144 research outputs found

    An Erlang multirate loss model supporting elastic traffic under the threshold policy

    Get PDF
    In this paper, we propose a multirate teletraffic loss model of a single link with certain bandwidth capacity that accommodates Poisson arriving calls, which can tolerate bandwidth compression (elastic traffic), under the threshold policy. When compression occurs, the service time of new and in-service calls increases. The threshold policy provides different QoS among service-classes by limiting the number of calls of a service-class up to a pre-defined threshold, which can be different for each service-class. Due to the bandwidth compression mechanism, the steady state probabilities in the proposed model do not have a product form solution. However, we approximate the model by a reversible Markov chain, and prove recursive formulas for the calculation of call blocking probabilities and link utilization. The accuracy of the proposed formulas is verified through simulation and found to be very satisfactory

    Performance analysis of CDMA-based networks with interference cancellation, for batched poisson traffic under the Bandwidth Reservation policy

    Get PDF
    CDMA-based technologies deserve assiduous analysis and evaluation. We study the performance, at call-level, of a CDMA cell with interference cancellation capabilities, while assuming that the cell accommodates different service-classes of batched Poisson arriving calls. The partial batch blocking discipline is applied for Call Admission Control (CAC). To guarantee certain Quality of Service (QoS) for each service-class, the Bandwidth Reservation (BR) policy is incorporated in the CAC; i.e., a fraction of system resources is reserved for high-speed service-classes. We propose a new multirate loss model for the calculation of time and call congestion probabilities. The notion of local (soft) and hard blocking, users activity, interference cancellation, as well as the BR policy, are incorporated in the model. Although the steady state probabilities of the system do not have a product form solution, time and call congestion probabilities can be efficiently determined via approximate but recursive formulas. Simulation verified the high accuracy of the new formulas. We also show the consistency of the proposed model in respect of its parameters, while comparison of the proposed model with that of Poisson input shows its necessity

    State-Dependent Bandwidth Sharing Policies for Wireless Multirate Loss Networks

    Get PDF
    We consider a reference cell of fixed capacity in a wireless cellular network while concentrating on next-generation network architectures. The cell accommodates new and handover calls from different service-classes. Arriving calls follow a random or quasi-random process and compete for service in the cell under two bandwidth sharing policies: 1) a probabilistic threshold (PrTH) policy or 2) the multiple fractional channel reservation (MFCR) policy. In the PrTH policy, if the number of in-service calls (new or handover) of a service-class exceeds a threshold (difference between new and handover calls), then an arriving call of the same service-class is accepted in the cell with a predefined state-dependent probability. In the MFCR policy, a real number of channels is reserved to benefit calls of certain service-classes; thus, a service priority is introduced. The cell is modeled as a multirate loss system. Under the PrTH policy, call-level performance measures are determined via accurate convolution algorithms, while under the MFCR policy, via approximate but efficient models. Furthermore, we discuss the applicability of the proposed models in 4G/5G networks. The accuracy of the proposed models is verified through simulation. Comparison against other models reveals the necessity of the new models and policies

    Performance Evaluation in Single or Multi-Cluster C-RAN Supporting Quasi-Random Traffic

    Get PDF
    In this paper, a cloud radio access network (C-RAN) is considered where the remote radio heads (RRHs) are separated from the baseband units (BBUs). The RRHs in the C-RAN are grouped in different clusters according to their capacity while the BBUs form a centralized pool of computational resource units. Each RRH services a finite number of mobile users, i.e., the call arrival process is the quasi-random process. A new call of a single service-class requires a radio and a computational resource unit in order to be accepted in the C-RAN for a generally distributed service time. If these resource units are unavailable, then the call is blocked and lost. To analyze the multi-cluster C-RAN, we model it as a single-rate loss system, show that a product form solution exists for the steady state probabilities and propose a convolution algorithm for the accurate determination of congestion probabilities. The accuracy of this algorithm is verified via simulation. The proposed model generalizes our recent model where the RRHs in the C-RAN are grouped in a single cluster and each RRH accommodates quasi-random traffic

    Call Blocking Probabilities of Multirate Elastic and Adaptive Traffic under the Threshold and Bandwidth Reservation Policies, Journal of Telecommunications and Information Technology, 2016, nr 1

    Get PDF
    This paper proposes multirate teletraffic loss models of a link that accommodates different service-classes of elastic and adaptive calls. Calls follow a Poisson process, can tolerate bandwidth compression and have an exponentially distributed service time. When bandwidth compression occurs, the service time of new and in-service elastic calls increases. Adaptive calls do not alter their service time. All calls compete for the available link bandwidth under the combination of the Threshold (TH) and the Bandwidth Reservation (BR) policies. The TH policy can provide different QoS among service-classes by limiting the number of calls of a service-class up to a predefined threshold, which can be different for each service-class. The BR policy reserves part of the available link bandwidth to benefit calls of high bandwidth requirements. The analysis of the proposed models is based on approximate but recursive formulas, whereby authors determine call blocking probabilities and link utilization. The accuracy of the proposed formulas is verified through simulation and found to be very satisfactory

    Journal of Telecommunications and Information Technology, 2018, nr 1

    Get PDF
    We consider a two-link system that accommodates Poisson arriving calls from different service-classes and propose a multirate teletraffic loss model for its analysis. Each link has two thresholds, which refer to the number of in-service calls in the link. The lowest threshold, named support threshold, defines up to which point the link can support calls offloaded from the other link. The highest threshold, named offloading threshold, defines the point where the link starts offloading calls to the other link. The adopted bandwidth sharing policy is the complete sharing policy, in which a call can be accepted in a link if there exist enough available bandwidth units. The model does not have a product form solution for the steady state probabilities. However, we propose approximate formulas, based on a convolution algorithm, for the calculation of call blocking probabilities. The accuracy of the formulas is verified through simulation and found to be quite satisfactory

    QoS Equalization in a W-CDMA Cell Supporting Calls of Innite or Finite Sources with Interference Cancelation, Journal of Telecommunications and Information Technology, 2014, nr 3

    Get PDF
    In this paper, a multirate loss model for the calculation of time and call congestion probabilities in a Wideband Code Division Multiple Access (W-CDMA) cell is considered. It utilizes the Bandwidth Reservation (BR) policy and supports calls generated by an innite or nite number of users. The BR policy achieves QoS equalization by equalizing congestion probabilities among calls of dierent service-classes. In the proposed models a multiple access interference is considered, and the notion of local blocking, user's activity and interference cancelation. Although the analysis of the proposed models reveals that the steady state probabilities do not have a product form solution, the authors show that the calculation of time and call congestion probabilities can be based on approximate but recursive formulas, whose accuracy is veried through simulation and found to be quite satisfactory

    Call admission and routing in telecommunication networks.

    Get PDF
    by Kit-man Chan.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 82-86).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview of Integrated Service Digital Networks --- p.1Chapter 1.2 --- Multirate Loss Networks --- p.5Chapter 1.3 --- Previous Work --- p.7Chapter 1.4 --- Organization --- p.11Chapter 1.5 --- Publications --- p.12Chapter 2 --- Call Admission in Multirate Loss Networks --- p.13Chapter 2.1 --- Introduction --- p.13Chapter 2.2 --- Two Adaptive Routing Rules --- p.15Chapter 2.3 --- Call Admission Policies --- p.17Chapter 2.4 --- Analysis of Call Admission Policies --- p.25Chapter 2.4.1 --- "The CS, LO, GB and the EB Policies" --- p.25Chapter 2.4.2 --- The DP Policy --- p.29Chapter 2.5 --- Performance Comparisons --- p.32Chapter 2.6 --- Concluding Remarks --- p.35Chapter 3 --- Least Congestion Routing in Multirate Loss Networks --- p.41Chapter 3.1 --- Introduction --- p.41Chapter 3.2 --- The M2 and MTB Routings --- p.42Chapter 3.2.1 --- M2 Routing --- p.43Chapter 3.2.2 --- MTB Routing --- p.43Chapter 3.3 --- Bandwidth Sharing Policies and State Aggregation --- p.45Chapter 3.4 --- Analysis of M2 Routing --- p.47Chapter 3.5 --- Analysis of MTB Routing --- p.50Chapter 3.6 --- Numerical Results and Discussions --- p.53Chapter 3.7 --- Concluding Remarks --- p.56Chapter 4 --- The Least Congestion Routing in WDM Lightwave Networks --- p.60Chapter 4.1 --- Introduction --- p.60Chapter 4.2 --- Architecture and Some Design Issues --- p.62Chapter 4.3 --- The Routing Rule --- p.66Chapter 4.4 --- Analysis of the LC Routing Rule --- p.67Chapter 4.4.1 --- Fixed Point Model --- p.67Chapter 4.4.2 --- Without Direct-link Priority --- p.68Chapter 4.4.3 --- With Direct-link Priority --- p.72Chapter 4.5 --- Performance Comparisons --- p.73Chapter 4.6 --- Concluding Remarks --- p.75Chapter 5 --- Conclusions and Future Work --- p.79Chapter 5.1 --- Future Work --- p.8

    STOCHASTIC MODELING AND TIME-TO-EVENT ANALYSIS OF VOIP TRAFFIC

    Get PDF
    Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease of management, and enhanced features and capabilities. Both enterprises and carriers are deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack of engineering models for VoIP systems has been realized by many researchers, especially for large-scale networks. The purpose of traffic engineering is to minimize call blocking probability and maximize resource utilization. The current traffic engineering models are inherited from the legacy PSTN world, and these models fall short from capturing the characteristics of new traffic patterns. The objective of this research is to develop a traffic engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP network and collected several billions of call information. Our analysis shows that the traditional traffic engineering approach based on the Poisson call arrival process and exponential holding time fails to capture the modern telecommunication systems accurately. We developed a new framework for modeling call arrivals as a non-homogeneous Poisson process, and we further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic condition on large-scale networks. In the second phase of the research, we followed a new time-to-event survival analysis approach to model call holding time as a generalized gamma distribution and we introduced a Call Cease Rate function to model the call durations. The modeling and statistical work of the Call Arrival model and the Call Holding Time model is constructed, verified and validated using hundreds of millions of real call information collected from an operational VoIP carrier network. The traffic data is a mixture of residential, business, and wireless traffic. Therefore, our proposed models can be applied to any modern telecommunication system. We also conducted sensitivity analysis of model parameters and performed statistical tests on the robustness of the models’ assumptions. We implemented the models in a new simulation-based traffic engineering system called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic techniques were used in building VSIM system. The core of VSIM is a simulation system that consists of two different simulation engines: the NHPP parametric simulation engine and the non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic data collection, processing, statistical modeling, model parameter estimation, graph generation, and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, processing and storing the extracted information, and then feeding it into one of the simulation engines which in turn provides resource optimization and quality of service reports
    • …
    corecore