4 research outputs found

    Real-time energy management for diesel heavy duty hybrid electric vehicles

    Get PDF
    In this paper, a fuzzy-tuned equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for a conceptual diesel engine-equipped heavy duty hybrid electric vehicle (HEV). In the HEV, two electric motors/generators are mounted on the turbocharger shaft and engine shaft, respectively, which can improve fuel efficiency by capturing and storing energy from both regenerative braking and otherwise wasted engine exhaust gas. The heavy duty HEV frequently involved in duty cycles characterized by start-stop events, especially in off-road applications, whose dynamics is analyzed in this paper. The on-line optimization problem is formulated as minimizing a cost function in terms of weighted fuel power and electric power. In the cost function, a cost factor is defined for both improving energy transmission efficiency and maintaining the battery energy balance. To deal with the nonexplicit relationship between HEV fuel economy, battery state of charge (SOC), and control variables, the cost factor is fuzzy tuned using expert knowledge and experience. In relation to the fuel economy, the air-fuel ratio is an important factor. An online search for capable optimal variable geometry turbocharger (VGT) vane opening and exhaust gas recirculation (EGR) valve opening is also necessary. Considering the exhaust emissions regulation in diesel engine control, the boundary values of VGT and EGR actuators are identified by offline design-of-experiment tests. An online rolling method is used to implement the multivariable optimization. The proposed method is validated via simulation under two transient driving cycles, with the fuel economy benefits of 4.43% and 6.44% over the nonhybrid mode, respectively. Compared with the telemetry equivalent consumption minimization strategy, the proposed F-ECMS shows better performance in the sustainability of battery SOC under driving conditions with the rapid dynamics often associated with off-road applications

    Real-Time Optimization Based Power Flow Controller for Energy Consumption and Emissions Reduction in a Parallel HEV

    Get PDF
    As the regulations on the fuel economy and emissions standards become higher, Hybrid Electric Vehicles (HEV) are gaining more popularity in the market. HEVs improvements in fuel economy and emissions strongly depend on the energy management strategy. An optimization based power flow controller is presented in this thesis to find the appropriate power split between the Internal Combustion Engine (ICE) and the electric motor to reduce the energy consumption and emissions. However, emissions were not taken into consideration in results due to lack of reliable results. A basic power flow controller was built to compare to the optimization based controller. A plant model of each component of the vehicle was built in Simulink to evaluate the performance of each controller. Compared to the basic power flow controller, the real-time energy and emission minimization controller using shift schedule (ReTEEM-SS) reduced the energy consumption by approximately 6.2% in city driving style and 5.4% in highway driving style. The optimization based controller was further modified to replace the shift schedule with a shift logic. The real-time energy and emission minimization controller using shift logic (ReTEEM-SL) reduced the energy consumption by 10.2% in city drive style and 5.3% in highway driver style, when compared to the basic controller

    Extremum Seeking Method And Its Applications In Automotive Control

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2011Kontrol uygulamalarındaki ana yöntem, ele alınan bir sistemi belli bir çalışma noktasına veya referans yörüngesine oturtmaktır. Fakat bazı kontrol problemlerinde, arzu edilen sistem performansı ile o performansı sağlayacak sistem çalışma noktası arasındaki ilişki önceden bilinmemektedir. Örneğin sistemin çalışma noktası ile çıkışı arasında o şekilde bir ilişki olabilir ki, bu fonksiyonun bir ekstremumu olabilir ve amaç, sistem çıkışını bu ekstremum değere getirecek çalışma noktasının aranması olabilir. Sistemin çalışma noktası ile çıkışı arasındaki fonksiyonun belirsizliği, çıkışı maksimize (veya minimize) edecek çalışma noktasının bulunması için bir uyarlama algoritmasının kullanımını gerekli kılmaktadır. Bu problem Ekstremum Arama Algoritması (EAA) ile çözülebilmektedir. Bu algoritma, sistemin performans fonksiyonunun tamamen veya kısmen bilinmediği, zamanla değişebildiği, sistemin eğrisel olduğu, belirsizlik ve bozucular içerdiği durumlar için uygundur. Örneğin acil durum frenlemesinde ihtiyaç duyulduğu gibi, bilinmeyen yol koşullarında tekerlek ile yol arasındaki teker kuvvetlerinin maksimize edilmesi başa çıkılması gereken zor bir iştir. Yol sürtünme katsayısı genellikle önceden bilinmemektedir ve anlık olarak kestirimi zordur. ABS kontrol algoritması, bilinmeyen yol koşullarında teker frenleme kuvvetini maksimize edecek hidrolik fren basıncının optimum çalışma noktasını bulmalıdır. Optimum çalışma noktası seçimindeki bir yanlış karar, ya olabilecekten daha az frenleme kuvvetinin üretilmesine ya da tekerleklerin kilitlenmesine, böylece aracın kontrol edilebilirliğinin ortadan kalkmasına sebep olacaktır. Minimum durma mesafesi ancak tekerleklerin, tekerlek kuvveti-tekerlek kayma oranı eğrisinde en tepe noktasında çalışmaları durumunda gerçekleşir. Bu durumda tekerleklerin kilitlenmesi engellendiği için aracın yanal kararlılığı ve direksiyon ile yönlendirilebilirliği de iyileşecektir. Tezde önce, optimum tekerlek kayma değeri bilinmeden tekerlek kuvvetinin maksimize edilmesi için, tekerlek modeli parametrelerinin uyarlanması yöntemi ile entegre edilmiş bir Ekstremum Arama Algoritması (EAA) önerilmiştir. Bunun için bir çeyrek araç modeli ele alınmıştır. Literatürdeki çoğu ekstremum arama algoritmaları, optimum çalışma noktasını ararken amaç fonksiyonunun gerçek zamanlı olarak ölçümüne dayanmaktadır. Bu çalışmada önerilen kontrol algoritması, amaç fonksiyonunun anlık ölçümü gereksinimini ortadan kaldırarak onun yerine parametre uyarlamalı analitik bir yöntem geliştirmiştir. Kararlılık ve global maksimum noktasına yakınsama durumları, Lyapunov kararlılık analizi ile gösterilmiştir. Önerilen yaklaşımın etkinliğini göstermek için farklı yol koşullarında simulasyon çalışmaları yapılmıştır. İkinci olarak, boyuna frenleme yanında engelden kaçınma manevrasında olduğu gibi yanal hareketi de gözönüne alan EAA temelli bir ABS kontrol algoritması sunulmuştur. Bu algoritmada, yol sürtünme katsayısını kestirmeye gerek kalmadan, tekerlek ve yol arasındaki optimum kayma oranı anlık olarak aranmaktadır. Literatüre getirilen bir yenilik olarak, “tekerlek kuvveti”-“kayma oranı” karakteristik eğrisi üzerinde tekerleklerin çalışma bölgesini belirlemek için sürücü direksiyon girişi ABS frenleme prosedürüne eklenmiştir. Sadece boyuna frenleme durumunda algoritma, tekerleklerin çalışma bölgesini, kuvvet-kayma eğrisinin tepe noktası yakınında tutmaktadır. Eğer sürücü frenlemeye ek olarak yanal hareket de talep ederse, tekerleklerin çalışma bölgesi otomatik olarak değiştirilmekte ve böylece yanal tekerlek kuvvetleri arttırılarak aracın yanal kararlılığı iyileştirilmektedir. Gerçek bir araçtan alınan ölçümlerle doğrulanmış bir tam araç modeli kullanılarak yapılan simülasyonlar algoritmanın etkinliğini göstermektedir. Üçüncü olarak, bir paralel tip hibrid elektrikli araç (HEA) için enerji yönetimi stratejisi önerilmiştir. HEA’lar, daha verimli, daha az çevreyi kirleten araçlara gereksinim sonucunda geliştirilmiştir. Elektrikli araçlar parlak bir çözüm olsa da şu andaki kısa menzilleri ve uzun batarya şarj süreleri, yaygın kullanımlarını geleceğe ötelemektedir. HEA’lar bu doğrultuda kabul edilebilir bir ara çözüm sunmaktadırlar. Hibrid bir elektrikli araçta, elektrokimyasal bir batarya ile güç verilen bir elektrikli motor (EM), fosil yakıt tarafından güç verilen içten yanmalı motor (İYM) ile birlikte kullanılmaktadır. Bunlar, yakıt tüketimi ve emisyonları azaltmadaki önemli potansiyelleri ile günümüzde en uygulanabilir teknoloji olarak görülmektedirler. Tezde verilen HEA enerji yönetim stratejisinin ana amacı, toplam verimi maksimize ederek yakıt tüketimini iyileştirmek ve bunu yaparken de sürücünün güç isteğini karşılamak, batarya şarj durumunu korumak ve İYM, EM güç kısıtları gibi çeşitli kısıtları göz önüne almaktır. Önerilen enerji yönetimi stratejisinde, ekstremum arama algoritması, toplam verimi maksimize edecek şekilde içten yanmalı motor ve elektrik motoru arasında optimum tork dağılımını belirlemektedir. Kontrol stratejisi üst seviye ve alt seviye olmak üzere iki seviyelidir: Üst seviyedeki karar verme kontrolcüsü aracın hangi modda çalışacağını tespit eder. Bu modlar: İçten yanmalı motor ve elektrik motorunun eşzamanlı çalışması, yalnızca elektrik motoru, yalnızca içten yanmalı motor, veya rejeneratif frenleme modlarıdır. İçten yanmalı motor ve elektrik motorunun eşzamanlı çalışması sırasında, bu iki enerji kaynağı arasındaki optimum enerji dağılımını ekstremum arama algoritması, toplam verimi maksimize edecek şekilde belirlemektedir. Böylece literatürde ilk defa bir ekstremum arama algoritması HEA kontrol problemine uyarlanmıştır. Önerilen kontrol algoritmasının performans değerlendirmesi için ayrıca bir dinamik programlama (DP) çözümü de elde edilmiştir. DP çözümü, ele alınan sürüş çevrimi ve sürüş koşulları için elde edilebilecek minimum yakıt tüketimini hesaplamaktadır. DP prosedürünü uygulamak için, bütün bir sürüş çevrimi ve sürüş koşulları önceden bilinmelidir. Gerçek bir araçta gelecekteki sürüş koşulları bilinmediği için DP gerçek zamanlı bir kontrolcü olarak kullanılamaz. Dinamik programlama çözümü gerçek zamanlı kontrol algoritmasının performansının değerlendirilmesi için kullanılmaktadır. Tezde önerilen kontrol algoritmasının etkinliğini göstermek için gerçekçi bir araç modeli kullanılarak çeşitli sürüş çevrimleri ile simülasyonlar yapılmıştır.The mainstream methodology in control applications is to regulate the considered system to known set points or reference trajectories. However, in some control problems, the relation between the system setpoint and a desired system performance is unknown a priori. One situation is that, the reference-to-output map has an extremum and the objective is to select the set point to keep the output at that extremum value. The uncertainty in the reference-to-output map makes it necessary to use an adaptation method to find the set point which maximizes (or minimizes) the output. This problem can be solved via the Extremum Seeking Algorithm (ESA). The algorithm fits problems that possess completely or partially unknown performance functions that may also change in time or that have nonlinear systems with structured or unstructured uncertainties and disturbances. For example, as needed in an emergency braking case, the maximization of the tire force between the tire contact patch and the road in the presence of unknown road conditions is a challenging task. The road friction coefficient is mostly unknown a priori and it is difficult to estimate it on-line. The ABS control algorithm should find the optimal set point of brake hydraulic pressure, which maximizes the wheel braking force subject to unknown and possibly changing road conditions. A misjudgment about the optimal set point choice may cause lower performance of braking via either less friction force generation or via blocking the tire rotation. The minimum stopping distance is ensured when the tires operate at the peak point of the braking force versus slip characteristic curve subject to unknown road conditions. In addition, lateral stability and steerability are also improved as locking of the wheels is prevented. In this thesis, firstly, an Extremum Seeking Algorithm (ESA) integrated with the adaptation of the tire model parameters is proposed for maximizing braking force without utilizing optimum slip value information. A quarter car vehicle model is considered in this section of the thesis. Most of the commonly used extremum seeking algorithms in the literature search for the optimal operating point in order to maximize or minimize a given cost function which is measured on a real-time basis. The control algorithm introduced in this dissertation removes the on-line cost function measurement requirement and instead, an analytic approach with adaptive parameter tuning is developed along the ESA. Stability and reaching the global maximum operating point of the unknown cost function are proved using Lyapunov stability analysis. Simulation study for ABS control under different road pavement conditions is presented to illustrate the effectiveness of the proposed approach. Secondly, an ABS control algorithm based on ESA is presented for considering lateral motion in addition to the longitudinal emergency braking, such as the obstacle avoidance maneuvers, also. The optimum slip ratio between the tire contact patch and the road is searched online without having to estimate the road friction conditions. This is achieved by adapting the ESA as a self-optimization routine that seeks the peak point of the force-slip curve. As a novel addition to the literature, the proposed algorithm incorporates driver steering input information into the ABS braking procedure to determine the operating region of the tires on the “tire force”-“slip ratio” characteristic curve. The algorithm operates the tires near the peak point of the force-slip curve during straight line braking. When the driver demands lateral motion in addition to braking, the operating regions of the tires are modified automatically, for improving the lateral stability of the vehicle by increasing the tire lateral forces. Simulations with a full vehicle model validated with actual vehicle measurements show the effectiveness of the algorithm. Thirdly, an energy management strategy for a parallel type hybrid electric vehicle (HEV) is proposed. HEVs are developed in the need of more efficient, less polluting vehicles. Electric vehicles seem as a promising solution but for now, their short driving distance combined with the long recharging period for batteries postpones their widespread use to the future. HEVs offer an acceptable, intermediate solution. In a hybrid electric vehicle, an electric motor (EM) powered by an electrochemical battery is used along with the internal combustion engine (ICE) powered by fossil fuel. They appear to be one of the most viable technologies with significant potential to reduce fuel consumption and pollutant emissions. The main objective of the HEV energy management strategy given in the thesis is maximizing the powertrain efficiency and hence improving the fuel consumption while meeting the driver’s power demand, sustaining the battery state of charge and considering constraints such as engine and electric motor power limits. In the proposed energy management strategy, extremum seeking algorithm searches constantly optimum torque distribution between the internal combustion engine and electric motor for maximizing the powertrain efficiency. The control strategy has two levels of operation: the upper and lower levels. The upper level decision making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum seeking algorithm that searches for maximum powertrain efficiency. In the literature, this is the first time an extremum seeking algorithm is applied to the HEV control problem. A dynamic programming (DP) solution is also obtained and used to form a benchmark for performance evaluation of the proposed method. DP solution gives the minimum obtainable fuel consumption in a considered driving cycle and driving conditions. In order to apply DP procedure, the whole driving cycle and driving conditions should be known in advance. Since future driving conditions are unknown in a real vehicle, DP cannot be utilized in a real time controller. The dynamic programming solution is used offline for performance evaluation of the real time control algorithm. Detailed simulations with various driving cycles and using a realistic vehicle model are presented to illustrate the effectiveness of the methodology.DoktoraPh

    Design and control of the energy management system of a smart vehicle

    Get PDF
    This thesis demonstrates the design of two high efficiency controllers, one non-predictive and the other predictive, that can be used in both parallel and power-split connected plug-in hybrid electric vehicles. Simulation models of three different commercially available vehicles are developed from measured data for necessary testing and comparisons of developed controllers. Results prove that developed controllers perform better than the existing controllers in terms of efficiency, fuel consumption, and emissions
    corecore