1,234 research outputs found

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    A rejection-free Monte Carlo method for the hard-disk system

    Full text link
    We construct a rejection-free Monte Carlo method for the hard-disk system. Rejection-free Monte Carlo methods preserve the time-evolution behavior of the standard Monte Carlo method, and this relationship is confirmed for our method by observing nonequilibrium relaxation of a bond-orientational order parameter. The rejection-free method gives a greater computational efficiency than the standard method at high densities. The rejection free method is implemented in a shrewd manner using optimization methods to calculate a rejection probability and to update the system. This method should allow an efficient study of the dynamics of two-dimensional solids at high density.Comment: 8 pages, 9 figures. This paper has been combined into the cond-mat/0508652, and published in Phys. Rev.

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding ÎŁ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    Task scheduling and placement for reconfigurable devices

    Get PDF
    Partially reconfigurable devices allow the execution of different tasks at the same time, removing tasks when they finish and inserting new tasks when they arrive. This dissertation investigates scheduling and placing real-time tasks (tasks with deadline) on reconfigurable devices. One basic scheduler is the First-Fit scheduler. By allowing the First-Fit scheduler to retry tasks while they can satisfy their deadlines, we found that its performance can be enhanced to be better than other schedulers. We also proposed a placement idea based on partitioning the reconfigurable area into regions of various widths, assigning a task to a region based on its width. This idea has a similar rejection rate to a First-Fit scheduler that retries placing tasks and performs better than the First-Fit that does not retry tasks. Also, this regions-based scheduling method has a better running time. Managing how the space will be shared among tasks is a problems of interest. The main function of the free-space manager is to maintain information about the free space (areas not used by active tasks) after any placement or deletion of a task. Speed and efficiency of the free-space data structure are important as well as its effect on scheduler performance. We introduce the use of maximal horizontal strips and maximal vertical strips to represent free space. This resulted in a faster free space manager compared to what has been used in the area. Most researchers in the area of scheduling on reconfigurable devices assumed a homogeneous FPGA with only CLBs in the reconfigurable area. Most reconfigurable devices offered in the market, however, are not homogeneous but heterogeneous with other components between CLBs. We studied the effect of heterogeneity on the performance of schedulers designed for a homogeneous structure. We found that current schedulers result in worse performance when applied to a heterogeneous structure, but by simple modifications, we can apply them to a heterogeneous structure and achieve good performance. Consequently, the approach of studying homogeneous FPGAs is a valid one, as the scheduling ideas discovered there do carry over to heterogeneous FPGAs

    Two-Dimensional Cutting Problem

    Get PDF
    This paper deals with two-dimensional cutting problems. Firstly the complexity of the problem in question is estimated. Then, several known approaches for the regular (rectangular) and irregular (not necessarily rectangular) cutting problems are described. In the second part, a decision support system for cutting a rectangular sheet of material into pieces of arbitrary shapes, is presented. The system uses two earlier described methods which prefer different types of data and the user may decide which one is more suitable for the problem in question. After brief description of system data files and its manual, some experimental results are presented

    Approximation algorithms for rectangle stabbing and interval stabbing problems.

    Get PDF
    Inthe weighted rectangle stabbing problem we are given a grid in R2 consisting of columns and rows each having a positive integral weight, and a set of closed axis-parallel rectangles each having a positive integral demand. The rectangles are placed arbitrarily in the grid with the only assumption that each rectangle is intersected by at least one column and at least one row. The objective is to find a minimum-weight (multi)set of columns and rows of the grid so that for each rectangle the total multiplicity of selected columns and rows stabbing it is at least its demand. A special case of this problem arises when each rectangle is intersected by exactly one row. We describe two algorithms, called STAB and ROUND, that are shown to be constant-factor approximation algorithms for different variants of this stabbing problem.Research; Approximation; Algorithms; Problems; Demand;
    • …
    corecore