

Aalborg Universitet

Preference-aware Task Assignment in Spatial Crowdsourcing: from Individuals to
Groups

Zhao, Yan; Zheng, Kai; Yin, Hongzhi; Liu, Guanfeng ; Fang, Junhua; Zhou, Xiaofang

Published in:
Preference-aware Task Assignment in Spatial Crowdsourcing: from Individuals to Groups

DOI (link to publication from Publisher):
10.1109/TKDE.2020.3021028

Publication date:
2020

Link to publication from Aalborg University

Citation for published version (APA):
Zhao, Y., Zheng, K., Yin, H., Liu, G., Fang, J., & Zhou, X. (Accepted/In press). Preference-aware Task
Assignment in Spatial Crowdsourcing: from Individuals to Groups. Preference-aware Task Assignment in Spatial
Crowdsourcing: from Individuals to Groups. https://doi.org/10.1109/TKDE.2020.3021028

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/344944221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TKDE.2020.3021028
https://vbn.aau.dk/en/publications/3ff0919b-33de-4999-b853-5c662d3fb433
https://doi.org/10.1109/TKDE.2020.3021028

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

1

Preference-aware Task Assignment in Spatial
Crowdsourcing: from Individuals to Groups

Yan Zhao, Kai Zheng∗, Senior Member, IEEE , Hongzhi Yin, Guanfeng Liu, Junhua Fang, and Xiaofang
Zhou, Fellow, IEEE

Abstract—With the ubiquity of smart devices, Spatial Crowdsourcing (SC) has emerged as a new transformative platform that
engages mobile users to perform spatio-temporal tasks by physically traveling to specified locations. Thus, various SC techniques have
been studied for performance optimization, among which one of the major challenges is how to assign workers the tasks that they are
really interested in and willing to perform. In this paper, we propose a novel preference-aware spatial task assignment system based on
workers’ temporal preferences, which consists of two components: History-based Context-aware Tensor Decomposition (HCTD) for
workers’ temporal preferences modeling and preference-aware task assignment. We model workers’ preferences with a
three-dimension tensor (worker-task-time). Supplementing the missing entries of the tensor through HCTD with the assistant of
historical data and other two context matrices, we recover workers’ preferences for different categories of tasks in different time slots.
Several preference-aware individual task assignment algorithms are then devised, aiming to maximize the total number of task
assignments at every time instance, in which we give higher priorities to the workers who are more interested in the tasks. In order to
make our proposed framework applicable to more scenarios, we further optimize the original framework by proposing strategies to
allow each task to be assigned to a group of workers such that the task can be completed by these workers simultaneously, wherein
workers’ tolerable waiting time, consensus, and tasks’ rewards are taken into consideration. We conduct extensive experiments using a
real dataset, verifying the practicability of our proposed methods.

Index Terms—Spatial Crowdsourcing, Task Assignment, Worker Preference.

F

1 INTRODUCTION

Spatial Crowdsourcing (SC) is a recently proposed concept,
which employs smart device carriers as workers to physical-
ly move to some specified locations and accomplish spatial
tasks, such as monitoring traffic condition, reporting local
hot spot and moving a heavy stuff.

Most existing research focuses on the task assignmen-
t [5], [7], [12], [15], [31], [35], [36], [37], [38], [40], [43],
[48], which aims to maximize the total number of com-
pleted tasks [23], the number of performed tasks for a
worker with an optimal schedule [14], or the diversity
score of assignments [8]. An implicit assumption shared
by these work is that the workers are willing to perform
the tasks assigned to them. In practice, however, different
task-performing intentions and preferences can lead to dif-
ferent types of behaviors. For example, two workers with
different preferences for the same category of tasks may
exhibit different behaviors: one is willing to report a hot
spot for its popularity, while the other may not due to its

• Y. Zhao is with the Department of Computer Science, Aalborg University,
Aalborg 9220, Denmark. Email: yanz@cs.aau.dk.

• K. Zheng is with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Chengdu 610054,
China. Email: zhengkai@uestc.edu.cn. *K. Zheng is the corresponding
author of the paper.

• H. Yin and X. Zhou are with the University of Queensland, Brisbane,
Q4072, Australia. Email: zxf@itee.uq.edu.au, h.yin1@uq.edu.au.

• G. Liu is with the Department of Computing, Macquarie University,
Sydney NSW2109, NSW Australia. Email: guanfeng.liu@mq.edu.au.

• J. Fang is with the School of Computer Science and Technology, Soochow
University, Suzhou 215006, China. Email: jhfang@suda.edu.cn.

complexity. Actually, a worker is unlikely to honestly and
promptly complete the assigned tasks when he/she is not
interested in them, which cannot guarantee the quality of
task results. Therefore, the key to control quality for task
accomplishment is how to accurately capture the preference
of a worker in his/her task-performing context. Among
these existing contextual dimensions, time information, es-
pecially temporal dynamics, is of great importance since the
characteristics of workers’ preferences with respect to the
task types may change over the time of day. For instance, a
worker is happy to report promotion activities of a shopping
center during his/her lunch break but will definitely refuse
to do it in his/her working hours. Therefore, incorporating
temporal dynamics in workers’ preferences can improve the
effectiveness of spatial task assignment.

Several previous approaches infer workers’ preferences
from past task-performing patterns or explicit feedback-
s [1], [2], [45]. However, they fail to effectively incorporate
temporal dynamics and workers’ historical task-performing
records. The overall task-performing behavior of a worker
may be determined by his/her long-term interest. But at
any given time, a worker is also affected by his/her in-
stant preference due to transient events, such as the tasks’
publishing and performing condition in the current time. In
addition, the above methods are not able to make suitable
task assignment since the task-performing data is extremely
sparse and there exists cold start problem (no historical
task-performing records for new workers or new tasks).
Lastly, we are not aware of any existing task assignment
techniques that consider the temporal dynamics in workers’
preferences, which can be a key factor for improving the

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

2

quality of task assignment in spatial crowdsourcing.
To address these challenges, we propose a Preference-

aware Task Assignment (PTA) framework from individual
aspect, based on sparse task-performing records generated
in the recent time slots as well as in history. The frame-
work is comprised of two primary components. First, we
model different workers’ preferences on different categories
of tasks in different time slots with a three dimensional
tensor. Supplementing the missing entries of tensor through
History-based Context-aware Tensor Decomposition (HCT-
D) with the aid of workers’ task-performing history and
two context matrices, we recover workers’ preferences for
different categories of tasks in different time slots. Secondly,
we design three algorithms to maximize the overall task
assignments by giving higher priorities to workers who are
more interested in the tasks at every time instance.

Though our previous work [49] has already achieved the
optimization goal of maximizing the total number of task
assignments by taking personal preferences into account, it
fails to consider group task assignment, which asks a group
of workers with high consensus to perform a task (such as
moving a heavy stuff) simultaneously.

Group activities including group task completion activ-
ities are essential ingredients in people’s daily social life.
The rapid development of SC services has greatly boosted
group task completion activities by providing convenient
platforms for workers to perform tasks together, in which
the SC platforms need to target on not only individual
workers but also worker groups. While making significant
advances in the spatial crowdsourcing technology, most of
the prior studies in this topic have focused on assigning
tasks for individuals, which unfortunately cannot be effec-
tively applied for group task assignment. Compared with
individual task assignment, the major challenges in group
task assignment are how to make a group of workers to
reach the location of the assigned task at almost the same
time (i.e., assigning a group of workers to each task with-
out violating the tolerable waiting time constraint of each
group member) and how to achieve high consensus among
group members when assigning a group of workers to each
task. To tackle these challenges, we develop an effective
group task assignment framework considering both toler-
able waiting time and consensus of group members. More
specifically, we first utilize a fuzzy logic model to estimate
the tolerable waiting time of workers for their reachable
tasks. Then all the available worker groups are generated
based on workers’ tolerable waiting time constraint, and the
group consensus can be calculated accordingly by taking
group preference and similarity among group members
into account. In the final assignment phase, we propose
an algorithm based on tree decomposition to achieve the
optimal task assignment.

As a summary, the major value-added extension over
our preliminary work [49] is five folds.

1) We identify and study in depth a limitation in our
previous individual PTA framework, which fails to be effec-
tively applied for the group task assignment scenarios.

2) A tailor-made fuzzy logic model is designed to predict
the tolerable waiting time of workers for their reachable
tasks.

3) Based on workers’ tolerable waiting time, we can

TABLE 1
Summary of Notations

Notation Definition

s Spatial task
s.l Location of spatial task s
s.p Publish time of spatial task s
s.φ Valid time of spatial task s
s.c Category of spatial task s
s.pt Processing time of spatial task s
s.reward Reward of spatial task s
s.maxW Maximum acceptable workers for s at certain time
s.k The number of required workers for finishing s
w Worker
w.l Current location of worker w
w.r Reachable radius of worker w
w.off Offline time of worker w
Sw Task-performing history for worker w
T Time slot
P T
w(c) Preference of worker w for task category c in T
Ai Spatial task assignment instance set
X A worker-task-time tensor
Y A time-task matrix
Z A task-feature matrix

generate the available worker groups and compute their
consensus.

4) A tree-decomposition-based strategy is adopted to
achieve the optimal task assignment with maximum group
consensus.

5) We conduct extensive experiments with a real-world
dataset, where the empirical results confirm that our so-
lutions are effective in assigning spatial tasks to worker
groups.

The remainder of this paper is organized as follows.
Section 2 gives the preliminary concepts, along with a brief
introduction of the framework overview. In Section 3, we
introduce the workers’ temporal preferences modeling ap-
proach. The proposed individual and group task assignment
algorithms are presented in Section 4 and 5 respectively,
followed by the experimental results in Section 6. Section 7
surveys the related work and Section 8 concludes this paper.

2 PROBLEM STATEMENT

In this section, we briefly introduce a set of preliminary
concepts, and then give an overview of our framework.
Table 1 lists the major notations used throughout the paper.

2.1 Preliminary Concepts

Definition 1 (Spatial Task). A spatial task, denoted by
s =< s.l, s.p, s.φ, s.c, s.pt, s.reward, s.maxW >, is a
task to be performed at location s.l, published at time
s.p, and will expire at s.p + s.φ, where s.l : (x, y) is
a point in the 2D space. Each task s is labelled with
a category s.c (e.g., taking photos, reporting local hot
spot) and the processing time s.pt required to finish task
s. Each task also has a reward (specified by the task
requester or SC platforms) and workers will receive a
certain reward s.reward for each task when they com-
plete it. s.maxW is the maximum number of workers
allowed to be assigned to perform s at the same time
instance in the individual task assignment.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

3

Xrec

Tensor
construction

X

Context matrix
construction

HCTD

Data Sources Workers’ Temporal Preferences Modeling Task Assignment

PTA

SPTA

TPTA

Tasks

Workers

Task-feature
matrix

Time-task
matrix

Worker
preferences
in current

time instance

Available workers genaration

Available
workers
for each

task

TWT
estimation

TWT of
each

worker

AWGs
generation

AWGs of
each
task

Concensus
calculation

Concensus
of each

AWG
OTA

Trip constaints

Individual Task Assignment

Group Task Assignment

Trip constaints

Fig. 1. PTA Framework

A spatial task s can be completed only when at least
one worker can arrive at s.l and finish it before its ex-
piration time (i.e., s.p + s.φ). Note that in the individual
task assignment scenarios, each task s can be completed by
several workers nearby during its valid time period while
it is allowed to be assigned to up to s.maxW worker at a
certain time instance, which means task s can be completed
by 1 to s.maxW workers. s.maxW can be specified by the
task requester or SC platforms, which aims to avoid the
misallocation of workers for tasks, i.e., most of the workers
perform only a few tasks while leaving a large number
of tasks unassigned. In group task assignment scenarios,
each task s is associated with s.k (the number of workers
required to perform s) instead of s.maxW , and s needs to
be completed by s.k workers together.

Definition 2 (Worker). A worker, w =< w.l, w.r, w.off >,
is a carrier of a mobile device who can perform spatial
tasks. A worker can be in an either online or offline
mode. A worker is online when he/she is ready to
accept tasks. An online worker is associated with his/her
current location w.l and his/her reachable circular range
with w.l as the center and w.r as the radius, where w
can accept assignment of spatial tasks. Besides, an online
worker is also associated with his/her next offline time,
w.off , before which the worker can be assigned tasks.

In our model, a worker can handle only one task at a
certain time instance, which is reasonable in practice.

Definition 3 (Task-performing History). Given a worker
w who has performed n tasks in a time period, we
define his/her task-performing history as a task set,
Sw = {(s1, tas1 , t

d
s1), ..., (sn, t

a
sn , t

d
sn)}, with each triplet

(si, t
a
si , t

d
si) comprising the performed task si, worker’s

arrival time tasi and departure time tdsi at the location of
task si.

For brevity, we simplify Sw =
{(s1, tas1 , t

d
s1), ..., (sn, t

a
sn , t

d
sn)} as Sw = {s1, ..., sn}.

Definition 4 (Frequency-based Worker Preference). Given
a task category c and the task-performing history of
worker w, we define the frequency-based preference of
worker w for task category c in a certain time slot T,
denoted by P T

w(c), as the ratio of the number of tasks in
category c to the number of total tasks that worker w has
performed during T, i.e.,

P T
w(c) =

∑
si∈Sw

η(si.c)

NT(Sw)
, (1)

η(si.c) =

{
1, si.c = c and [tasi , t

d
si
] ∩ T 6= ∅,

0, otherwise,

where NT(Sw) is the number of tasks performed by w in
time slot T.

In the rest of the paper, we will use worker preference and
frequency-based worker preference interchangeably when the
context is clear.
Definition 5 (Spatial Task Assignment Instance Set). Given

the online worker set Wi = {w1, w2, ...} and available
task set Si = {s1, s2, ...} at time instance ti, we define
Ai as the spatial task assignment instance set at time ti.
Ai consists of a set of tuples of form < w, s >, where a
spatial task s is assigned to worker w, satisfying all the
workers’ and tasks’ constraints. We use |Ai| to denote
the number of task assignments at time instance ti.

Problem Statement: given a set of online workers Wi and
a set of available tasks Si at the current time instance ti
on a SC platform, the goals of individual and group task
assignment problems can be defined in the following.

1) Individual task assignment problem aims to find an
allocation between the workers and tasks to maximize the
total number of task assignments (i.e., |Ai|) by considering
workers’ temporal preferences for task categories and pref-
erences for tasks’ rewards at time instance ti.

2) Group task assignment problem aims to assign each
task to a group of workers to maximize the total consensus
among group members by taking workers’ tolerable waiting
time, group preferences, group members’ similarity and
tasks’ rewards into account at time instance ti.

2.2 Framework Overview
Our framework (see Figure 1) is comprised of two major
parts: 1) Temporal Preferences Modeling (TPM) for workers
using History-based Context-aware Tensor Decomposition
(HCTD); and 2) Task Assignment (TA) based on workers’
temporal preferences.

The TPM procedure constructs a 3D tensor X based on
workers’ recent and historical task-performing data, where
the three dimensions stand for workers, task categories
and time slots, respectively. Each entry is the preference
of a particular worker for a particular task category in
a certain time slot. Meanwhile, we build up two context
matrices. One is the time-task matrix with two dimensions
respectively standing for time slots and task categories, in
which each entry is the number of times that the tasks
in the corresponding category have been performed in a

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

4

time slot. The other is the task-feature matrix whose values
are extracted from historical worker profile. With the aid
of the above two matrices, the missing entries of tensor
X can be filled by HCTD. Then we can infer workers’
preferences on all types of tasks in the current time. The
idea behind it is that workers with similar contexts could
have similar preferences. The context matrices reveal this
inherent similarity and possess a much higher proportion
of non-zero entries than X , which can effectively reduce
decomposition error and improve inference accuracy.

The TA phase consists of individual and group task
assignment process. In the individual task assignment part,
based on the trip constraints including workers’ reachable
region and tasks’ expiration time, we optimize the task
assignment based on workers’ current personal preferences
at every instance of time, and propose three algorithms,
i.e., Preference-aware Task Assignment (PTA) algorithm,
Spatial-weighted Preference-aware Task Assignment (SPTA)
algorithm, and Temporal-weighted Preference-aware Task
Assignment (TPTA) algorithm. In the group task assign-
ment part, considering the trip constraints, we first obtain
the available workers for each task. Then we estimate the
Tolerable Waiting Time (TWT) of workers for their reachable
tasks, based on which the Available Worker Groups (AWGs)
are generated and the corresponding group consensus can
be calculated. Finally, the Optimal Task Assignment (OTA)
algorithm based on tree decomposition is employed to
assign tasks.

3 WORKERS’ TEMPORAL PREFERENCES MODEL-
ING

In this section, we model workers’ temporal preferences,
which consists of three parts: 1) workers’ temporal prefer-
ences (including recent and historical preferences) tensor
construction; 2) context matrix construction that captures
the temporal correlation of task-performing conditions as
well as the similarity between different task categories;
3) history-based context-aware tensor decomposition and
completion, which decomposes the tensor with the aid of
workers’ historical preferences tensor and context matrices
collaboratively, achieving a higher accuracy for workers’
temporal preferences modeling.

3.1 Workers’ Temporal Preferences Tensor Construc-
tion

In this section, we build a worker-task-time tensor, Xr ∈
RN×M×L, based on the task-performing records in the
most recent L time slots, to model the workers’ temporal
preferences for different categories of tasks, as illustrated
in Figure 2. The tensor consists of three dimensions, i.e.,
workers, task categories and time slots, and each entry
Xr(i, j, g) = e denotes the i-th worker’s preference e on the
j-th task category in time slot g (e.g., 10 : 00am−11 : 00am).
Obviously, there exists missing entries in tensor Xr . Once
the missing entries are inferred from other non-zero entries,
we can obtain all the workers’ preferences on any tasks in
all the L time slots.

However, the tensor is over sparse with large quantities
of missing entries since only a few tasks can be performed

task categories

w
1

…

w

N

Xr

Xh

X = Xr || Xh

w
o

rk
er

s

c1 … cM

Yr

Yh

Y

task categories

ti
m

e
sl

o
ts

t 1
…

t L

t 1
…

t L

c1 … cM

Z

task features

ta
sk

 c
at

eg
o

ri
es

f1 … fQ

c 1
…

c M

Fig. 2. Workers’ Temporal Preferences Modeling

by an individual worker in a short time period. It is not accu-
rate enough to decompose Xr solely based on its own non-
zero entries, so we introduce another tensor, Xh, based on
the historical task-performing records over a longer period
of time (e.g., one month) aggregated by the corresponding
time slots from 1 to L, which has the same structure as Xr

shown in Figure 2. Clearly, Xh, representing the historical
task-performing patterns and workers’ long-term interests,
is much denser than Xr . The error of supplementing Xr can
be greatly reduced by decomposing Xr and Xh together.

3.2 Context Matrix Construction

For more effective decomposition of the tensor Xr , we also
construct another two matrices, i.e., time-task matrix Y and
task-feature matrix Z .

3.2.1 Time-task matrix
Matrix Y consists of Yr and Yh, capturing the temporal
correlation in terms of the distribution of task-performing
conditions over different task categories, in which each
row denotes a time slot and each column denotes a task
category. In our work, Yr and Yh respectively represent the
recent and historical task-performing conditions in the same
span of time of day. An entry of Yr ∈ RL×M , Yr(g, j),
represents the number of times that the tasks of category
j have been performed in time slot g. Consequently, the
similarity of two different rows indicates the correlation of
task-performing flows between two time slots. A worker
may perform some similar tasks in different time slots since
these time slots share a similar worker task-performing
pattern. For instance, the task-performing behaviours of a
worker might be similar at 10:00am-11:00am and 2:00pm-
3:00pm, since he/she is likely to stay at his/her workplace
and willing to perform some simple tasks, which do not
affect his/her normal duties. Moreover, Yr can be more
dense as its entries are aggregated from all the workers,
therefore can help reduce the error of decomposing Xr. Yh
has the same structure as Yr , storing the number of times
that the tasks with different categories have been performed
in different time slots based on workers’ long term task-
performing history.

3.2.2 Task-feature matrix
Matrix Z ∈ RM×Q captures the similarity between dif-
ferent task categories by storing the task features of each
category. Many features can be extracted based on different
application scenarios, such as task popularity, task difficulty,
task risk level, skill requirement, and statistical information
derived from historical worker profile. Each entry Z(j, f) of

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

5

Z represents the f -th feature of task category j. The value
of Z(j, f) can be a real value which indicates the weight of
the feature for the task category.

3.3 Tensor Decomposition and Completion
Due to our goal of modeling workers’ temporal prefer-
ences, we need to estimate the missing entries of Xr . A
straightforward solution is leveraging tucker decomposition
model, which is generally applied to higher-order principal
component analysis [26]. It decomposes a tensor into a core
tensor multiplied (or transformed) by a few matrices, based
on the tensor’s non-zero entries. However, decomposing Xr

solely cannot get accurate enough results since it is over
sparse. For instance, when using one-day task-performing
records in our dataset and setting 1 hour as a time slot, only
0.15% entries of Xr are non-zero.

To achieve a high accuracy of preference estimation, we
combine Xr and Xh (i.e., X = Xr||Xh) together and then
decompose X ∈ RN×M×2L with aid of the context matrices
Y and Z collaboratively, which is shown in Figure 2. We
utilize tucker decomposition to decompose X into the mul-
tiplication of a core tensor and three matrices as follows:

X ≈ O ×W W ×S S ×T T (2)

where O ∈ RdW×dS×dT is the core tensor and its entries
show the level of interaction between the three components;
W ∈ RN×dW , S ∈ RM×dS , and T ∈ R2L×dT are the low
rank latent factor matrices for workers, task categories and
time slots; dW , dS , and dT denote the dimensions of latent
factors.

The two context matrices can be factorized in the same
way. Y ∈ R2L×M can be factorized into the multiplication of
two matrices, Y = TST , and Z ∈ RM×Q can be factorized
into the multiplication of two matrices, Z = SV , where
V ∈ RdS×Q is the low rank latent factor for task features
and Q denotes the dimension of task features. It is easy
to see that tensor X shares matrix T with Y and shares
matrix S with Z . Based on the knowledge of tensor X and
two context matrices Y and Z , we then decompose X , in
which the loss function is defined in Equation 3 to control
the errors.

L(O,W,S, T, V) =
1

2
||X −O ×W W ×S S ×T T ||2+

λ1

2
||Y − TST ||2 +

λ2

2
||Z − SV ||2+

λ3

2
(||O||2 + ||W ||2 + ||S||2 + ||T ||2 + ||V ||2)

(3)

where || · || denotes the Frobenius norm, λ3

2 (||O||2+ ||W ||2+
||S||2+||T ||2+||V ||2) is a regularization of penalties to avoid
over-fitting, and λ1, λ2 and λ3 are parameters controlling
the contribution of different parts during the decomposition.
Note that the whole missing values are regarded as zeros. In
this work, we apply gradient descent algorithm to minimize
the loss function, and then recover the missing values in X
by multiplying the decomposed factors as Xrec = O ×W
W ×S S ×T T .

4 INDIVIDUAL TASK ASSIGNMENT

In the real-time scenario, where workers and tasks arrive
dynamically and require immediate responses from an SC

server, it is challenging to achieve the global optimal so-
lution for PTA problem. Since an SC server only has a
local knowledge of the available tasks and workers at any
instance of time instead of a global view of all the workers
and tasks, the individual task assignment will optimize the
task assignment locally at every time instance by maximiz-
ing the current assignments and give higher priorities to
workers who show more preference on the tasks simulta-
neously. In the sequel, we propose three heuristics to solve
our proposed problem including Basic, Spatial and Temporal
heuristics.

4.1 Preference-aware Task Assignment (PTA) Algorith-
m
Taking workers’ preferences for task categories and tasks’
rewards as the priority of task assignment, we propose a
basic solution to solve the preference-aware task assignment
problem by transforming it to a Minimum Cost Maximum
Flow (MCMF) problem.

The MCMF is based on a flow network graph represen-
tation of the task assignment problem for time instance ti, in
which the graph is represented byGi = (V,E) with V corre-
sponding to the set of vertices andE the set of edges. Specif-
ically, given a set of online workers, Wi = {w1, w2, ...}, and
a set of available tasks, Si = {s1, s2, ...}, at time instance
ti, the number of V and the number of E are fixed to
|Wi| + |Si| + 2 and |Wi| + |Si| + m respectively, where m
is the number of available assignments for all the workers.
The available assignments for worker w (w ∈ Wi) in time
instance ti, denoted as Awi , should satisfy the following
conditions: ∀ < w, s >∈ Awi , s ∈ Si,

1) task s is located in the reachable circular range of
worker w, i.e., d(w.l, s.l) ≤ w.r, and

2) worker w can have enough time to finish task s before
his/her offline time, i.e., ti + t(w.l, s.l) + s.pt ≤ w.off , and

3) worker w can have enough time to finish task s before
s’s expiration time, i.e., ti+ t(w.l, s.l)+ s.pt ≤ s.p+ s.φ and

4) task s has not been performed by worker w,
where d(w.l, s.l) is a given distance (e.g., Euclidean

distance) between w.l and s.l, and t(w.l, s.l) is the travel
time from w.l to s.l. For the sake of simplicity, we assume
all the workers share the same velocity, so the travel time
cost between two locations can be estimated with their
Euclidean distance, e.g., t(w.l, s.l) = d(w.l, s.l). However,
our proposed algorithms are not dependent on this assump-
tion and can handle the case where workers are moving
at different speeds. |Awi | denotes the number of available
assignments for worker w and thus we can sum the number
of available assignments for all the workers to get m, i.e.,
m =

∑
w∈Wi

|Awi |.
For the vertices construction, each worker wj maps to a

vertex, vj , and each spatial task sg maps to a vertex, v|Wi|+g .
In addition, two fictitious vertices src (labeled as v0) and dst
(labeled as v|Wi|+|Si|+1) are created to represent the source
and destination respectively.

Figure 3 depicts an example of such network flow graph
for three workers and four tasks at the same time instance.
The corresponding edges are created using the following
steps:

1) Edges associated from src to the vertices mapped
from Wi are created. For each edge connecting src to vj

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

6

src dstc=1, w=0 c=1, w=0.71

c=1, w=0.77

c=1, w=0.83

c=1, w=0w2

w1

w3

s3

s1

s2

s5

Fig. 3. Flow Network-based Graph

(mapped from wj), denoted by (src, vj), we set its capacity
to 1 (i.e., c(src, vj) = 1), since every worker is only capable
of performing one task at the current time instance. The cost
of the these edges are set to 0.

2) We generate |Si| edges connecting the vertices
mapped from Si to dst, where the capacity of each edge
is set to maxW since every task is to be assigned to at most
maxW workers. Same to edge (src, vj), the cost of these
edges are set to 0.

3) Due to the spatial and temporal constraints, we
add an edge from vj for every worker wj to the vertex
v|Wi|+g mapped from sg ∈ Si if sg can be assigned to
wj , i.e., < wj , sg >∈ Awj

i . For each edge (vj , v|Wi|+g),
its capacity is set to one. The reward of a task (i.e., the
reward obtained by a worker when he/she completes the
task) reflects workers’ preferences for it to some extend,
i.e., workers tend to be more interested in performing the
tasks with higher rewards. This is based on the intuition:
reward (especially monetary reward) plays an important
role to motivate workers to perform tasks in crowdsourcing
systems [17], [21]. We normalize the reward values to lie
between 0 and 1, using a Min-Max normalization procedure.
The preference is frequency-based worker preference (see
Definition 4), whose values are naturally between 0 and 1.
To show both workers’ preferences (for task categories) and
their interests in the rewards received by completing tasks,
we utilize a linear combination of preference and reward to
represent the cost of an edge. More specifically, the cost (de-
noted by w(vj , v|Wi|+g)) of each edge can be measured by
the worker’s current preference and the task’s reward, i.e.,
w(vj , v|Wi|+g) = β 1

P T
wj

(sg.c)+1 + (1 − β) 1
sg.reward+1 , where

β (0 ≤ β ≤ 1) is the parameter controlling the contributions
of the worker’s current preference and the task’s reward,
P T
wj

(sg.c) (ti ∈ T) denotes worker wj ’s current preference
for task sg and sg.reward denotes the reward of task sg .
The cost w(vj , v|Wi|+g) considers wj ’s preferences on both
the task category and task’s reward.

The task assignment problem is now converted into a
MCMF problem in the direct flow graph Gi from src to
dst, which is to achieve the maximum flow of the graph
while simultaneously minimizing the cost. In our work,
we use the Ford-Fulkerson algorithm [25], [18] to find
the maximum flow of the network and then apply linear
programming to minimize the cost of the flow [23]. The
Ford-Fulkerson algorithm is an iterative algorithm based
on the idea of augmenting path. When the capacities are
integers (the capacities of edges are set to 1 or maxW in our
work), the time complexity of Ford-Fulkerson is bounded

by O(|E| · fmax) [16], where |E| is the number of edges and
fmax is the maximum flow in the network.

4.2 Spatial-weighted Preference-aware Task Assign-
ment (SPTA) Algorithm
The PTA does not consider the travel cost between workers
and their designated tasks, which is critical in SC as workers
have to physically go to the locations of the tasks in order to
perform them. In our work, the travel cost between a worker
w and a spatial task s, denoted as d(w.l, s.l), is computed
as a Euclidean distance between them. Due to the fact that a
worker is more likely to accept nearby tasks [19], we give
higher priorities to the closer tasks by verifying worker
preferences at time instance ti based on this heuristic. Given
an online worker w and an available task s at time instance
ti, the weighted preference of worker w for task s, denoted
by P

′

w(s), can be computed as followed:

P
′
w(s) = P T

w(s.c) · δ(w.l, s.l) (4)

δ(w.l, s.l) = 1−min(1, d(w.l, s.l)/w.r)

where δ(w.l, s.l) is a function calculating the discount to the
worker’s preference on the basis of his/her proximity to the
task location. SPTA adapts PTA by calculating the weight
of each edge (vj , v|Wi|+g) connecting wj and sg with the
weighted preference, i.e., w(vj , v|Wi|+g) = β 1

P ′
w(s)+1

+ (1−
β) 1

sg.reward+1 (0 ≤ β ≤ 1).

4.3 Temporal-weighted Preference-aware Task Assign-
ment (TPTA) Algorithm
This heuristic takes the temporal urgency of tasks into
account to prioritize tasks, based on the intuition that a task
which is further away from its deadline is more likely to be
performed in the future, and vice versa. As a result, near-
deadline tasks should have higher priorities to be assigned
than others. Thus, in time instance ti, we define the priority
of a task s as the ratio between its remaining time and its
vaild time, i.e., s.p+s.φ−s.pt−ti

s.φ (s.p ≤ ti), where s.p is the
publish time of task s, s.φ is the valid time of s, s.pt is
the processing time of s and ti is the current time. TPTA
modifies PTA through setting the weight for each edge
(v|Wi|+g, v|Wi|+|Si|+1) connecting sg and dst with the prior-
ity of a task, i.e., w(v|Wi|+g, v|Wi|+|Si|+1) = s.p+s.φ−s.pt−ti

s.φ
(s.p ≤ ti).

5 GROUP TASK ASSIGNMENT

As the extension of our previous work [49], we will present
in this section the algorithms that support group task as-
signment, where each task s has to be accomplished by
s.k (s.k, specified by the task requester or SC platform,
is the number of workers required to perform s) workers
together to guarantee its timely completion. Notice that
the rationality behind our original work [49] that makes
personalized task assignment for individuals is to discover
workers’ preference profiles in order to identify tasks that
well match the profiles of targeted workers. However, for
group task assignment, we argue that a good spatial crowd-
sourcing system not only needs to model workers’ indi-
vidual preferences but also considers the consensus among

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

7

group members, wherein the groups are often formed in ad-
hoc manner (e.g., people temporarily gathering for a task).
Moreover, the tolerable waiting time of each worker for
their reachable tasks also plays a crucial role in affecting the
quality of task assignment result since a worker is willing
to wait others to perform the assigned task together only
within his/her tolerable waiting time. Otherwise, he/she is
highly likely to get away and abandon this task, which will
leave the task unfinished. In this section, we optimize the
group task assignment locally at every time instance by con-
sidering workers’ tolerable waiting time and maximizing
the total group consensus. In particular, we first calculate the
available workers for each task by taking the trip constraints
(i.e., workers’ reachable region and tasks’ expiration time)
into consideration, and then estimate the Tolerable Waiting
Time (TWT) of workers for their reachable tasks. Based on
TWT, the Available Worker Groups (AWGs) are generated
and the corresponding group consensus can be calculated.
Lastly, we adopt a tree-decomposition-based technique [51]
to achieve the optimal task assignment.

5.1 Available Workers Set Generation
Due to the constraint of tasks’ expiration time as well as
workers’ available time and reachable range, each task can
only be completed by a small subset of workers. Therefore,
we firstly find the set of workers that can reach the location
of each task without violating the constraints. The available
worker subset for a task s, denoted as s.AW , should satisfy
the following three conditions: ∀w ∈ s.AW ,

1) worker w can have enough time to finish task s before
the expiration time of s, i.e., ti+t(w.l, s.l)+s.pt ≤ s.p+s.φ,
and

2) worker w can have enough time to finish task s before
his/her offline time, i.e., ti + t(w.l, s.l) + s.pt ≤ w.off , and

3) task s is located in the reachable range of worker w,
i.e., d(w.l, s.l) ≤ w.r,

where ti denotes the current time instance, t(a, b) is the
travel time from location a to b, s.pt is the processing time of
task s, s.p is the publish time of task s, s.φ is the valid time
of task s, w.off is the offline time of worker w, d(a, b) is the
travel distance from location a to b, and w.r is the reachable
distance of worker w. The above three conditions guarantee
that a worker can travel from his/her origin to the location
of task s (which is located in the reachable circular range
of w) directly and complete task s before s expires as well
as during w’s available time (i.e., before w’s offline time). If
worker w is available for task s, i.e., w ∈ s.AW , we say s is
a reachable task of w. It is easy to see the time complexity is
O(|W |×|S|), where |W | and |S| are the numbers of workers
and tasks respectively. As finding the available worker set
for each worker is completely independent, it can be easily
parallelized.

5.2 Tolerable Waiting Time Estimation
Estimating the Tolerable Waiting Time (TWT), during which
a worker is willing to wait for other workers to perform the
assigned task together and does not get away, is challeng-
ing in the field of spatial crowdsourcing. An intrinsically
important issue in the estimation of TWT is dealing with
the uncertainty since some information a worker or the

SC system provides may be imprecise. For example, the
SC system sometimes cannot obtain the precise location
of a worker/task due to privacy issues or limitation of
positioning technology. Moreover, workers’ preferences on
all types of tasks in the current time instance are estimated
values instead of accurate values. Therefore, the estimation
of TWT has the inherent ambiguity. Fuzzy logic, which is
the logic underlying approximation or equivalently fuzzy
reasoning, has evolved into a very useful tool for solving
complex, real-world problems. The strength of fuzzy logic
algorithms lies in their ability to systematically address the
natural ambiguities in data measurement, prediction, and
pattern recognition [11]. Since fuzzy logic is proved to be
well suited to deal with uncertainties [28], [46], and there
exists the inherent ambiguity in the estimation of TWT, we
design a novel estimating algorithm of the tolerable waiting
time by using fuzzy logic.

Intuitively, TWT is closely related to the location and
time the worker requests. In particular, when a worker has
enough available time, he/she tends to wait a long time for
other collaborative workers. However, a worker may not be
willing to spend a lot of time waiting if he/she has to travel
a long distance from his/her location to the task’s location.
Furthermore, once a worker is interested in performing the
task, he/she is willing to spend more time on this task and
spends more time waiting other members to conduct this
task together (i.e., his/her tolerable waiting time tends to be
longer). Therefore, we take each worker’s Urgency Degree
(UD), Travel Cost (TC) and Preference (P) for a specified task
as fuzzy variables, and obtain his/her corresponding TWT
for the task.

Input w.l, w.off, s.l, s.e and s.pt

 (UD, TC, P)

Variable Computation

Fuzzification

Inference

Defuzzification

TWTOutput

Rule Base

membership grades
of variables

rules

fuzzy output

Fig. 4. Diagram of TWT Estimation

The overview of the algorithm for estimating the TWT
of a worker for a task is illustrated in Figure 4. Taking a
worker’s location (w.l), his/her offline time (w.off), a task’s
location (s.l), its expiration time (s.e) and processing time
(s.pt) as input, the algorithm first extracts the crisp values
of fuzzy variables (including UD, TC and P) through the
variable computation module, and then the fuzzy member-
ship grades of fuzzy variables (as the linguistic values) are
deduced from these crisp values based on the membership
functions by fuzzification module. The reason we introduce
the fuzzification module is that the rules offered by the rule
base are presented as natural language with uncertainty,

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

8

 0

 0.5

 1

 0 15 30 45 60

M
em

be
rs

hi
p

G
ra

de

Urgency Degree (min)

High
Low

(a) Membership Functions of UD

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

be
rs

hi
p

G
ra

de

Travel Cost (km)

Long
Short

(b) Membership Functions of TC

 0

 0.5

 1

 0 0.5 1

M
em

be
rs

hi
p

G
ra

de

Preference

More
Less

(c) Membership Functions of P

 0

 0.5

 1

 0 10 20 30 40 50 60

M
em

be
rs

hi
p

G
ra

de

Tolerable Waiting Time (min)

Long
Medium
Short

(d) Membership Functions of TWT

Fig. 5. Membership Functions of Fuzzy Variables

which cannot be utilized without fuzzification process. In
the subsequent step, the inference engine infers the fuzzy
output from the previous fuzzification results of fuzzy vari-
ables according to the rules in the fuzzy rule base, where
the rules can be formulated by human perception. This step
aims to simulate the mode of thinking by human brain or
human decision-making. Finally, the defuzzification module
performs the inverse operation of fuzzification module to
convert the fuzzy output into a crisp value as the final
TWT output. In the following, we will elaborate the related
technologies.

5.2.1 Variable Computation and Fuzzification

In this section, we introduce the computation and fuzzifica-
tion process for variables (i.e., a worker’s Urgency Degree
(UD), Travel Cost (TC) and Preference (P)). Specifically, UD
is determined by the worker’s available time, the task’s ex-
piration time and processing time, which can be calculated
by UD = min{w.off − t(w.l, s.l) − s.pt − ti, s.p + s.φ −
t(w.l, s.l) − s.pt − ti} (where w.off is the offline time of
worker w, t(w.l, s.l) is the travel time from w.l to s.l, s.pt
is the processing time of task s, ti is the current time, s.p is
the publish time of task s, and s.φ is the expiration time of
task s). TC is equal to the travel distance between the the
worker’s location and task’s location (i.e., TC = d(w.l, s.l)),
and P refers to the worker’s preference for the task, which
has been obtained in Section 3.

Since a fuzzy set is usually approximated with a fuzzy
set of triangle or trapezoidal type [34], [46], we adopt
triangular and trapezoidal membership functions to mod-
el the relationship between UD/TC/P and membership
grades [20]. Based on the statistical data and empirical
knowledge, we design the membership functions of both
fuzzy variables and the output, which are illustrated in
Figure 5. UD has two membership functions including
high and low urgency degree functions (see Figure 5(a)).
In Figure 5(b), TC also has two membership functions, i.e.,
long and short travel distance functions. From Figure 5(c)
we can see the membership functions of P are more and
less preference functions. For the output, TWT, it consists of
three membership functions that are long, medidum and short

TABLE 2
Fuzzy Rule Base

Rule UD TC P TWT

R1 high short more short
R2 high short less short
R3 high long more short
R4 high long less medium
R5 low short more medium
R6 low short less medium
R7 low long more long
R8 low long less long

tolerable waiting time functions, as depicted in Figure 5(d).
The membership functions of TWT can be expressed in
the following formulas and those of other variables can be
represented in the same way, which are omitted due to space
limit.

long TWT (x) =

 0, if 0 ≤ x ≤ 20
(x− 20)/20, if 20 < x < 40
1, if x ≥ 40,

(5)

medium TWT (x) =

 0, if 0 ≤ x ≤ 10 or x ≥ 30
(x− 10)/10, if 10 < x < 20
(30− x)/10, if 20 ≤ x < 30,

(6)

short TWT (x) =

{
(20− x)/20, if 0 ≤ x < 20
0, if x ≥ 20,

(7)

where long TWT(x), medium TWT(x) and short TWT(x) de-
note the long, medidum and short tolerable waiting time
functions respectively. x, the value of x-axis, is the tolerable
waiting time.

5.2.2 Fuzzy Rule-based Inference
The fuzzy rule base we design is composed of eight rules,
which is shown in Table 2. Each rule, represented as “if-
then” format, provides the fuzzy output of TWT when the
fuzzy variables take specific values. Taking rule R2 as an
example, R2 means that if UD is high, TC is short and P is
less, then TWT is short. This rule is intuitive since a worker
is not willing to wait a long time for others to perform a task
when he/she is very urgent and has less preference for this
task.

According to the rules in the fuzzy rule base, the infer-
ence module can infer the fuzzy output from fuzzy vari-
ables. We adopt the MIN-MAX principle [27], [32] for rule
matching and merging, wherein rule matching is performed
by using fuzzy intersection (the min operator), while rule
merging is conducted by employing fuzzy union (the max
operator). For instance, if the membership grades of “UD
is high”, “TC is short” and “P is less” are a, b and c re-
spectively, the inference strength of R2, r2, can be calculated
by r2 = min{a, b, c} in the rule matching step. For rule
merging process, since “TWT is short” is the consequence
of R1, R2 and R3, the membership grade of the fuzzy
output, “TWT is short”, is the maximal inference strength
among R1, R2 and R3, i.e., o = max{r1, r2, r3} (where o is
the membership grade of the fuzzy output).

5.2.3 Defuzzification
In the final step, the crisp TWT can be derived from all
the corresponding rules in the defuzzification module by

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

9

using a height defuzzification algorithm [33]. in which the
computational formula is defined in Equation 8.

O =

∑n
i=1 oi × ci∑n

i=1 oi
, (8)

where oi is the membership grade of the ith fuzzy output
that can be obtained in the above step, ci is the centroid
of the ith membership function, and n is the number of
membership functions of fuzzy output variables. As we can
see from Equation 8, the final crisp output is the average
of the centroids, which are weighted by the corresponding
membership grades. Finally, we can estimate the tolerable
waiting time (denoted as w.TWT (s)) of each worker w for
each reachable task s.

Next, we will illustrate the process of TWT estimation.
Suppose that the UD, TC and P of a worker for a task are 15,
1 and 0.5, respectively. Based on the membership functions
in Figure 5, the membership grades of “UD is high” and
“UD is low” are 1 and 0; the membership grades of “TC
is long” and “TC is short” are 0.33 and 0; the membership
grades of “P is more” and “P is less” are 1 and 0. According
to the rules in the fuzzy rule base in Table 2, we can obtain
the inference strength of R3 as r3 = 0.33 and those of the
rest rules are 0 by the min operator, as a result of which the
membership grades of “TWT is short”, “TWT is medium”
and “TWT is long” can be calculated as 0.33, 0 and 0 by
the max operator. Then according to Equation 8, we can get
that the TWT is 6.67 as the centroids of long TWT(x), medium
TWT(x) and short TWT(x) are 6.67, 20 and 46.67 respectively.

5.3 Available Worker Group Generation and Consen-
sus Calculation
5.3.1 Available Worker Group Generation
Given the available workers for each task s and their toler-
able waiting time for s, we next find the set of Available
Worker Groups (AWGs), each of which has s.k workers,
denoted as s.k-AWG. Each s.k-AWG should satisfy the
following condition: ∀wi, wj ∈ s.k-AWG, t(wi.l, s.l) +
wi.TWT (s) ≥ t(wj .l, s.l), where t(a, b) denotes the travel
time between location a and b, and wi.TWT (s) denotes the
tolerable waiting time of worker wi for task s that has been
calculated in Section 5.2. The time complexity of computing
AWG is O(|S| · |AWmax|k), where |S| is the number of tasks
to be assigned, |AWmax| denotes the maximal number of
available workers for all the tasks, and k is the number of
group members.

5.3.2 Consensus Calculation
The goal of group task assignment is to assign each task to a
group of workers that reflects the interests and preferences
of all the group members. In general, group members may
not always have the same tastes and the group task assign-
ment process should manage the heterogeneity of groups.
As a consequence, a consensus score for each group needs
to be carefully designed. The consensus process is necessary
to solve group task assignment, which is used to obtain a
final solution with the certain level of agreement among
the workers. Intuitively, there are two main aspects to the
consensus score. First, the score needs to reflect the degree
to which the task is preferred by all the members. The more

group members prefer a task, the higher its score should be
for the group. Second, the score needs to reflect the degree of
similarity among members since similar workers are more
willing to collaborate with each other.

Getting the set of available worker groups for task s, we
next calculate the consensus score for each group, which
consists of two components: group preference and group
members’ similarity. More specifically, since the individual
preferences are given (in Section 3), we simply adopt the av-
erage aggregation strategy, the most prevalent mechanism
being employed currently [22], to get the group preference.
Group members’ similarity is evaluated through a standard
metric (i.e., cosine similarity) based on the preference ratings
matrix, which measures how similar the preferences of the
group members are. The consensus score for a group G,
denoted by con(G), can be calculated as follows:

con(G) = αP(G) + (1− α)sim(G), (9)

P(G) =
1

|G|
∑
w∈G

(P T
w(s.c)), (10)

sim(G) =
1

|G|(|G| − 1)

∑
wi,wj∈G

vwi · vwj

||vwi || × ||vwj ||
, (11)

where α is a parameter controlling the contributions of
group preference and group members’ similarity, P(G) de-
notes the group preference for G, |G| is the number of
group members, P T

w(s.c) is the preference of worker w in
task category s.c in the current time slot T, and vw is the
vector of the preference ratings expressed by worker w for
all the categories of tasks.

vwi
·vwj

||vwi
||×||vwj

|| denotes the cosine
similarity between vwi

and vwj
.

5.4 Group Task Assignment

The group task assignment aims to maximize the overall
consensus of worker groups, in which we give more priority
to the task with a higher reward.

Lemma 1. The Group Task Assignment problem is NP-hard.

Proof 1. We prove Lemma 1 through a reduction from the
0-1 knapsack problem. A 0-1 knapsack problem can be
described as follows. Given a set O of n items, in which
each item oi is labelled with a weight ki and a value
vi, the 0-1 knapsack problem is to find a subset O′ of O
that maximizes

∑
oi∈O′ vi subjected to

∑
oi∈O′ ki ≤ M ,

where M is the maximum weight capacity.
For a given 0-1 knapsack problem, we can transform it
to an instance of the Group Task Assignment problem
as follows. We give a spatial task set S of n tasks and
a worker set W of M workers. Each task si in S needs
ki workers to complete and obtains the corresponding
worker group consensus, vi. Given this mapping, we can
show that the 0-1 knapsack problem can be solved, if and
only if the transformed Group Task Assignment problem
can be solved. Since 0-1 knapsack problem is known to
be NP-hard [42], Group Task Assignment problem is also
NP-hard.

Intuitively, we can apply a simple greedy algorithm to
find the available worker group with maximum consensus

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

10

for each task as the assignment result. However, this is
hardly a practical solution.

Since the global result is the union of one possible
Available Worker Group (AWG) of all tasks, we adopt
an Optimal Task Assignment (OTA) algorithm with tree-
decomposition-based strategy [48], [51] to find the optimal
task assignment result with maximal consensus, in which
we give higher priority to the tasks with higher rewards.
The OTA algorithm consists of the following steps:

1) We first construct a task dependency graph, G(V,E),
according to the dependency relationship among tasks (two
tasks are dependent with each other if they share the com-
mon available workers; otherwise they are independent),
where each vertex v ∈ V represents a task sv ∈ S. An edge
e(u, v) ∈ E exists between u and v if the two tasks su and sv
are dependent with each other. The time complexity of the
task dependency graph construction is O(|S|2 · |AWmax|),
where |AWmax| is the maximal number of available workers
for all the tasks.

2) We utilize the tree-decomposition strategy to separate
all the tasks into clusters (each cluster is a maximal clique
of the task dependency graph) and organize them into a
balance tree by Recursive Tree Construction (RTC) algorith-
m [48], [51], such that the tasks in sibling nodes of the tree do
not share the same available workers. The time complexity
of this step is O(

∑m
i (|Xi|+ |Gisub| · (|V i|+ |E′i|))), where m

is the number of recursions of the RTC algorithm. Xi, Gisub,
V i and E′i denote the task cluster set, subgraph set, vertex
set and edge set to be checked in the ith recursion.

3) Finally, the tree can be traversed in a depth-first man-
ner to find the optimal assignment. When encountering the
tasks that can generate the same worker group consensus,
the task with a higher reward is given the priority to be
assigned. The time complexity of this search procedure is
O(
∑r
i (|SiN | · |Qis|+ |N i

child|)), where r denotes the number
of recursions when searching. |SiN | is the number of tasks
in the tree node N in the ith recursion, |Qis| is the number
of s.k-AWGs (each s.k-AWG is an available worker group
containing s.k workers, see Section 5.3.1) for task s in the
ith recursion, and |N i

child| is the number of child nodes of
N in the ith recursion.

6 EXPERIMENT

6.1 Experimental Setup
Due to the lack of real worker and task data, we use a check-
in dataset from Twitter to simulate our problem, which is a
common practice in evaluation of SC platform [7], [13], [14].
Since the original Twitter dataset does not contain category
information of venues, we extract the category information
associated with each venue from Foursquare with the aid of
its API. The resulting dataset provides check-in data across
USA except Hawaii and Alaska from September 2010 to
January 2011, which includes locations of 62,462 venues and
61,412 users.

For our experiments, we assume the users are the work-
ers of SC system since users who check in to different spots
may be good candidates to perform spatial tasks in the
vicinity of those spots, and their locations are those of the
most recent check-in points. The offline time of workers are
generated following the uniform distribution. Moreover, we

TABLE 3
Experiment Parameters

Parameters Values

Time span of historical data, h 4 weeks
Valid time of tasks, φ 1 h
Workers’ reachable radius, r 5 km
Number of tasks, |S| 2000
Number of workers, |W | 2000
Number of workers allowed to be assigned to
a task in group task assignment, k

2

set the granularity of a time instance as 10 minutes (i.e.,
10:00am-10:10am), during which the task requests and avail-
able workers will be packed and input to our framework.
We assume all the users who check in during a time instance
as online workers for that time instance. For each of the
check-in venue, we use its location and the earliest check-
in time of the day as the location and publish time of a
task, respectively. Accordingly, the categories of check-ins
are regarded as the categories of tasks and we extract 10
kinds of check-in features to simulate the task features. For
each task category, we set its processing time as the average
time of workers staying in this task (i.e., the corresponding
spot), and the tasks with the same category have the same
processing time. The reward of each task is proportional to
its processing time, and we simply set the reward of each
task as its processing time. Checking in a spot is equivalent
to accepting a task. For individual task assignment, we set
maxW for each task as the number of check-ins at the
corresponding venue in a day. For the sake of simplicity, we
assume all the workers share the same velocity, which is set
as 5km/h. The default values of all parameters used in our
experiments are summarized in Table 3. In the experiments
of task assignment, we run the algorithms over 4 hours
(i.e., 10:00am–2:00pm) of a day, and report the average
results. The parameter α (controlling the contributions of
group preference and group members similarity) is set to
0.5, and the parameter β (controlling the contribution of the
worker’s current preference and task’s reward) during task
assignment is also set to 0.5.

As Twitter does not contain explicit group information,
we extract implicit group task completion activities as fol-
lows: we assume if a set of users visit the same spot or
different spots with the same category which are near to
each other (e.g., the distance between any two spots is
less than 5km in our experiments) in one hour, they are
the members of a group and the corresponding activities
are group task completion activities. All the algorithms are
implemented on an Intel Core i5-2400 CPU @ 3.10G HZ with
8 GB RAM.

6.2 Experimental Results
6.2.1 Performance of Temporal Preferences Modeling
We first evaluate the performance of workers’ temporal pref-
erences modeling phase and its impact to the subsequent
individual task assignment. We set 1 hour as a time slot and
use check-in data over a period of xweeks (and x = 1, 2, 3, 4
with a default value of 4) as historical data and check-in
records of the day before as the recent data. The parameters
(e.g., λ1, λ2 and λ3) of loss function in tensor decomposition
are set to 0.01, which means the contributions of time-task

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

11

TABLE 4
Performance of Different Methods for TPM

Methods MAE RMSE

AV F 0.2979 0.3384
TD 0.2671 0.3056
TD +H 0.2129 0.2406
TD +H + Y + Z(HCTD) 0.2054 0.2344

matrix, task-feature matrix and regularization of penalties
for the tensor decomposition are same.

To evaluate the accuracy of estimating workers’ pref-
erences for tasks, we adopt the widely-used measures,
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). We randomly remove 20% of non-zero entries from
the tensor Xr , which are used as the testing set to evaluate
the inferred values, and the remaining 80% are used as
the training data. Then we introduce a baseline algorithm,
Average Value Filling (AVF) algorithm, which complements
a missing entry with the average of all non-zero entries in
the tensor X that belong to the corresponding time slot.
Moreover, we study the contribution of historical tensor (i.e.,
Xh) and context matrices (i.e., Y and Z) for supplementing
the missing entries. The methods are as followed:

1) AVF: Average value filling approach.
2) TD: Tensor decomposition approach that fills the

missing entries by decomposing the tensor Xr solely based
on its own non-zero entries.

3) TD+H: Tensor decomposition approach that fills the
missing entries by decomposing the tensor with historical
data (i.e., Xh).

4) TD+H+Y+Z (HCTD): Tensor decomposition approach
that fills the missing entries by decomposing the tensor with
historical data, time and task context.

Table 4 shows the evaluation results, in which AVF
achieves the worst performance while HCTD performs best
followed by TD+H and TD. That demonstrates our method,
HCTD, can provide more accurate estimates for worker
preferences by considering historical data, temporal features
and correlation between different task categories.

We further evaluate the performance of TPM phase and
its impact to the subsequent individual task assignment by
varying the size of historical data. In particular, for accuracy
of preference estimation, we compare the RMSE value of
four different approaches including AVF, TD, TD+H, HCTD.
In addition, we compare the assignment success rate of
three different task assignment algorithms: HCTD-based
Task Assignment (HCTD-TA) algorithm, AVF-based Task
Assignment (AVF-TA) algorithm, and MCTA [13] that solves
task assignment problem by transforming it into maximum
flow problem without considering workers’ preferences.
When an SC server assigns a task s to worker w in a
certain time instance (i.e., ti), we consider the assignment
successful for w if there exists a task sharing the same
category with the assigned task s in the worker’s task-
performing list in the corresponding time slot T (i.e., ti ∈ T).
Thus we introduce Assignment Success Rate (ASR), the ratio
of successful assignments to the total assignments for all
workers in a certain time instance, to measure the accuracy
of task assignment.

 0.2

 0.3

 0.4

 1 2 3 4

R
M

S
E

Time span of historical data (week)

AVF
TD

TD+H
HCTD

(a) RMSE

 0

 0.1

 0.2

 0.3

 0.4

 1 2 3 4

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Time span of historical data (week)

AVF-TA
MCTA
HCTD-TA

(b) Assignment Success Rate

Fig. 6. Performance of TPM: Effect of h

 0

 50

 100

 150

 200

 0.5 1 1.5 2 2.5

C
P

U
 ti

m
e

(m
s)

Valid time of task (h)

PTA
SPTA
TPTA

(a) CPU Cost

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5 1 1.5 2 2.5

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Valid time of task (h)

PTA
SPTA
TPTA

(b) Assignment Success Rate

Fig. 7. Performance of Individual Task Assignment: Effect of φ

Effect of h. As shown in Figure 6(a), naturally the ac-
curacy of all algorithms except TD gradually increases as
the time span of historical data grows. The estimation
accuracy of TD is not affected by the historical data since
it decomposes the tensor Xr solely without historical in-
formation. AVF achieves the worst performance amongst
these methods. In addition, HCTD performs better than
TD and TD+H, which testifies that the contributions of
historical tensor and context matrices are effectiveness. In
terms of task assignment success rate in Figure 6(b), MCTA
keeps constant since it does not consider worker preferences
inferred from historical data. In addition, HCTD-TA has
increasing assignment success rate with varying h due to its
increasing estimation accuracy for workers’ preferences, and
it significantly outperforms the baseline algorithms for all
values of h, which confirms the superiority of our proposed
algorithm.

6.2.2 Performance of Individual Task Assignment
Next we evaluate three different individual task assignment
algorithms based on workers’ temporal preferences generat-
ed by HCTD: PTA, SPTA and TPTA algorithm. Two metrics
are compared among these three methods: 1) CPU cost: the
CPU time cost for finding the task assignment in a time
instance; 2) ASR: Assignment Success Rate.

Effect of φ. We first study the effect of the valid time
φ of tasks. As illustrated in Figure 7(a), all the methods
have the similar performances with respect to CPU cost.
This is because these methods all adopt the Maximum Flow
Minimum Cost (MFMC) algorithm by just changing the
weight of the edges in the flow network graph, which does
not affect the computation complexity. Another observation
is that the CPU cost of all the methods increases almost
linearly with φ, since the number of available tasks in a
time instance grows when φ gets longer, which in turn leads
to more edges in the flow network graph of MFMC to be
searched. The ASR values of all methods are enhanced with
the increasing φ (see Figure 7(b)) since a worker has more
chance to be assigned his/her interested tasks when φ grows

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

12

 70

 80

 90

 100

 110

 120

 130

 5 10 15 20

C
P

U
 ti

m
e

(m
s)

Reachable radius of worker (km)

PTA
SPTA
TPTA

(a) CPU Cost

 0.2

 0.3

 0.4

 0.5

 5 10 15 20

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Reachable radius of worker (km)

PTA
SPTA
TPTA

(b) Assignment Success Rate

Fig. 8. Performance of Individual Task Assignment: Effect of r

 0

 2

 4

 6

 8

 1000 2000 3000 4000 5000

C
P

U
 ti

m
e

(s
)

Number of tasks

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(a) CPU Cost

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 2000 3000 4000 5000

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Number of tasks

PTA
SPTA
TPTA

(b) Assignment Success Rate

0.6

1.0

1.4

1.8

2.2

2.6

1000 2000 3000 4000 5000

A
ve

ra
ge

 tr
av

el
 d

is
ta

nc
e

(k
m

)

Number of tasks

PTA
SPTA
TPTA

(c) Average Travel Distance

 0

 500

 1000

 1500

1000 2000 3000 4000 5000

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of tasks

PTA
SPTA
TPTA

(d) Number of Assigned Tasks

Fig. 9. Performance of Individual Task Assignment: Effect of |S|

longer. SPTA and TPTA perform worse than PTA since they
take workers’ travel distance and tasks’ expiration time into
account respectively, which weakens the impact of workers’
preferences on task assignment and leads to more inaccurate
assignments.

Effect of r. We also study the effects of the length of
workers’ reachable radius r by changing it from 5 km to
20 km. From Figure 8(a) we can see that, the CPU cost of
all the methods has similar increasing trend when r grows.
The reason behind it is that all the methods apply MFMC
algorithm and more workers with greater reachable radius
tend to have more available task assignments, which leads
to more edges in the flow network graph of MFMC. As
shown in Figure 8(b), the assignment success rate of the
three approaches has a growing tendency as r is enlarged,
with the similar reason of the effects of tasks’ valid time,
i.e., the larger the workers’ reachable regions are, the more
chance the SC server has to assign workers their interested
tasks.

Effect of |S|. To study the scalability of the proposed
algorithms, we generate 5 datasets containing 1000 to 5000
tasks by random selection from the original dataset in four
hours (i.e., 10:00am–2:00pm) of a day. Besides the CPU
cost and assignment success rate, we compare another two
metrics among the three methods: 1) average travel distance
of all the task assignments; 2) the total number of assigned
tasks. As expected, though the CPU cost increases as |S| in-
creases, our proposed algorithms perform well in improving
the task assignment success rate, which is demonstrated in
Figure 9(a) and Figure 9(b). Figure 9(c) shows the average

 0

 2

 4

 6

 8

 1000 2000 3000 4000 5000

C
P

U
 ti

m
e

(s
)

Number of workers

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(a) CPU Cost

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 2000 3000 4000 5000

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Number of workers

PTA
SPTA
TPTA

(b) Assignment Success Rate

 0

 1

 2

 3

 4

1000 2000 3000 4000 5000

A
ve

ra
ge

 tr
av

el
 d

is
ta

nc
e

(k
m

)

Number of workers

PTA
SPTA
TPTA

(c) Average Travel Distance

 0

 400

 800

 1200

 1600

1000 2000 3000 4000 5000

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of workers

PTA
SPTA
TPTA

(d) Number of Assigned Tasks

Fig. 10. Performance of Individual Task Assignment: Effect of |W |

travel distance of all algorithms decreases since there is a
higher probability that an assigned task is closer to a worker
in a task-dense area. Furthermore, we notice that SPTA
outperforms both PTA and TPTA by an astounding margin
(up to 44.5%), which demonstrates the effectiveness of the
spatial (travel distance) heuristic. As depicted in Figure 9(d),
naturally the assignments of all approaches increase when
more tasks exist. The figure also illustrates the superiority
of TPTA compared with PTA and SPTA in terms of the
number of assigned tasks (up to 34.3%), which stems from
applying the temporal heuristic. Moreover, the impact of
temporal heuristic becomes more significant as the number
of tasks grows. The reason behind it is that with a larger
number of tasks, more tasks are soon to expire, and thus,
prioritizing the near-deadline tasks to be assigned becomes
more effective.

Effect of |W |. We also investigate how the number of
workers affects the efficiency and effectiveness of task
assignment. We can see from Figure 10(a), the running
time of all methods increases for larger number of work-
ers, since there are more worker-and-task assignments to
process. As expected, the assignment success rates for all
the algorithms gradually increase as |W | grows, which is
indicated in Figure 10(b). PTA performs best since it only
consider workers’ preferences while ignoring other spatio-
temporal constraints (i.e., workers’ travel distance and tasks’
expiration time). From Figure 10(c) we can see that the
average travel distance shows a downward trend with the
varying |W | since an assigned task is more likely to be closer
to a worker when there are more workers. Figure 10(d)
depicts that the number of assigned tasks increases as the
number of workers grows. Moreover, similar to the previous
experiments, TPTA is the superior approach in terms of
improving the number of task assignments (up to 43.8%
better than others).

6.2.3 Performance of Group Task Assignment

We evaluate the performance of group task assignment by
the following algorithms:

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

13

1) OTA+TWT: the Optimal Task Assignment algorithm
considering workers’ tolerable waiting time and their aver-
age preference while ignoring the group similarity.

2) OTA+concensus: the Optimal Task Assignment algo-
rithm based on group consensus while ignoring workers’
tolerable waiting time.

3) OTA+concensus+TWT: the Optimal Task Assignment
algorithm taking both workers’ tolerable waiting time and
group consensus into account.

Five metrics are compared among the above algorithms:
1) CPU time: the CPU time cost for finding a task

assignment in a time instance.
2) Total consensus.
3) ASR: Assignment Success Rate that is the ratio of

successful assignments to the total assignments for all work-
ers in a certain time instance. Note that once all the group
members actually perform (check in) the tasks (spots) with
the same category which are near to each other (e.g., the dis-
tance between the tasks is less than 5km in our experiments)
in one hour, we regard this task assignment as a successful
assignment.

4) Number of assigned tasks.
5) Average waiting time: the average waiting time per

worker for performing a task.
Effect of k. We first investigate how k, the required num-

ber of workers allowed to perform a task simultaneously,
affects the task assignment results. Figure 11(a) depicts the
running time of different approaches. As expected, larger
k means on average each task has less available worker
groups, which results in less running time during the pro-
cess of group task assignment. OTA + TWT and OTA +
TWT + consensus run slower than OTA + consensus as
they have to compute the tolerable waiting time of each
worker for his/her reachable task. Obviously, the CPU time
of OTA + TWT + consensus is slightly higher than that
of OTA + TWT due to the calculation of worker groups’
consensus. As illustrated in Figure 11(b), though the total
consensus of the three methods declines with k, OTA +
consensus and OTA + TWT + consensus achieve more
overall consensus than OTA + TWT , which in turn lead
to the higher assignment success rate than OTA + TWT
as confirmed in Figure 11(c), demonstrating the benefit of
considering group consensus in task assignment. For the
number of assigned tasks in Figure 11(d), OTA+consensus
performs best regardless of k since ignoring the constraint
of workers’ tolerable waiting time means a task has more
chance to be assigned to a worker group. The average
waiting time of workers gradually increases with k (see
Figure 11(e)) since when more members are involved in a
worker group (i.e., when k gets larger), a worker has to wait
for more other workers to complete a task together. This
will result in more waiting time for this worker. Moreover,
OTA + TWT and OTA + TWT + consensus have less
average waiting time than OTA + consensus, confirming
the advantage of considering workers’ tolerable waiting
time during task assignment.

Effect of |S|. In this set of experiments, we evaluate the
scalability of all the approaches by varying the number |S|
of tasks from 1000 to 5000. Figure 12 shows the effect of
|S|. As illustrated in Figure 12(a), the running time of all
methods increases with the rising number of tasks, while

the growth of computational cost for OTA + TWT and
OTA + TWT + consensus is relatively faster due to the
tolerable waiting time calculation of workers for each task in
these two methods. OTA+ consensus achieves the highest
total consensus and the best assignment success rate among
the three methods (depicted in Figure 12(b)and 12(c)), since
it does not consider workers’ tolerable waiting time. Taking
workers’ tolerable waiting time into account will lead to
smaller number of available worker groups for each task,
which influences the overall consensus of workers and the
success of task assignment. From Figure 12(d) we can see
OTA + consensus can assign more tasks since it ignores
workers’ tolerable waiting time. Besides, OTA+ TWT and
OTA + TWT + consensus have the similar performance
in terms of the number of assigned tasks. The average
waiting time of all the approaches is not associated with the
varying |S|, as described in Figure 12(e). The reason behind
it is that we only consider worker groups’ consensus when
assigning available worker groups to tasks in the Optimal
Task Assignment (OTA) algorithm in Section 5.4. Besides,
OTA+ consensus performs worse than OTA+ TWT and
OTA+ TWT + consensus in terms of the average waiting
time, demonstrating the advantage of TWT optimization.

Effect of |W |. In our final set of experiments, we measure
the performance of our approaches with respect to expand-
ing the number of workers (|W |) from 1000 to 5000. As Fig-
ure 13(a) shows, with a larger |W |, the CPU time increases.
The main reason behind it is that the number of available
workers to be assigned grows when |W | gets larger, which
in turn leads to longer time cost. For total consensus in
Figure 13(b) and assignment success rate in Figure 13(c),
OTA + consensus performs best as it focuses on the con-
sensus of worker group without considering the constraint
of workers’ tolerable waiting time. In Figure 13(d), the
number of assigned tasks increases due to the fact that
more spatial tasks can be conducted by more workers.
Figure 13(e) illustrates the average waiting time fluctuates
as |W | changes with the similar reason of the effects of |S|,
i.e., the OTA algorithm only focuses on workers’ consensus
when assigning each task the suitable available worker
group. Both OTA+ TWT and OTA+ TWT + consensus
outperform OTA + consensus in average waiting time,
which demonstrates the critical impact of workers’ TWT
heuristic.

Summary: The take-away message of our empirical
study on group task assignment can be summarized as
follows:

1) OTA + consensus algorithm performs better than
others in total consensus, task assignment success rate and
number of assigned tasks.

2) Although the total consensus of OTA + TWT is less
than others, it can effectively reduce the average waiting
time.

3) OTA + consensus + TWT achieves good balance a-
mong total consensus, task assignment success rate, number
of assigned tasks and average waiting time.

7 RELATED WORK

Spatial Crowdsourcing (SC) is a type of online crowdsourc-
ing, which employs smart device carriers as workers to

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

14

 0

 0.5

 1

 1.5

 2 3 4 5 6

C
P

U
 ti

m
e

(s
)

k

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(a) CPU Cost

 0

 200

 400

 600

 2 3 4 5 6

T
ot

al
 c

on
se

ns
us

k

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(b) Total Consensus

 0

 0.1

 0.2

 0.3

 0.4

 2 3 4 5 6

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

k

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(c) Assignment Success Rate

 0

 200

 400

 600

 800

 1000

2 3 4 5 6

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

k

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(d) Number of Assigned Tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6

A
ve

ra
ge

 w
ai

tin
g

tim
e

k

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(e) Average Waiting Time

Fig. 11. Performance of Group Task Assignment: Effect of k

 0

 2

 4

 6

 8

 1000 2000 3000 4000 5000

C
P

U
 ti

m
e

(s
)

Number of tasks

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(a) CPU Cost

 0

 200

 400

 600

 800

 1000

 1000 2000 3000 4000 5000

T
ot

al
 c

on
se

ns
us

Number of tasks

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(b) Total Consensus

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 2000 3000 4000 5000

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Number of tasks

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(c) Assignment Success Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

1000 2000 3000 4000 5000

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of tasks

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(d) Number of Assigned
Tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

1000 2000 3000 4000 5000

A
ve

ra
ge

 w
ai

tin
g

tim
e

Number of tasks

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(e) Average Waiting Time

Fig. 12. Performance of Group Task Assignment: Effect of |S|

 0

 2

 4

 6

 8

 1000 2000 3000 4000 5000

C
P

U
 ti

m
e

(s
)

Number of workers

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(a) CPU Cost

 0

 200

 400

 600

 800

 1000

 1000 2000 3000 4000 5000

T
ot

al
 c

on
se

ns
us

Number of workers

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(b) Total Consensus

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1000 2000 3000 4000 5000

A
ss

ig
nm

en
t s

uc
ce

ss
 r

at
e

Number of workers

OTA+TWT
OTA+consensus
OTA+consensus+TWT

(c) Assignment Success Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

1000 2000 3000 4000 5000

N
um

be
r

of
 a

ss
ig

ne
d

ta
sk

s

Number of workers

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(d) Number of Assigned
Tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

1000 2000 3000 4000 5000

A
ve

ra
ge

 w
ai

tin
g

tim
e

Number of workers

OTA+TWT
OTA+concensus
OTA+concensus+TWT

(e) Average Waiting Time

Fig. 13. Performance of Group Task Assignment: Effect of |W |

physically move to some specified locations and perform
spatial tasks [41], [50], [29]. Based on the task publish
mode, SC can be classified into Server Assigned Tasks (SAT)
mode and Worker Selected Tasks (WST) mode [23]. In SAT
mode, the server assigns each task to nearby workers based
on the system optimization goals such as maximizing the
number of assigned tasks after collecting all the locations
of workers [15], [23], [24]. Kazemi and Shahabi [23], for
example, formulate SC as a task-matching problem between
workers and tasks. They aim to maximize the total number
of assigned tasks while conforming to workers’ constraints,
with the assumption that the server has a global knowledge
of tasks and workers at every time instance. [47] focuses
on the latency-oriented task completion problem, which
explores the trade-off between latency and quality for both
offline and online task assignment in spatial crowdsourcing.
[39] proposes a Global Online Micro-task Allocation (GO-
MA) problem and designs a two-phase based framework
under the random order model. Based on this framework,
several Two-phase-based Global Online Allocation (TGOA)
algorithms are developed to effectively and efficiently solve
the GOMA problem. While in WST mode, the server pub-
lishes various spatial tasks online, and workers can select
any tasks without the coordination with the server [14], [15].
For instance, Deng et al. [14] formulate SC as a scheduling
problem by reducing it into a specialized Traveling Salesman
Problem. The authors propose exact and approximation algo-
rithms to find a schedule which maximizes the number of
tasks that can be completed by a worker where both travel

cost of workers and expiration time of tasks have been taken
into consideration.

Quality assurance is a major challenge among these
spatial task assignment work. Workers tend to complete the
assigned tasks with poor quality if there is not any quality
control strategy (e.g., assigning tasks to workers based on
their preferences). However, the existing studies mentioned
above do not take workers’ preferences for tasks into ac-
count or just consider workers’ preferences based on their
travel cost (i.e., workers are more likely to accept nearby
tasks [19]). Although a few researches explore workers’
preferences for tasks in crowdsourcing [1], [2], [45], they
just infer workers’ preferences from past task-performing
patterns or explicit feedbacks without considering workers’
temporal preferences for different tasks. In other research
areas, e.g., personalized product recommendation, some
work uses new techniques of machine learning to learn
users’ preferences [3]. For example, Quadrana et al. [30]
introduce the usage of Gated Recurrent Units (GRUs) with
the collaborative filtering method for learning users’ prefer-
ences, where GRU is a new generation of Recurrent Neural
Network (RNN) and regarded as a variant of Long Short-
Term Memory (LSTM) network [9]. GRUs can reduce the
computational burden and perform as good as LSTM [10].
[3] learns a user’s preferences from his/her ongoing session
(such as the user’s behaviors, meta data of the products,
etc.) by using the Gated Recurrent Units (GRUs) with at-
tention function. The above GRU models aim to estimate
users’ preferences by finding the sequential correlations

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

15

among users’ behaviors (e.g., users’ click/view/buy se-
quence). However, the task-performing behaviors of work-
ers in spatial crowdsourcing may not be in sequence. For
example, a worker can only perform a task during his/her
lunch break or on his/her way home. [44] develops an
efficient Graph Convolutional Neural Networks (GCNN)
model for web-scale recommender systems, which can learn
embeddings (representing users’ preferences) for nodes (i.e.,
items) in web-scale graphs for item-item recommendation
(e.g., related-pin recommendation in Pinterest 1). In spatial
crowdsourcing, the task assignment problem can be regard-
ed as a worker-task matching problem in a bipartite network
or a flow network [15], [37], which is a Heterogeneous In-
formation Network (HIN) since its nodes and edges belong
to multiple types. The GCNN model has certain weaknesses
when being applied to our problem settings since the ran-
dom walk it adopts does not consider the heterogeneity of a
HIN.

While making significant advances in the spatial crowd-
sourcing technology, most of the prior research studies in
this topic have focused on assigning tasks for individuals,
which unfortunately cannot be effectively applied for group
task assignment.

In recent years, many efforts have been devoted to im-
prove the group task assignment, also called collaborative
task assignment. Cheng et al. [4] propose a task assign-
ment problem in spatial crowdsourcing, called Cooperation-
Aware Spatial Crowdsourcing (CA-SC), in which they de-
sign both task-priority greedy approach and game theoretic
approach to solve the CA-SC problem, achieving high total
cooperation quality scores. By developing several effective
heuristic approaches, [6] assigns a task to multiple workers
with different skills such that the skills between workers
and tasks match with each other, and workers’ benefits
are maximized under the budget constraint. However, the
previous studies do not consider the tolerable waiting time
of workers during task assignment and ignore the consensus
among group members, which have great impact on the
success of group task assignment.

8 CONCLUSION

In this paper, we take an important step toward effective
task assignment in spatial crowdsourcing based on workers’
temporal preferences. We first address a few challenges
arising from data sparsity and cold start by proposing a
History-based Context-aware Tensor Decomposition (HCT-
D) method to model workers’ temporal preferences for
different task categories, and then design three different
algorithms to find the optimal task assignment based on
workers’ temporal preferences in every time instance to
solve the individual task assignment problem. We further
consider another task assignment scenario where a task
needs be completed by a group of workers simultaneously,
and propose an effective group task assignment solution
by taking tolerable waiting time and consensus of group
members, as well as tasks’ rewards into consideration. Ex-
tensive empirical study demonstrates the effectiveness of
our proposed methods.

1. http://pinterest.com/

ACKNOWLEDGMENT

This work is partially supported by Natural Science Foun-
dation of China (No. 61972069, 61532018, 61836007 and
61832017), Sichuan Science and Technology Program un-
der Grant 2020JDTD0007 and Alibaba Innovation Research
(AIR).

REFERENCES

[1] V. Ambati, S. Vogel, and J. Carbonell. Towards task recommenda-
tion in micro-task markets. In AAAI, pages 80–83, 2011.

[2] S. Buchholz and J. Latorre. Crowdsourcing preference tests, and
how to detect cheating. In ISCA, pages 3053–3056, 2011.

[3] J. Chen and A. Abdul. A session-based customer preference
learning method by using the gated recurrent units with attention
function. Access, 7:17750–17759, 2019.

[4] P. Cheng, L. Chen, and J. Ye. Cooperation-aware task assignment
in spatial crowdsourcing. In ICDE, pages 1442–1453, 2019.

[5] P. Cheng, X. Lian, L. Chen, and J. Han. Task assignment on multi-
skill oriented spatial crowdsourcing. TKDE, 28(8):2201–2215, 2015.

[6] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task assignment
on multi-skill oriented spatial crowdsourcing. TKDE, 28(8):2201–
2215, 2016.

[7] P. Cheng, X. Lian, L. Chen, and C. Shahabi. Prediction-based task
assignment in spatial crowdsourcing. In ICDE, pages 997–1008,
2017.

[8] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao. Re-
liable diversity-based spatial crowdsourcing by moving workers.
VLDBJ, 8(10):1022–1033, 2015.

[9] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation. Computer Science, 2014.

[10] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio. Empirical eval-
uation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 workshop on deep learning, 2014.

[11] L. B. Cornman, R. K. Goodrich, C. S. Morse, and W. L. Ecklund.
A fuzzy logic method for improved moment estimation from
doppler spectra. Journal of Atmospheric and Oceanic Technology,
15(6):1287–1305.

[12] Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng.
Hidden poi ranking with spatial crowdsourcing. In KDD, 2019.

[13] H. Dang, T. Nguyen, and H. To. Maximum complex task assign-
ment: Towards tasks correlation in spatial crowdsourcing. In ICPS,
pages 77–81, 2013.

[14] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the num-
ber of worker’s self-selected tasks in spatial crowdsourcing. In
SIGSPATIAL, pages 324–333, 2013.

[15] D. Deng, C. Shahabi, and L. Zhu. Task matching and scheduling
for multiple workers in spatial crowdsourcing. In SIGSPATIAL,
page 21, 2015.

[16] J. Edmonds and R. M. Karp. Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM,
19(2):248–264, 1972.

[17] A. Finnerty, P. Kucherbaev, S. Tranquillini, and G. Convertino.
Keep it simple: Reward and task design in crowdsourcing. In
SIGCHI, pages 1–4, 2013.

[18] J. Ford, L. R. and D. R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8(3):399–404, 2009.

[19] G. Ghinita, G. Ghinita, and C. Shahabi. A framework for pro-
tecting worker location privacy in spatial crowdsourcing. VLDBJ,
pages 919–930, 2014.

[20] N. Gulley and J. S. Jang. Fuzzy-logic toolbox. In Natick: The Math
Works Incorporation, 1995.

[21] S.-W. Huang and W.-T. Fu. Don’t hide in the crowd! increasing so-
cial transparency between peer workers improves crowdsourcing
outcomes. In SIGCHI, pages 621–630, 2013.

[22] A. Jameson and B. Smyth. Recommendation to groups. In Adaptive
Web, page 596, 2007.

[23] L. Kazemi and C. Shahabi. Geocrowd: Enabling query answering
with spatial crowdsourcing. In SIGSPATIAL, pages 189–198, 2012.

[24] L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd: Trustworthy
query answering with spatial crowdsourcing. In SIGSPATIAL,
pages 314–323, 2013.

[25] J. Kleinberg and E. Tardos. Algorithm design. Prentice Hall, 2005.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3021028, IEEE
Transactions on Knowledge and Data Engineering

16

[26] T. G. Kolda and B. W. Bader. Tensor decompositions and applica-
tions. Siam Review, 51(3):455–500, 2009.

[27] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic controller.
IEEE Trans. Syst., 20:404–435, 1990.

[28] M. T. Li, L. Xiang, and Y. Jian. Estimating the tolerable waiting
time using fuzzy logic. In CSA, 2015.

[29] X. Li, Y. Zhao, J. Guo, and K. Zheng. Group task assignment
with social impact-based preference in spatial crowdsourcing. In
DASFAA, 2020.

[30] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi.
Personalizing session-based recommendations with hierarchical
recurrent neural networks. In RecSys, pages 130–137, 2017.

[31] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu.
Trichromatic online matching in real-time spatial crowdsourcing.
In ICDE, pages 1009–1020, 2017.

[32] Y. Song and A. T. Johns. Applications of fuzzy logic in power
systems. i. general introduction to fuzzy logic. Power Engineer,
11(5):219–222, 1997.

[33] G. C. D. Sousa and B. K. Bose. A fuzzy set theory based control of
phase-controlled converter dc machine drive. IEEE Transactions on
Industry Applications, 30(1):34–44, 1994.

[34] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to
qualitative modeling. Trans. Fuzzy Systems, 1(1):7, 1993.

[35] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu. Online
minimum matching in real-time spatial data: Experiments and
analysis. VLDB, 9(12):1053–1064, 2016.

[36] Y. Tong, J. She, B. Ding, and L. Wang. Online mobile micro-task
allocation in spatial crowdsourcing. In ICDE, pages 49–60, 2016.

[37] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye. Dynamic
pricing in spatial crowdsourcing: A matching-based approach. In
SIGMOD, pages 773–788, 2018.

[38] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu.
Flexible online task assignment in real-time spatial data. VLDB,
10(11):1334–1345, 2017.

[39] Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen. Two-sided online
micro-task assignment in spatial crowdsourcing. TKDE, 2019.

[40] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A unified ap-
proach to route planning for shared mobility. PVLDB, 11(11):1633–
1646, 2018.

[41] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi. Spatial
crowdsourcing: a survey. VLDBJ, pages 217–250, 2019.

[42] V. V. Vazirani. Approximation algorithms. Springer Science and
Business Media, 2013.

[43] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng. Profit-driven
task assignment in spatial crowdsourcing. In IJCAI, 2019.

[44] R. Ying, R. He, K. Chen, and P. Eksombatchai. Graph convolu-
tional neural networks for web-scale recommender systems. In
SIGKDD, 2018.

[45] M. C. Yuen, I. King, and K. S. Leung. Task recommendation in
crowdsourcing systems. In CrowdKDD, pages 22–26, 2012.

[46] L. A. Zadeh. Fuzzy logic. Computer, 21(4):83–93, 2008.
[47] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou. Latency-oriented task

completion via spatial crowdsourcing. In ICDE, pages 317–328,
2018.

[48] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng. Destination-aware
task assignment in spatial crowdsourcing. In CIKM, pages 297–
306, 2017.

[49] Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng.
Preference-aware task assignment in spatial crowdsourcing. In
AAAI, pages 2629–2636, 2019.

[50] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou. Pre-
dictive task assignment in spatial crowdsourcing: A data-driven
approach. In ICDE, pages 13–24, 2020.

[51] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou. Destination-
aware task assignment in spatial crowdsourcing: A worker de-
composition approach. TKDE, 2019.

Yan Zhao is an Assistant Professor with Aalborg
University. She received the Doctoral Degree
in Computer Science from Soochow University
in 2020. Her research interests include spatial
database and trajectory computing.

Kai Zheng is a Professor of Computer Sci-
ence with University of Electronic Science and
Technology of China. He received his PhD de-
gree in Computer Science from The Universi-
ty of Queensland in 2012. He has been work-
ing in the area of spatial-temporal databases,
uncertain databases, social-media analysis, in-
memory computing and blockchain technolo-
gies. He has published over 100 papers in presti-
gious journals and conferences in data manage-
ment field such as SIGMOD, ICDE, VLDB Jour-

nal, ACM Transactions and IEEE Transactions. He is a senior member
of IEEE.

Hongzhi Yin received the Ph.D. degree in
computer science from Peking University, in
2014. He is a senior lecturer with the Univer-
sity of Queensland. He received the Australian
Research Council Discovery Early-Career Re-
searcher Award, in 2015. His research interests
include recommendation system, user profiling,
topic models, deep learning, social media min-
ing, and location-based services

Guanfeng Liu is current a Lecturer in the De-
partment of Computing at Macquarie Universi-
ty, Australia. He received his Ph.D degree in
Computer Science from Macquarie University,
Australia in 2013. His research interests include
graph data management, trust computing and
social networks. He has published over 60 pa-
pers in the most prestigious journals and confer-
ences such as IJCAI, AAAI, ICDE, CIKM, TKDE,
TSC and ICWS.

Junhua Fang is a lecturer in Advanced Data
Analytics Group at School of Computer Science
and Technology, Soochow University, Suzhou.
Before joining Soochow University, he earned
his Ph.D degree in computer science from East
China Normal University, Shanghai, in 2017. He
is a member of CCF. His research focuses on
distributed database and parallel streaming ana-
lytics.

Xiaofang Zhou received the bachelor’s and
master’s degrees in computer science from Nan-
jing University, in 1984 and 1987, respectively,
and the PhD degree in computer science from
the University of Queensland in 1994. He is a
professor of computer science with the Univer-
sity of Queensland. He is the head of the Data
and Knowledge Engineering Research Division,
School of Information Technology and Electrical
Engineering. He is also a specially appointed ad-
junct professor with Soochow University, China.

His research is focused on finding effective and efficient solutions to
managing integrating, and analyzing very large amounts of complex da-
ta for business and scientific applications. His research interests include
spatial and multimedia databases, high performance query processing,
web information systems, data mining, and data quality management.
He is a fellow of IEEE.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 23,2020 at 12:09:40 UTC from IEEE Xplore. Restrictions apply.

