basis of the discovered frequent
movement patterns. When encountering no-pattern matching,
the ST-RNN model can be employed to predict the next
moving road corner. Note that we simply use the worker’s
latest velocity as her future velocity to calculate the distance
she is able to travel during her available time. Towards this
distance, the given query route grows gradually based on the
hybrid prediction model. In the following, we will elaborate
the related technologies.

Road Corner Detection and Trajectory Mapping. Since
the topology information of physical roads (e.g., road corners)
is embedded in personal GPS trajectories, we detect road
corners from these trajectories and utilize them to represent
each trajectory. In particular, we employ the CP-RCE method,
in which a set of characteristic points (i.e., GPS points where
the trajectory’s direction changes significantly) are gener-
ated by a linear fitting approach, and then the road corners
are identified based on a Multiple Density Level Density-
Based Spatial Clustering of Applications with Noise (MDL-
DBSCAN) [21] algorithm. In this way, popular road corners
that occur frequently in historical trajectories can be detected
and trajectories can be abstracted by a set of corner-centric
routes using these road corners accordingly.

Pattern Matching Approach (PMA). In the previous step,
each trajectory is converted into an ordered sequence of road
corners. Subsequently, we employ the well-known prefix-
projected sequential pattern mining (PrefixSpan) [22] algo-
rithm to discover the hidden moving frequent patterns from
historical trajectories. PrefixSpan is a recursive algorithm,
which finds the frequent prefix sequences first, then projects
them into the projected databases and finds the frequent
suffixes to concatenate with the prefix to get the frequent
sequential pattern without generating candidate sequences. FP-
tree, an indexing structure, is used to store the projected
databases for efficiency.

Upon getting the frequent moving patterns, we implement
the pattern matching procedure to find the candidate patterns
whose prefix can match the road corner-centric route gener-
ated from the query trajectory by the longest last matching
strategy [23]. The longest last matching strategy focuses on
the relative matching coverage of the query route with respect
to the frequent patterns to be matched in order to find a longest
pattern as the predicted route.

V. TASK PREDICTION

It is crucial to understand where, when and what type of
the tasks will be published in the future for a better global
task assignment. Since spatial tasks have to be answered at

Historical trajectories

CP-RCE

Trajectory Mapping

Road corners

Road corner-centric routes

Finding a

matched pattern

Yes

A predicted route

No

The predicted

next road corner

A query trajectory

to be predicted

PMA

ST-RNN

Fig. 5. Diagram of Route Prediction Model

1B

1

2

t
C

1

3

t
C 2

3

t
C

2

1

t
C

2

2

t
C

1

1

t
C

2B

3B

jt

iC TC node

Spatial proximity edge

Task relevance edge

mB ST node

Fig. 6. Spatial Task-based Network

specified locations, we consider the tasks as spatial point
events. The planar Kernel Density Estimation (KDE) has been
used widely for spatial point event analysis and detection [24],
which aims to produce a smooth density surface of point events
over space by computing event intensity as density estimation.

In this section, we employ the planar KDE approach to
compute the density of spatial tasks to predict their locations
by partitioning the study area into disjoint and uniform grids
(e.g., 20× 20). Before predicting tasks’ locations, we need to
estimate the number of potential tasks (with different types)
that may fall into each grid cell in the future time instances.
Instead of considering only temporal correlation of task counts
in each cell [5], we construct a spatial task-based network and
apply a network embedding method to predict task counts by
taking spatial and temporal relationship into account in each
cell in the future time instances.

A. Task Number Prediction

In this part, we predict the number of tasks for each grid
in a set of future timestamps by using historical data. We first
construct a network based on the spatial-temporal information
of tasks, called spatial task-based network, G = (V,E) (see
Figure 6), in which V includes two types of nodes (i.e.,
temporal cell-based nodes and spatial task-based nodes) and
E contains two types of edges (i.e., spatial proximity edges
and task relevance edges). Apparently, the proposed spatial
task-based network is a Heterogeneous Information Network
(HIN) since its nodes and edges belong to multiple types. The
nodes and edges are defined as follows:

Definition 8 (Temporal Cell-based (TC) Node): A tempo-
ral cell-based node, denoted as C

tj
i , represents a specific

spatial cell Ci of the grid at timestamp tj .
Definition 9 (Spatial Task-based (ST) Node): A spatial

task-based node, denoted as Bm, is a node representing a
specific task type m.

Definition 10 (Spatial Proximity Edge): A spatial proxim-
ity edge, e(Ctji , C

tg
k), connects two TC nodes, representing the

Spatial Proximity Relation (SPR) of TC nodes. The weight of
the edge, denoted byW(C

tj
i , C

tg
k), has a negatively correlation

with the spatial distance between Ctji and Ctgk .

Definition 11 (Task Relevance Edge): A task relevance
edge, e(C

tj
i , Bm), connects a TC node and a ST node,

representing the Task Relevance Relation (TRR), i.e., the
tasks (with a specific type m) are published in the spatial
cell Ci in timestamp tj . The weight of the edge, denoted as
W(C

tj
i , Bm), is the number of tasks (with a specific type m)

that are published in spatial cell Ci in timestamp tj .

In order to encode each node into a low dimensional vector
and maintain the structural information, we apply the network
embedding method on the graph. DeepWalk [25] is a recently
proposed method for learning the latent representations of
nodes from truncated random walks in the network. DeepWalk
combines random walk based proximity with the SkipGram
model, a language model maximizing the co-occurrence prob-
ability among the words that appear within a window in a
sentence. However, DeepWalk has certain weaknesses when
being applied to our problem settings since the random walk
based proximity it adopts does not consider the heterogeneity
of a HIN. Inspired by the meta path-based proximity model in
a HIN [26], in which a meta path is a sequence of node types
with edge types in between modeling a particular relationship,
we design three types of paths based on our spatial task-based
network to capture the spatial information, task-related infor-
mation and temporal information. Then a Path Constrained
DeepWalk (PC-DeepWalk) algorithm is proposed to embed the
network into a low-dimensional space, such that the original
nodes of the network are represented as vectors. The three
types of paths are designed as followed:

i) Spatial path is a path, denoted in the form of Ct11
SPR−−−→

Ct22
SPR−−−→... SPR−−−→ Ctii ..., which only consists of TC nodes and

spatial proximity edges.

ii) Task-related path is a path in the form of Ct11
TRR−−−→

B1
TRR−−−→ Ct22

TRR−−−→ B2... TRR−−−→ Cti
TRR−−−→ Bi..., which

contains TC nodes, ST nodes and task relevance edges.

iii) Time-ordered task-related path is a particular case of
task-related path to capture the temporal trend of task releasing
pattern, in which TC nodes are arranged by their time in an
increasing order with the increasing rate of one time unit, i.e.,
Ct1

TRR−−−→ B1
TRR−−−→ Ct+1

2
TRR−−−→ B2... TRR−−−→ Ct+i−1i

TRR−−−→
Bi...

We then apply the λ-length random walk approach [25]
along the proposed paths, which takes spatial task-based
network G as input and a number of λ-length random walk
sequences for each node as output. Getting the random walk
sequences of each node, SkipGram model is leveraged to learn
the representation vector of each node. Then we can estimate
the task number in each cell through a regression algorithm

by considering both historical data and other nodes. Formally,

N
tj+1
i = αN

tj
i +(1−α)

∑
C

tj
i′
∈Ctj ,i′ 6=i

sim(C
tj
i , C

tj

i′)∑
C

tj
i′
∈Ctj ,i′ 6=i

sim(C
tj
i , C

tj

i′)
N

tj

i′ +β,

(2)

where N
tj
i is the task number of node C

tj
i , Ctj de-

notes all nodes in time tj , and sim(C
tj
i , C

tj
i′) is the

relevance between node C
tj
i and C

tj
i′ , which is com-

puted by the dot product of their vectors. Therefore,∑
C

tj

i′ ∈C
tj ,i′ 6=i

sim(C
tj
i ,C

tj

i′)∑
C

tj
i′
∈Ctj ,i′ 6=i

sim(C
tj
i ,C

tj

i′)
N
tj
i′ represents the prop-

agation effect between two nodes. α is a parameter controlling
the contributions of historical data and other nodes. β is a
parameter to avoid over-fitting. To obtain the optimal values of
α and β, we leverage Stochastic Gradient Descent for training
and use Mean Squared Error as the loss function.

B. Location Distribution Prediction

Once the task number N tj+1

i in cell Ctj+1

i is obtained, we
employ the KDE approach over locations of task samples in
the cell to compute occurrence probability of potential tasks,
where the task samples are composed of a set of historical
tasks published in this cell, {s1, s2, ..., sn}. The probability of
potential task s being released in location l ∈ L

C
tj+1
i

in cell

C
tj+1

i can be calculated as follows:

f(l) =
1

|L
C

tj+1
i

|H2

∑
si.l∈L

C
tj+1
i

K(
l̂− si.l̂
H

), (3)

where L
C

tj+1
i

is a set of locations of historical task samples

in cell Ctj+1

i , H is the bandwidth, each task location si.l ∈
L
C

tj+1
i

(with latitude lat and longitude lon) is represented

by si.l̂ = (lat, lon)T , and function K(·) is a Gaussian kernel
function given by K(X) = 1

2π exp(−
1
2X

TX). The optimal
bandwidth H can be computed in Equation 4.

H =
1

2
|L

C
tj+1
i

|−
2
3

√
ĥ
T√

ĥ, (4)

where ĥ (= 1
|L

C
tj+1
i

|
∑
si.l∈L

C
tj+1
i

(si.l̂ − C̄
tj+1

i)2) is the

variance of locations for all historical tasks in cell Ctj+1

i

and C̄
tj+1

i (= 1
|L

C
tj+1
i

|
∑
si.l∈L

C
tj+1
i

si.l̂) denotes the mean

of these locations. According to the predicted task number
N
tj+1

i in cell Ctj+1

i , we set the top-N tj+1

i locations with high
probability as locations of the predicted tasks.

VI. TASK ASSIGNMENT

In this section, we will present the task assignment al-
gorithms for solving the proposed PTA problem based on
the current and predicted workers/tasks, with the aim of
achieving the maximum task assignment. The basic idea is
trying to find a union of one possible valid task sequence of
all workers such that the number of assigned tasks can be
maximized. In the sequel, we will first introduce the Maximal
Valid Task Set (MaxVTS) (including both Location-specific

and Route-specific MaxVTS) generation approach, in which
the MaxVTS will be used throughout our algorithms. Then
a greedy algorithm is proposed, which iteratively finds one
“best” MaxVTS from the unassigned tasks for each worker
until all the tasks are assigned or all the workers are exhausted.
Finally, we design a graph partition based decomposition
algorithm for task assignment, which can find the best union
of MaxVTSs for all workers with optimal task assignment.

A. Maximal Valid Task Set Generation

1) Finding Reachable Tasks: Due to the constraint of
workers’ reachable distance and tasks’ expiration time, each
worker can only complete a small subset of tasks in the given
time instance set, T = {t, t+1, ..., t+n}. Therefore, we firstly
find the set of tasks that can be reached by each worker in the
given time period T . The location-specific reachable task
subset for a worker w, denoted as L-RSw, should satisfy the
following conditions: ∀s ∈ L-RSw,

i) c(w.l, s.l) ≤ s.e− s.p, and
ii) c(w.l, s.l) ≤ n+ 1, and
iii) d(si.l, sj .l) ≤ w.range, where c(w.l, s.l) is the travel

time from w.l to s.l and d(a, b) is a given distance between
location a and b.

As for route-specified reachable task subset (R-RSw) for
worker w, the following conditions should be satisfied: ∀s ∈
R-RSw,

i) c(w.l, s.l) ≤ s.e− s.p, and
ii) c(w.l, s.l) ≤ n+ 1, and
iii) D(sj .l,Pw) ≤ w.range

2 , where D(a, b) is a given
distance between location a and route b.

The above conditions guarantee that a worker can travel
from her origin to the location of task s directly before it
expires in the given time period T , where task s is located in
her location/route-specific distance range.

2) Finding Maximal Valid Task Set: Given the reachable
task set for each worker, we next find the set of MaxVTS.
A dynamic programming algorithm is proposed to iteratively
expand the sets of tasks in the ascending order of set size
and find all MaxVTSs for a worker in each iteration. For each
task in one set, we consider the scenario that it is finished in
the end, and find all completed task sequences. Specifically,
given a worker w, and a set of tasks Q ⊆ RSw, we define
opt(Q, sj) as the maximum number of tasks completed by
scheduling all the tasks in Q with constraints starting from
w.l and ending at sj .l within worker’s reachable range. And
R is denoted as the corresponding task sequence on Q to
achieve this optimal value. We also use si to denote the
second-to-last task before arriving at sj in R, and R′ to denote
the corresponding task sequence for opt(Q − {sj}, si). Then
opt(Q, sj) can be calculated by Equation 5.

opt(Q, sj) =

{
1 if |Q| = 1

max
si ∈Q,si 6=sj

opt(Q− {sj}, si) + δij otherwise,

(5)

δij =
{

1 if t(sj .l) ≤ sj .e, t(sj .l) ≤ t+ n,
0 otherwise.

δij = 1 means sj can be finished after appending sj to R′

in the given time period T = {t, t + 1, ..., t + n}. Based on
Equation 5, we can obtain all the MaxVTSs for each worker.

When Q contains only one task si, the problem is trivial
and opt({si}, si) is set to 1. When |Q| > 1, we need to
search through Q to examine all possibilities of valid task sets
and find the particular si that achieves the optimum value of
opt(Q, sj). In Figure 1 and 2(b), taking w1 with 4 reachable
tasks {s1, s2, s3, s4} as a case and computing the L-MaxVTSs
for w2, our algorithm starts by computing opt({s1}, s1) = 1,
opt({s2}, s2) = 1, opt({s3}, s3) = 1 and opt({s4}, s4) = 1.
For all the sets with size from 2 to 4, we iteratively com-
pute the opt value and the corresponding R. For example,
opt({s1, s2}, s2) = 1 since by following the task sequence
(s1, s2), only s1 can be finished, but opt({s1, s2}, s1) = 2
because by following (s2, s1), both s1 and s2 can be finished.
The R-MaxVTSs for w2 can be obtained in the same way.

B. Greedy Task Assignment

Once the MaxVTSs for each worker are obtained, a straight-
forward solution is to assign each worker with the maximal
valid task set from the unassigned tasks, until all the tasks
are assigned or all the workers are exhausted, which is called
Greedy Task Assignment (GTA) algorithm since it does not
consider the overall best strategy to assign tasks.

Algorithm 1: Greedy Task Assignment
Input: W,S
Output: A feasible assignment result A and the corresponding

number of assigned tasks |A|
1 A← ∅;
2 for each worker w ∈W do
3 Qw ← max{MaxV TS(w, S)};
4 A = A ∪Qw;
5 S = S −Qw;
6 W = W − w;

7 return A and |A|;

We explain GTA in Algorithm 1. With a worker set W and
task set S as input, it initializes an empty task assignment A
(line 1). During each iteration, GTA begins to randomly select
a worker w ∈W from the remaining ones to be assigned and
finds the maximal MaxVTS from the unassigned tasks for the
selected worker, in which the maximal MaxVTS is added into
the current task assignment A (line 2-6). Finally, we find the
maximal task assignment among all the iterations (line 7).

C. Optimal Task Assignment

The main computational challenge lies in huge search space
when enumerating all possible combinations of the valid task
sets of each worker, which increases exponentially with respect
to the number of workers. However, in practice a worker shares
the same tasks with only a few other workers who have similar
or intersected travel routes. In the sequel, we first construct
a worker dependency graph. By adopting a graph partition
method on this graph and organizing the worker set of each

subgraph in a tree structure, the problem is decomposed into
multiple independent sub-problems. Then a depth-first search
algorithm is devised to find the optimal task assignment.

1) Worker Dependency Graph Construction: A Worker
Dependency Graph (WDG) is constructed based on the de-
pendent/independent relations among workers, in which two
workers are independent with each other if they share no
reachable tasks and are dependent with each other otherwise.
In particular, given a worker set W and task set S, a WDG,
G(V,E), is designed for encoding all the dependency rela-
tionship between workers, where each node v ∈ V represents
a worker wv ∈W , and each edge e(u, v) ∈ E exists between
u and v if the two workers wu and wv are dependent with
each other.

2) Graph Partition: Subsequently, we apply a degree-
k Graph Reduction-based (GR) method [27] to decompose
workers’ dependency relationship by partitioning the WDG
graph. The result of graph partition contains a set of nodes,
X = {X1, ..., Xn}, which should satisfy the following condi-
tions:

i) ∪i ∈nXi = V , and
ii) ∀(u, v) ∈ E,∃Xi ∈ X containing both u and v, and
iii) if Xi, Xj and Xk are nodes, and Xk is on the path from

Xi to Xj , then Xi ∩Xj ⊆ Xk.
Specifically, degree-k GR is to reduce a graph into another

simple graph with fewer vertices by removing the vertices
whose degree is not more than k, in order to find the node
set, X . The procedure is designed as follows:

i) Given a WDG and a specified degree i (0 ≤ i ≤ k),
the vertex v with degree i is first identified, and we check
whether all its neighbors form a clique. If not, we add the
missing edges to construct a clique.

ii) The vertex v together with its neighbors, which is a
clique, are pushed into a stack. This step is followed by
removing v and the corresponding edges in the graph.

iii) All the cliques in the stack as well as the left clique
that is not removed by the above reduction process will be the
nodes (i.e., X) of the graph partition result.

We perform the vertex removing procedure above from
deleting the vertices with degree 0 (i.e., isolated vertices)
and then process it in the ascending order of vertex degree,
until one of the following conditions is fulfilled: 1) the
graph is reduced to a simple graph (e.g., a single triangle)
or an empty set; 2) there exists no vertices with degree
that is less than or equal to k. Figure 7(a) illustrates
the reduction process for a given WDG, which starts
with a degree-2 reduction by removing vertex w1 and its
edges. Vertex w1 and its neighbors are then pushed in a
stack. Subsequently, vertex w2, w3 and w5 are removed
respectively, following the same principle as of w1. Finally,
a single triangle is left, and the cliques of the graph can
be found and output as the nodes of graph partition: X =
{{w1, w2, w3}, {w2, w3, w4}, {w3, w4, w5}, {w4, w5, w7},
{w4, w6, w7}}, as shown in Figure 7(b).

3) Tree Construction: According to the properties of graph
partition, if two nodes do not share the same vertexes, the

w1, w2, w3

w1

w2 w3

w4 w5

w6 w7

w2 w3

w4 w5

w6 w7

w3

w4 w5

w6 w7

w4 w5

w6 w7

w4

w6 w7

w1, w2, w3

w2, w3, w4

w1, w2, w3

w2, w3, w4

w3, w4, w5

w1, w2, w3

w2, w3, w4

w3, w4, w5

w4, w5, w7

(a) Worker Dependency Graph Reduction

w3, w4,

w5

w2, w3,

w4

w1, w2,

w3

w4, w5,

w7

w4, w6,

w7

X1 X2 X3

X4 X5

(b) Graph Partition

w3, w4, w5

w1, w2 w6, w7

(c) Tree Construc-
tion

Fig. 7. Worker Partition

workers belonging to the two nodes are independent with
each other. In this step, our goal is to organize the subsets
of workers in a tree structure such that the sibling nodes are
independent with each other, wherein we can solve the optimal
assignment sub-problem on each sibling node independently.
We next construct a balanced tree by the following Recursive
Tree Construction (RTC) algorithm:

i) Try to remove the vertices in each node Xi ∈ X (output
in the graph partition step) from the WDG, G. G will be
separated into a few components, of which the largest one is
recorded as Gmax.

ii) Pick the node Xmin that leads to the least Gmax upon
the completion of the previous loop (pick the smaller Xi as
Xmin when there is a tie on Gmax). Set Xmin as the parent
node for each output of the recursive procedure in step iii.

iii) Apply the degree-k GR algorithm on each sub graph
by removing workers of Xmin and recursively perform this
algorithm on the output of degree-k GR algorithm.

iv) Return N = Xmin as the root node of this sub-tree.
With RTC algorithm, the final tree structure is depicted in

Figure 7(c). After transforming the worker dependency graph
into a tree structure, the depth-first search procedure can be
applied to compute the suitable valid task set for each worker
in the nodes of the tree in order to find the optimal assignment.

VII. EXPERIMENT

A. Experiment Setup

We conduct our experiments using two real datasets,
Twitter-Foursquare (TF) dataset and gMission (GM) dataset,
where Twitter-Foursquare dataset provides check-in data with
category information and gMission [28] is a research-based
general spatial crowdsourcing platform.

For TF dataset, the geo-tagged check-ins are used to simu-
late our problem, where the check-in dataset is collected from
Twitter, for a period from September 2010 to January 2011.
Since the original Twitter dataset does not contain the category

TABLE II
EXPERIMENT PARAMETERS

Parameters Values

Size of historical data |T | (i.e.,
percentage of the training location data)

20%, 40%, 60%, 80%, 100%

Number of tasks |S| (TF) 1K, 2K, 3K, 4K, 5K
Number of tasks |S| (GM) 300, 400, 500, 600, 700
Valid time of tasks e− p 1, 2, 3, 4, 5
Reachable distance of workers range 2km, 2.5km, 3km, 3.5km, 4km

information of venues, we extract the category information
associated with each venue from Foursquare with the aid of
its API. In total, the resulting dataset provides check-in data in
the area of New York (with latitude from 40.231◦ to 41.231◦

and longitude from −74.435◦ to −73.435◦), which includes
29046 check-ins for 2056 users. When using this dataset in our
experimental study, we assume the users are the workers in the
SC system since users who check in to different spots may be
good candidates to perform spatial tasks in the vicinity of those
spots, and their locations are those of the most recent check-in
points. For each check-in venue, we use its location and the
earliest check-in time of the day as the location and publish
time of a task, respectively. Accordingly, the categories of
check-ins are regarded as the categories of tasks and checking
in a spot is equivalent to accepting a task.

The GM dataset includes 532 workers and 713 tasks,
wherein each worker has her location, arrival time and dead-
line, and each task is associated with a location, a release time,
a deadline and a task description used to classify the tasks. Due
to the lack of historical data for workers/tasks in gMission
system, we generate workers/tasks that join the system in the
history (i.e., a recent month) as follows. For each worker/task,
we set her/its location as center and randomly produce her/its
historical locations with Gaussian distribution, where her/its
occurrence times are uniformly distributed in every day.

For both data sets, we simulate the trajectories of each
worker in each day in the following way. The daily locations of
a worker are fed into Simulation of Urban MObility (SUMO)
to generate GPS trajectories, which are produced in a prob-
abilistic manner. Moreover, we set the granularity of a time
instance as one hour (i.e., 9:00am–10:00am), during which the
task requests and available workers will be packed and input
to our framework. We assign tasks to the suitable workers in
6 time instances (consisting of the current time instance and
future 5 time instances) in the experiment. Table II shows
our experimental settings, where the default values of all
parameters are underlined. All the algorithms are implemented
on an Intel Core i5-2400 CPU @ 3.10G HZ with 8 GB RAM.

B. Experiment Results

1) Performance of Worker Prediction: In this part, we
evaluate the performance of worker prediction phase and its
impact to the subsequent task assignment. We choose 70%
location data of workers/tasks for training, 20% for testing
and the remaining 10% as the validation set.

For location prediction of workers, two representative meth-
ods are compared with ST-RNN: 1) RNN [29]: estimating fu-

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 40 60 80 100

A
cc

ur
ac

y

Size of training set (%)

GWP(TF)
RNN(TF)
ST-RNN(TF)

GWP(GM)
RNN(GM)
ST-RNN(GM)

(a) Accuracy

 0

 500

 1000

 1500

 20 40 60 80 100

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Size of training set (%)

GWP(TF)
RNN(TF)
ST-RNN(TF)

GWP(GM)
RNN(GM)
ST-RNN(GM)

(b) Number of Assigned Tasks

Fig. 8. Performance of Workers’ Location Prediction: Effect of |T |

ture locations with temporal dependency in workers’ behavior
sequence only; 2) GWP: Grid-based Worker Prediction [5].
To measure the performance of each model, we propose an

accuracy rate, denoted by acc(l) =

∣∣l̃|d(l̃,l)≤ε,l∈LW
{t,...,t+n}

∣∣∣∣LW
{t,...,t+n}

∣∣ , as

the evaluation metric, where l̃ is the predicted location for true
location l, d(a, b) is Euclidean distance between point a and b,
ε is a spatial deviation threshold (set to 0.5km), and LW{t,...,t+n}
denotes all workers’ locations occurred during {t, ..., t + n}.
We consider l is accurately predicted if it satisfies d(l̃, l) ≤ ε.
Note that the time window widths of all the approaches are
set to 4.

For effectiveness of task assignment based on the above pre-
diction algorithms, we compare the number of actual assigned
tasks, which are existing or correctly predicted, by applying
the Optimal Task Assignment (OTA) algorithm. We conduct
all the experiments on both TF and GM datasets.

Effect of |T |. In the first set of experiment, we change
the size |T | of training set and study their effect on workers’
location prediction. From Figure 8(a), naturally the accuracy
of all approaches increases when more training trajectories
are used. Among these methods, ST-RNN achieves the highest
accuracy rate followed by RNN and GWP in both TF and GM
datasets. In Figure 8(b), the task assignment result heavily
depends on the prediction accuracy since a better accuracy
normally means more correctly predicted workers. ST-RNN
performs best amongst all the methods for all values of |T |,
confirming the optimality of our proposed algorithm.

For route prediction evaluation, we introduce another ac-
curacy rate, acc(P), defined as the ratio between number of
correctly predicted road links and the total road links. Then
we compare our hybrid model (marked with HYBRID) with
a baseline method, Pattern Matching Approach (PMA), by
varying the size of training set.

As expected, the accuracies of both algorithms gradually in-
crease as |T | grows (see Figure 9(a)). Our hybrid model makes
significant improvement of accuracy over PMA, showing more
benefits as |T | increases. On the task assignment aspect,
Figure 9(b) demonstrates task assignment results are affected
by prediction accuracy. PMA with low accuracy rate (e.g.,
acc(P) ≤ 0.24) assigns less tasks than HYBRID regardless of
|T | in both datasets.

2) Performance of Task Prediction: In this set of exper-
iments, we introduce two competitors, DeepWalk [25] and
Grid-based Task Prediction [5] (GTP), and evaluate the lo-
cation prediction accuracy of tasks using acc(l). At the same
time, we use the number of assigned tasks (generated by OTA)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 40 60 80 100

A
cc

ur
ac

y

Size of training set (%)

PMA(TF)
HYBRID(TF)

PMA(GM)
HYBRID(GM)

(a) Accuracy

 0

 500

 1000

 1500

 20 40 60 80 100

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Size of training set (%)

PMA(TF)
HYBRID(TF)

PMA(GM)
HYBRID(GM)

(b) Number of Assigned Tasks

Fig. 9. Performance of Workers’ Route Prediction: Effect of |T |

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 40 60 80 100

A
cc

ur
ac

y

Size of training set (%)

GTP(TF)
DWalk(TF)
PC-DWalk(TF)

GTP(GM)
DWalk(GM)
PC-DWalk(GM)

(a) Accuracy

 0

 500

 1000

 1500

 20 40 60 80 100

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Size of training set (%)

GTP(TF)
DWalk(TF)
PC-DWalk(TF)

GTP(GM)
DWalk(GM)
PC-DWalk(GM)

(b) Number of Assigned Tasks

Fig. 10. Performance of Task Prediction: Effect of |T |

to measure the effectiveness of task assignment by varying |T |.
Effect of |T |. In Figure 10(a), the accuracies of all predic-

tion methods are improved with larger training data involved.
We also observe that PC-DeepWalk can improve accuracy
of location prediction compared with other two baseline ap-
proaches and generate the most accurate locations, which in
turn leads to the largest number of assigned tasks as confirmed
in Figure 10(b).

3) Performance of Task Assignment: In this part, we eval-
uate the effectiveness and efficiency of the task assignment
approaches in terms of the overall number of assigned tasks
and CPU time. Specially, the number of assigned tasks can
measure the quality of task assignment strategies and the
CPU time is given by the average time cost of performing
task assignment at each time instance. We evaluate our pro-
posed Greedy Task Assignment (GTA) and Optimal Task As-
signment (OTA) algorithms based on workers’ location/route
prediction and tasks’ prediction: Location-specific GTA (L-
GTA), Location-specific OTA (L-OTA), Route-specific GTA
(R-GTA) and Route-specific OTA (R-OTA). A straightforward
approach, Maximum Task Assignment (MTA) [6] algorithm,
which conducts the task assignment in current and future
time instances separately without prediction, is introduced as
a baseline algorithm. Moreover, we also implement a repre-
sentative prediction-based task assignment algorithm, Grid-
based Predictive Task Assignment (GPTA) with grid-based
worker/task prediction [5], as our competitor. In GPTA, the
quality score of assigning a worker to perform a task is set to
1 in order to get the maximal assigned tasks.

Effect of |S|. First, we investigate how the number of
tasks affects the effectiveness and efficiency of task assign-
ment. As expected, the numbers of assigned tasks for all
algorithms gradually increase as |S| grows in both TF and
GM datasets, which is indicated in Figure 11(a) and 11(c).
MTA generates the smallest assigned task set while R-OTA
results the largest followed by R-GTA, L-OTA, L-GTA and
GPTA. Not surprisingly, R-OTA and L-OTA generate more
assigned tasks than their respective competitors (i.e., R-GTA

 0

 1000

 2000

 3000

1k 2k 3k 4k 5k

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of tasks

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(a) Number of Assigned Tasks (TF)

 0

 3

 6

 9

1k 2k 3k 4k 5k

C
P

U
 ti

m
e

(s
)

Number of tasks

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(b) CPU Cost (TF)

 100

 200

 300

 400

 500

 300 400 500 600 700

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of tasks

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(c) Number of Assigned Tasks (GM)

 0

 1

 2

 3

 300 400 500 600 700

C
P

U
 ti

m
e

(s
)

Number of tasks

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(d) CPU Cost (GM)

Fig. 11. Performance of Task Assignment: Effect of |S|

and L-GTA) that use greedy task assignment strategy. Route-
specific task assignment algorithms (i.e., R-OTA and R-GTA)
assign more tasks than the location-specific methods (i.e., L-
OTA and L-GTA) since workers have larger reachable range
when performing tasks along the specified routes. In terms of
running time, as shown in Figure 11(b) and 11(d), MTA is
the fastest algorithm and almost not affected by |S|, while R-
OTA is most time-consuming. R-OTA (L-OTA) runs slower
than R-GTA (L-GTA) mainly because of the extra time cost
for building the tree to be searched. Although GPTA is more
efficient than our proposed approaches, it assigns less tasks.

Effect of e−p. Next we study the effect of the valid time of
tasks, e−p. As illustrated in Figure 12(a) and 12(c), naturally
the numbers of assigned tasks generated from all approaches
increase when the valid time of tasks become longer. This is
due to the fact that a worker has more chance to be assigned
the tasks with more relaxed valid time. Similar to the previous
results, our proposed route-specific task assignment methods
can achieve more assigned tasks than location-specific task
assignment methods, and both of them outperform GPTA
and MTA, which confirms the superiority of our proposed
algorithms. We can see from Figure 12(b) and 12(d), the
running times of all methods increase for longer valid times
of tasks, since there are more worker-and-task assignments to
process.

Effect of range. As depicted in Figure 13(a) and 13(c),
the numbers of assigned tasks generated by all approaches
have a growing tendency as range being enlarged, with the
similar reason of the effects of tasks’ valid time, i.e., the larger
the workers’ reachable regions are, the more chance the SC
server has to assign the workers more tasks. In addition, L/R-
OTA and L/R-GTA outperform the others for all values of
range, which demonstrates the effectiveness of our proposed
algorithms again. The CPU cost of all the approaches increases
with the enlarged range (see Figure 13(b) and 13(d)), since
the number of available tasks to be assigned in a time instance
grows when range gets larger, which in turn leads to longer
time cost.

 500

 1000

 1500

 1 2 3 4 5

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Valid time of task

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(a) Number of Assigned Tasks (TF)

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

C
P

U
 ti

m
e

(s
)

Valid time of task

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(b) CPU Cost (TF)

 100

 200

 300

 400

 500

 1 2 3 4 5

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Valid time of task

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(c) Number of Assigned Tasks (GM)

 0

 1

 2

 3

 4

 1 2 3 4 5

C
P

U
 ti

m
e

(s
)

Valid time of task

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(d) CPU Cost (GM)

Fig. 12. Performance of Task Assignment: Effect of e− p

 500

 1000

 1500

 2000

 2 2.5 3 3.5 4

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Reachable distance of worker (km)

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(a) Number of Assigned Tasks (TF)

 0

 1

 2

 3

 4

 5

 6

 2 2.5 3 3.5 4

C
P

U
 ti

m
e

(s
)

Reachable distance of worker (km)

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(b) CPU Cost (TF)

 200

 300

 400

 500

 600

 700

 2 2.5 3 3.5 4

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Reachable distance of worker (km)

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(c) Number of Assigned Tasks (GM)

 0

 1

 2

 3

 4

 5

 2 2.5 3 3.5 4

C
P

U
 ti

m
e

(s
)

Reachable distance of worker (km)

MTA
GPTA

L-GTA
L-OTA

R-GTA
R-OTA

(d) CPU Cost (GM)

Fig. 13. Performance of Task Assignment: Effect of range

VIII. CONCLUSION

In this paper we propose a novel data-driven framework,
called Data-driven Predictive Spatial Task Assignment (DP-
STA), to assign the tasks to workers by considering both cur-
rent and future workers/tasks that enter the spatial crowdsourc-
ing system dynamically. We propose different strategies to
predict the spatio-temporal distribution of future workers and
tasks. Then, we design a greedy algorithm to efficiently assign
tasks and a graph partition based decomposition algorithm to
find the global optimal task assignment. Extensive empirical
study based on real datasets confirms our proposed framework
can significantly improve the effectiveness of task assignment.

ACKNOWLEDGMENT

This work is partially supported by Natural Science Founda-
tion of China (No. 61972069, No. 61836007, No. 61832017,
and No. 61532018).

REFERENCES

[1] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: Experiments and analysis,” VLDB,
vol. 9, no. 12, pp. 1053–1064, 2016.

[2] Y. Tong, J. She, B. Ding, and L. Wang, “Online mobile micro-task
allocation in spatial crowdsourcing,” in ICDE, 2016, pp. 49–60.

[3] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, 2017, pp. 1009–1020.

[4] M. Lv, Q. Wang, and Z. Yuan, “Personal trajectory pattern matching for
future route prediction,” Journal of Computational Information Systems,
vol. 10, no. 1, pp. 197–204, 2014.

[5] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in ICDE, 2017, pp. 997–1008.

[6] L. Kazemi and C. Shahabi, “Geocrowd: Enabling query answering with
spatial crowdsourcing,” in SIGSPATIAL, 2012, pp. 189–198.

[7] H. To, L. Fan, T. Luan, and C. Shahabi, “Real-time task assignment in
hyperlocal spatial crowdsourcing under budget constraints,” in PerCom,
2016, pp. 1–8.

[8] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware task
assignment in spatial crowdsourcing,” in CIKM, 2017, pp. 297–306.

[9] Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng,
“Preference-aware task assignment in spatial crowdsourcing,” in AAAI,
2019.

[10] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, “Profit-driven
task assignment in spatial crowdsourcing,” in IJCAI, 2019.

[11] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng, “Hidden
poi ranking with spatial crowdsourcing,” in KDD, 2019.

[12] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition
approach,” TKDE, 2019.

[13] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv, “Slade:
A smart large-scale task decomposer in crowdsourcing,” TKDE, vol. PP,
no. 99, pp. 1588–1601, 2018.

[14] P. Cheng, X. Lian, L. Chen, and J. Han, “Task assignment on multi-skill
oriented spatial crowdsourcing,” TKDE, vol. 28, no. 8, pp. 2201–2215,
2015.

[15] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[16] Y. Li, M. Yiu, and W. Xu, “Oriented online route recommendation for
spatial crowdsourcing task workers,” SSTD, pp. 137–156, 2015.

[17] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in SIGMOD, 2000, pp. 1–12.

[18] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A
recurrent model with spatial and temporal contexts,” in AAAI, 2016, pp.
194–200.

[19] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in UAI, 2009,
pp. 452–461.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
399–421, 1988.

[21] T. Wang, D. Zhang, X. Zhou, X. Qi, H. Ni, H. Wang, and G. Zhou, “Min-
ing personal frequent routes via road corner detection,” Transactions on
Systems Man & Cybernetics Systems, vol. 46, no. 4, pp. 445–458, 2016.

[22] J. Pei, J. Han, B. Mortazaviasl, H. Pinto, Q. Chen, U. Dayal, and
M. C. Hsu, “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in ICDE, 2001, pp. 215–224.

[23] M. Morzy, “Mining frequent trajectories of moving objects for location
prediction,” in MLDM, 2007, pp. 667–680.

[24] E. C. Delmelle and J. C. Thill, “Urban bicyclists: Spatial analysis of
adult and youth traffic hazard intensity,” Transportation Research Record
Journal of the Transportation Research Board, vol. 2074, no. 2074, pp.
31–39, 2008.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[26] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” VLDB,
vol. 4, no. 11, pp. 992–1003, 2011.

[27] F. Wei, “Tedi: Efficient shortest path query answering on graphs,” in
SIGMOD, 2010, pp. 99–110.

[28] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “gmission: A general spatial crowdsourcing
platform,” VLDB, vol. 7, no. 13, pp. 1629–1632, 2014.

[29] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T. Y.
Liu, “Sequential click prediction for sponsored search with recurrent
neural networks,” in AAAI, 2014, pp. 1369–1375.

yan
高亮

yan
高亮

	Predictive task assignment in spatial crowdsourcing: A data-driven approach
	Citation
	Author

	Introduction
	Related Work
	Problem Statement
	Preliminary Concepts
	Framework Overview

	Worker Prediction
	Temporal Distribution Prediction
	Spatial Distribution Prediction
	Location Prediction
	Route Prediction

	Task Prediction
	Task Number Prediction
	Location Distribution Prediction

	Task Assignment
	Maximal Valid Task Set Generation
	Finding Reachable Tasks
	Finding Maximal Valid Task Set

	Greedy Task Assignment
	Optimal Task Assignment
	Worker Dependency Graph Construction
	Graph Partition
	Tree Construction

	Experiment
	Experiment Setup
	Experiment Results
	Performance of Worker Prediction
	Performance of Task Prediction
	Performance of Task Assignment

	Conclusion
	References

