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Approximation Algorithms for Rectangle 
Stabbing and Interval Stab bing Pro blems* 

Sofia Kovalevat and Frits C.R. Spieksma+ 

Abstract 

In the weighted rectangle stabbing problem we are given a grid 
in ]R2 consisting of columns and rows each having a positive integral 
weight, and a set of closed axis-parallel rectangles each having a pos
itive integral demand. The rectangles are placed arbitrarily in the 
grid with the only assumption that each rectangle is intersected by 
at least one column and at least one row. The objective is to find a 
minimum-weight (multi)set of columns and rows of the grid so that 
for each rectangle the total multiplicity of selected columns and rows 
stabbing it is at least its demand. A special case of this problem 
arises when each rectangle is intersected by exactly one row. We de
scribe two algorithms, called STAB and ROUND, that are shown to 
be constant-factor approximation algorithms for different variants of 
this stabbing problem. 

1 Introduction. 

The weighted rectangle stabbing problem (WRSP) can be described as follows: 
given is a grid in JR2 consisting of columns and rows each having a positive 
integral weight, and a set of closed axis-parallel rectangles each having a 
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positive integral demand. The rectangles are placed arbitrarily in the grid 
with the only assumption that each rectangle is intersected by at least one 
column and at least one row. The objective is to find a minimum-weight 
(multi)set of columns and rows of the grid so that for each rectangle the total 
multiplicity of selected columns and rows stabbing this rectangle equals at 
least its demand. (A column or row is said to stab a rectangle if it intersects 
it. ) 

A special case of the WRSP is the case where each rectangle is intersected 
by exactly one row; we will refer to the resulting problem as the weighted 
interval stabbing problem (WISP), or ISP in case of unit weights (see Figure 1 
for an example of an instance of the ISP). 

Figure 1: An instance of ISP with unit demands. The rectangles (or intervals 
in this case) are in grey; the columns and row in black constitute a feasible 
solution. 

Motivation. Although at first sight the WRSP may seem rather specific, 
it is not difficult to see that the following two problems can be reduced to 
WRSP: 

• Solving special integer programming problems: the following type of 
integer linear programming problems can be reformulated as instances 
of WRSP: minimize{ wxl (BIG)x ~ b, x E II,!}, where Band G are 
both O)-matrices with consecutive 'l'-s in the rows (a so-called interval 
matrix, see e.g. Schrijver [8]), b E II;~, w E Z~. Indeed, construct a grid 
which has a column for each column in B and a row for each column 
in G. For each row i of matrix BIG, draw a rectangle i such that it 
intersects only the columns and rows of the grid corresponding to the 
positions of '1 '-s in row i. Observe that this construction is possible 
since Band G have consecutive 'l'-s in the rows. To complete the 
construction, assign demand bi to each rectangle i and a corresponding 
weight Wj to each column and row of the grid. Let the decision variables 
x describe the multiplicities of the columns and rows of the grid. In this 
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way we have obtained an instance of WRSP. In other words, integer 
programming problems where the columns of the constraint matrix A 
can be permuted such that A = (BIG) with Band G each being an 
interval matrix, is a special case of WRSP . 

• Stabbing geometric figures in the plane: given a set of arbitrary con
nected closed geometric sets in the plane, use a minimum number of 
straight lines of two given directions to stab each of these sets at least 
once. Indeed, by introducing a new coordinate system specified by the 
two directions, and by replacing each closed connected set by a closed 
rectangle defined by the projections of the set to the new coordinate 
axes, we obtain an instance of the problem of stabbing rectangles using 
a minimum number of axis-parallel lines. More specifically, we define 
a grid whose rows and columns are axes-parallel lines containing the 
rectangles' edges. We can restrict attention to those lines since any 
axis-parallel line stabbing some set of rectangles can be replaced by a 
line stabbing this set and containing a rectangle's edge. Therefore, the 
problem of stabbing the rectangles with axis-parallel lines reduces to 
the problem of stabbing them with the rows and columns of the grid. 

Literature. The WRSP and its special case WISP have received attention in 
literature before. Motivated by an application in parallel processing, Gaur et 
al. [2] present a 2-approximation algorithm for the WRSP with unit weights 
and demands, which admits an easy generalization to arbitrary weights and 
demands. Furthermore, Hassin and Megiddo [3] (mentioning military and 
medical applications) study a number of special cases of the problem of stab
bing geometric figures in JP2.2 by a minimum number of straight lines. In par
ticular, they present a 2-approximation algorithm for the task of stabbing 
connected figures of the same shape and size with horizontal and vertical 
lines. Moreover, they study the case of stabbing horizontal line segments 
of length K, whose endpoints have integral x-coordinates, with a minimum 
number of horizontal and vertical lines, and give a 2 - ~ -approximation 
algorithm for this problem. In our setting this corresponds to the ISP with 
unit demands, where each rectangle in the input is intersected by exactly K 
columns. 

Finally, concerning computational complexity, a special case of ISP where 
each rectangle is stabbed by at most two columns, is shown to be APX-hard 
in [7]. 
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Our results. We present two approximation algorithms for different vari
ants of WRSP (see e.g. Vazirani [9] for an overview on approximation algo
rithms). First, we describe a q;l-approximation algorithm called ROUND 
for the case where the demand of each rectangle is bounded from below by 
an integer q. Observe that this provides a 2-approximation algorithm for the 
WRSP described in the introduction, where q = 1. Thus, our algorithm is 
an improvement upon the approximation ratio of the algorithm of Gaur et 
al. [2] for instances with a lower bound on the rectangles' demands that is 
larger than 1. Second, we present a ~l-(l~l/k)k) approximation algorithm 
called STAB for ISPk , the variant of I P where each row intersects at most 
k rectangles (e.g., the instance depicted in Figure 1 is an instance of ISP3 ). 

Observe that STAB is a ~-approximation algorithm for the case k = 2, and 
that STAB is a e~l -approximation algorithm for the case where the num
ber of rectangles sharing a row is unlimited (k = 00). Thus, STAB improves 
upon the results described in Hassin and Megiddo [3] (for K 2: 3) and does 
not impose any restrictions on the number of columns intersecting rectan
gles. Third, we state here that STAB for the weighted case of ISP 00, i.e., 
the case where the columns and the rows of the grid have arbitrary positive 
integral weights, is a e~l -approximation algorithm. For the proof of this 
result, we refer to Kovaleva [5]. Our algorithms are based on rounding the 
linear programming relaxation of an integer programming formulation in an 
interesting way. We use the following property present in our formulation: 
the variables can be partitioned into two sets such that when given the val
ues of one set of variables, one can compute in polynomial time the optimal 
values of the variables of the other set of variables, and vice versa. Next, we 
consider different ways of rounding one set of variables, and compute each 
time the values of the remaining variables, while keeping the best solution. 

Summarizing our results: 

• we generalize the results of Gaur et al. [2] to obtain a q+1 -approximation 
q 

algorithm called ROUND for the case where the demand of each rect-
angle is bounded from below by an integer q (Section 3), 

• we describe an (l-(l~l/k)k) approximation algorithm called STAB for 
ISPk based on an original rounding idea (Section 4). 

We also show that there exist instances of the WRSP, ISP 2 and ISP 00, for 
which the ratio between the values of a natural ILP formulation and its LP
relaxation is equal (or arbitrary close) to the obtained approximation ratios. 
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This suggests that these approximation ratios are unlikely to be improved by 
an LP-rounding algorithm based on the natural ILP formulation. 

2 Preliminaries. 

Let us formalize the definition of WRSP. Let the grid in the input consist of 
t columns and m rows, numbered consecutively from left to right and from 
bottom to top, with positive weight We (vr ) attached to each column c (row 
r). Further, we are given n rectangles such that rectangle i has demand 
di E Z+ and is specified by leftmost column li' rightmost column ri, top row 
ti and bottom row bi . 

Let us give a natural ILP formulation of WRSP. In this paper we use notation 
[a : b] for the set of integers {a, a+ 1, ... , b}. The decision variables Ye, Zr E Z+, 
c E [1 : t], r E [1 : m], denote the multiplicities of column c and row r 
respectively. 

Minimize 

subject to 
2::~=1 WeYe + 2::~=1 VrZr 

2::rE[kti] Zr + 2::eE[li: r i] Ye ~ di Vi E [1 : n] 
Zr, Ye E Z~ Vr,c. 

(1) 
(2) 

(3) 

The linear programming relaxation is obtained when replacing the integrality 
constraints (3) by the nonnegativity constraints Zr, Ye ~ 0, Vr, c. 

For an instance I of WRSP and a vector b E zn, we introduce two 
auxiliary ILP problems: 

IPY(I, b): 
Minimize 
subject to 

Minimize 
subject to 

2::~=1 WeYe 

2::eE[li:r i] Ye ~ bi 

Ye E Z+, 

2::~=1 VrZr 

2::rE [bi: t i] Zr ~ bi 

Zr E Z+, 

Vi E [1 : n] 
Vc E [1 : t] 

Vi E [1 : n] 
Vc E [1 : m] 

(4) 

(5) 

Lemma 2.1. For any b E zn, the LP-relaxation of each of the problems 
Ipz (I, b) and IFY (I, b) is integral. 

Proof. This follows from the unimodularity of the constraint matrix of (5) 
which is implied by the "consecutive one's" -property (see e.g. Schrijver [8]). 

o 
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Corollary 2.2. The optimum value of IFY(I, b) (IPZ(I, b)) is smaller than 
or equal to the value of any feasible solution to its LP-relaxation. 

Corollary 2.3. The problem IFY(I, b) (IPZ(I, b)) can be solved in polynomial 
time. Its optimal solution coincides with that of its LP-relaxation. 

In fact, the special structure of Ipy (I, b) (IpZ (I, b)) allows us to solve it via 
a minimum-cost flow algorithm: let JvICF(p, q) denote the time needed to 
solve the minimum cost flow problem on a network with p nodes and q arcs. 

Lemma 2.4. The problem IFY(I, b) (IPZ(I, b)) can be solved in time O(JvICF(t, n+ 
t)) (O(JvICF(m, n + m))). 

Proof. Consider the LP-relaxation of formulation Ipy (I, b) and substitute 
variables with new variables un, ... , Ut as Yc = U c - Uc-I, Vc E [1 : t]. Then it 
transforms into 

Minimize 
subject to 

-WI Uo + (WI - W2)U2 + ... + (Wt-I - Wt)Ut-1 + WtUt 

Uri - UZi-1 2': bi , Vi E [1 : n] 
U c - Uc-I 2': 0, Ve E [1 : t]. 

(6) 

Let us denote the vector of objective coefficients, the vector of right-hand 
sides and the constraint matrix by w, band C respectively, and the vector of 
variables by u. Then (4) can be represented as {minimize wul Cu 2': b}. Its 
dual is: {maximize bxl C T x = W, x 2': O}. Observe that this is a minimum 
cost flow formulation with flow conservation constraints CT x = w, since CT 

has exactly one '1' and one '-1' in each column. Given an optimal solution 
to the minimum cost flow problem, one can easily obtain the optimal dual 
solution Uo, ... , Ut (see Ahuja et al. [1]), and thus optimal YI, ... , Yt as well. 0 

3 The Algorithm ROUND. 

Let WRSPq be the special case of the WRSP, where di 2': q, Vi E [1 : n]. In 
Subsection 3.1 we describe an algorithm ROUND, and show that it achieves a 
ratio of q+1. Subsection 3.2 shows that the integrality gap between a natural 

q 
integer programming formulation and its corresponding LP-relaxation equals 
the same ratio. 
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1. solve the LP-relaxation of (1)-(3) for I and obtain its optimal solution 
(yIP, ZIp) 

2. solve Ipy (I, a), where ai = l q;l LCE[li:r;j y~ j, for all i E [1 : n]; 
obtain y; 

3. solve Ipz (I, b), where bi = l q;l LCE[bi:ti] z~ j, for all i E [1 : n]; 
obtain z; 

4. return (y, z) 

Figure 2: Algorithm ROUND. 

3.1 An approximation result. 

Figure 2 describes algorithm ROUND applied to an instance I of WRSPq. 

Theorem 3.1. Algorithm ROUND is a q+l-approximation algorithm for 
q 

the problem WRSPq. 

Proof. Let I be an instance of WRSPq. First, we show that the solution 
(y, z) returned by ROUND is feasible for I, i.e., satisfies constraints (2) and 
(3). Obviously, vectors y and z are integral, hence, constraint (3) is satisfied. 
For each i E [1 : n], consider the left-hand side of constraint (2) for (y, z). 
By construction, y and z are feasible to IPY(I, a) and IPZ(I, b) respectively. 
U sing this, and the way vectors a and b were constructed, obtain: 

'"' - '"' - - l q + 1 '"' IPj l q + 1 '"' IPj D Zr + D Yc 2: ai + bi - -- D Yc + -- D zr . 
q q 

rE[bi:ti] cE[li:ri] cE[li:ri] rE[bi:ti] 

(7) 

Since l a j + lp j 2: l a + p j - 1, for any positive a and p, and since ZIp and 
yIp satisfy constraint (2), the right-hand side of (7) is at least equal to: 

where the last inequality holds because di 2: q, \:Ii E [1 : n] for WRSPq. 
Thus, inequality (2) holds for (y, z) and hence (y, z) constitutes a feasible 
solution to instance I of WRSPq. 
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The approximation ratio of ROUND is obtained from the ratio between 
the value of the returned solution (y, z) and the value of the optimal fractional 
solution (yIP, ZIp) (and of course by observing that the value of the latter 
solution does not exceed the optimum value of \VRSPq). 

We claim that L~=l wcYc :s; q;l L~=l wcyt Observe that q;lylP is a feasi-

ble solution to the LP-relaxation of Ipy (I, a) with ai = l q;l LCE[li:ri] y;r J, Vi E 

[1 : n]. Indeed, constraints (4) are clearly satisfied: LCE[li:r;j q;ly;r 2: 
l q;l LCE[li:ri] y;r J, Vi E [1 : n]. Thus, vectors y and q;lylp are respectively 
an optimal solution to Ipy (I, a) and a feasible solution to its LP-relaxation. 
Now Corollary 2.2 implies the claim. 

Similarly, L~=l vrzr :s; q;l L~=l vrz;? This proves the ratio of q;l be-
tween the value of solution (y, z) and solution (yIp, ZIP). 0 

Observe that in case of unit weights and unit demands, ROUND boils 
down to the algorithm described in Gaur et al. [2]. 

3.2 Tightness. 

In this section we provide instances showing that the ratio between the the 
optimal value ofWRSPq and the LP-relaxation of its natural ILP formulation 
(1)-(3) can be arbitrary close to q+l, the approximation factor of algorithm q 

ROUND. We will refer to this ratio as the integrality gap of (1)-(3). 

Theorem 3.2. For each q E N, the integrality gap of (1)-(3) is arbitrarily 
close to q+l. 

q 

Proof. For any q E N and any integral n 2: 2, we construct an instance I~ of 
WRSPq, such that the ratio between the optimal values of the formulation 
(1 )-(3) and its LP-relaxation for the instance I~ tends to q+1 as n increases. q 

The construction is as follows. Denote: c = 2(n-l)~(q+1)2' and let the grid 
consist of qn/c columns and qn/c rows. The instance includes all different 
rectangles intersecting exactly q/ c columns and rows in total (here 'different' 
implies intersecting different subsets of columns and rows). The weight of 
each column and row is unit, and the demand of each rectangle is equal to q. 

Claim 1. The optimum value of the LP-relaxation of formulation (1)-(3) for 
I~ is less than or equal to 2qn. 
To show this, we introduce a feasible solution to the LP relaxation for I~ of 
the value 2qn: assign multiplicity c to each column and row of the grid. It 
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is feasible, since each rectangle in I~ is then stabbed by a total multiplicity 
of q. The value of this solution is 2qn, hence the claim follows. 

Claim 2. The optimum value of WRSPq for I~ is greater than 2(n-1)(q+ 1). 
Suppose the opposite is true, that is, suppose that there exists a feasible 
(integral) solution to WRSPq for I%, (y, z), with value 2(n - 1)(q + 1). Sup
pose that this solution assigns total multiplicity C to the columns and to
tal multiplicity R to the rows of the grid (L~!~C yc = C, L~~t Zr = R, 
C + R = 2(n -l)(q + 1)). Denote by x the maximum number of consecutive 
columns having total multiplicity less than or equal to q - 1. 

Claim 2.1. x 2: C/~~l - 1. 
Indeed, by definition of x, the total multiplicity of any x + 1 consecutive 
columns is at least q. Therefore, the total multiplicity C of the columns has 
to be at least l:~~ J . q. This inequality, i.e., C 2: l:~~ J . q, implies the claim. 

Claim 2.2. x < q/c - 1. 
Suppose that this does not hold. Since the number of rows in the grid is 
obviously larger than their total multiplicity R (otherwise the value of our 
solution would be much larger than 2 (n - 1) (q + 1)), there exists a row with 
multiplicity O. By construction our instance contains a rectangle intersecting 
this row and q/c - 1 of the x consecutive columns. Obviously, the total 
multiplicity of the columns and rows stabbing this rectangle is at most q -1, 
which is a contradiction with the assumption that solution (y, z) is feasible. 

Claim 2.3. C > (n-l)q. This follows from 0~~1 < q/c, which in turn follows 
from Claims 2.1 and 2.2. 

We continue with the proof of Claim 2. Consider all the rectangles in I~ 
intersecting exactly those x consecutive columns. Each of them intersects 
q/c - x rows. It receives multiplicity of at most q - 1 from the columns, and 
therefore needs to receive multiplicity of at least 1 from its rows. The fact 
that our instance contains all the possible different rectangles implies that 
each set of q/ c - x consecutive rows has to have the total multiplicity of at 
least 1. By a similar argument as in the proof of Claim 2.1, and by Claim 
2.1 itself, the total multiplicity of the rows has to satisfy: 

nq/c nq/c n 
R2: l /c-xJ 2: l / nq/E: 1J = ll __ n_+fJ > 

q q c - c/q+1 + C/q+l q 

> n -1= n(C+q) C -1. 
1 - C/~+l + ~ C + q - nq + c( q+q) 
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lVIultiplying both sides by the denominator, which is positive due to Claim 
2.3, obtain: R(C + q - nq + s(Cq+q)) > n(C + q) - (C + q - nq + c(cq+q)). 

Interchanging the role of columns and rows, and using a similar argument, 
we have: C(R+q - nq+ s(R+q)) > n(R+q) - (R+q - nq+ e:(R+q)). Summing 

q q 

up these inequalities, and collecting the coefficients of the terms C Rand 
(C + R), we arrive at: 

2CR(1 + c/q) > (C + R)( -q + nq - c + n - 1 - c/q) + 4nq - 2q - 2c = 

= (n - l)(q + l)(C + R) - (c + c/q)(C + R) + 4nq - 2q - 2c. 

Using our assumption C + R = 2(n - l)(q + 1), we rewrite as follows: 

2CR(1+c/q) > 2(n-1?(q+1)2- c(1+1/q).2(n-1)(q+1)+4nq-2q-2c. 

Obviously, the value of the term CR, given that C+R = 2(n-1)(q+1), can 
not exceed (n - 1)2(q + 1)2. Then, if solution (y, z) is feasible, the following 
should be satisfied (recall that c = 2(n-l);(q+l)2): 

1 1 1 - > - + 4nq - 2q - -;----:-::-;---;---;:: 
q (n-1)(q+1) (n-1)2(q+1)2· 

This inequality does not hold for any q ~ 1, n ~ 2. Thus, solution (y, z) can 
not be feasible. This proves Claim 2. 

From Claims 1 and 2 it follows that the ratio between the optimum value of 
formulation (1)-(3) and the optimum value of its LP-relaxation for I~ is at 
least equal to 2(n-21)(q+l) , which tends to q+l as n increases. D nq q 

Remark 3.1. Notice that this example shows that the results in Gaur et al. [2] 
are tight as well. 

As mentioned in the introduction, Theorems 3.1 and 3.2 imply that it is 
unlikely that a better ratio for WRSPq can be achieved using formulation 
(1)-(3). 
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4 Algorithm STAB. 

Recall that the interval stabbing problem WISP k refers to the restriction of 
vVRSP where each rectangle in the input is intersected by exactly one row 
and each row intersects at most k rectangles. Moreover, we assume in this 
section that all the weights and demands are unit: We = Vr = di = 1, Yc E 

[1 : t], r E [1 : m] and i E [1 : n], i.e., we concentrate on ISPk with unit 
demands. In Subsection 4.1 we describe an algorithm STAB, and show that 
it achieves a ratio of 1- l~l/k)k. Subsection 4.2 shows that the integrality 
gap between the values of a natural integer programming formulation and its 
corresponding LP-relaxation equals the same approximation ratio for k = 2 
and k = 00, namely ~ and e~l respectively. An alternative algorithm for 
the case k = 2 yielding the same worst-case ratio (i.e., ~) is described in 
Kovaleva and Spieksma [6]. 

4.1 An approximation result. 

In this subsection we describe an algorithm STAB for ISP k and show that it is 
a l-(l~l/k)k approximation algorithm. Let us first adapt the ILP formulation 
(1)-(3) to ISPk with unit demands: 

Minimize 

subject to 
L~=l Ye + L~=l Zr 

ZPi + LeE[li:ril Ye ~ 1 Yi E [1 : n] 
ZTl Ye E Z+ Yr, c. 

(8) 
(9) 

(10) 

Informally, algorithm STAB can be described as follows: solve the LP
relaxation of (8)- (10), and denote the solution found by (yIp, ZIp). Assume, 
without loss of generality, that the rows are sorted as Z{ ~ zi ~ ... ~ z~. 
At each iteration j (j = 0, ... , m) we solve the problem (8)-(10) with a fixed 
vector z, the first j elements of which are set to 1, and the others to o. As 
shown in Section 2, this can be done in polynomial time using a minimum 
cost flow algorithm. Finally, we take the best of the resulting m + 1 solutions. 
A formal description of STAB is shown in Figure 3. 

We use notation: value(y, z) = L~=l Ye + L~=l Zr, value(y) = L~=l Ye, and 
value(z) - L~=l Zr· 

Theorem 4.1. Algorithm STAB is a l-(l~l/k)k - approximation algorithm for 
ISPk · 
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1. solve the LP-relaxation of (8)-(10), and obtain its optimal solution 
(yIp, ZIp); 

2. reindex the rows of the grid so that z~P ~ zi ~ ... ~ z~; 
3. V+- 00; 

4. for j = 0 to m 
for i = 1 to j Zi +- 1, 
for i = j + 1 to m Zi +- O. 
solve IPY(I, b), where bi = 1 - ZPi' Vi E [1 : n], and obtain y; 
if value(y, z) < V then V +- value(y, z), y* +- y, z* +- z; 

5. return (y*,z*). 

Figure 3: Algorithm STAB 

Proof. Consider an instance I of ISP k, and let (yIp, ZIp) and (y*, z*) be re
spectively an optimal LP solution and the solution returned by the algorithm 
for I. We prove the theorem by establishing that 

1 
value(y*,z*) ~ 1- (l-l/k)k value(ylp, ZIp). (11) 

It is enough to prove the result for instances satisfying the following as
sumption: we assume that the optimal LP solution satisfies constraints (9) 
at equality, i.e. 

zh + L Yd = 1, Vi E [1 : n]. (12) 
cE(li:ri) 

Indeed, if (12) does not hold for some intervals i, we change the instance by 
shortening the appropriate intervals (and perhaps splitting the columns with 
yIp-values) so that the assumption becomes true (see Figure 4). It is easy 
to check that the optimal LP solution remains the same (up to the splitted 
columns). Since in the new instance the intervals become shorter, algorithm 
STAB returns a solution with a value equal to or larger than the value of 
the solution returned for the initial instance. Then inequality (11) proven 
for the new instance implies this inequality for the initial instance as well. 

We order the rows of the grid in order of nonincreasing zIP-values, and we 
denote by I (l ~ 0) the number of zIp-values equal to 1. Then: zi = 
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Figure 4: Example of an initial instance (left) and a new instance satisfying 
the assumption (right). 

z!p = 1,1 > Z!~l 2': ... 2': z~ 2': O. We assume that value(ylp) is positive 
(otherwise all the zIp-values have to be equal to 1 and the theorem obviously 
holds). 

By construction: 

value(y*, z*) = min value(yj, zj) ::; min value(yj, zj), (13) 
jE[O:m] jE[I:m] 

where (yj, zj) is the jth solution generated in Step 4 of STAB. 

Let us proceed by defining for each j E [0 : m], a number qj E ffi. that 
depends on some given .6. E [0, l]m and given (3 > 0 as follows: 

where we put .6.j = 0 if j > m. 
Observe that qj for each j E [0 : m] is uniquely defined by this equality; we 
denote the solution of (14) by qj(.6., (3). 
We will prove the following lemma: 

Lemma 4.2. 

Then, assuming that Lemma 4.2 holds, it follows from (13) that: 

value(ylp) 
value(y*, z*) ::; min (j + k . qj (ZIp, k )). 

JE[I:m] 
(15) 

The Theorem follows now from the following lemma, the proof of which can 
be found in the appendix: 
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Lemma 4.3. Given are real numbers 1 2: 61 2: 62 2: ... 2: 6 m 2: 0, a 
positive real number Y, an integer p 2: 2, and an integer l 2: 0. Then the 
following holds: 

1 
min (i + p. Qi(.6., Yip)) ::; ( I ) (Y + "" .6.r ) + l, 

iE[I:m] 1 - 1 - 1 p P ~ 
r=l+l 

m 

(16) 

By applying this Lemma with p = k, .6. = ZIp, and Y = value(ylp), the 
right-hand side of (15) can be bounded by: 

and since z~P 
equal to: 

= z!P = 1, the right hand side of this last expression is 

1 l ( IP IP) 
( Ik) k va ue y ,z . 

1- 1- 1 

The theorem is then proven. 

To complete the proof of the theorem, we now proceed with the 
Proof of Lemma 4.2. Consider (yj, zj), for some j E [l : m], let us find an 
upper bound for value (yj , zj). By construction: 

- zj = 1 Vr < J' T , -, 

- z? = 0, Vr 2: j + 1, 
- yj is an optimal solution to Ipy (I, b), where bi = 1 - Zii' Vi E [1 : n]. 

Obviously, value(zj) = j. In order to bound value(yj) we introduce a 
solution y'j, which is feasible to the LP-relaxation of Ipy (I, b). Then, Lemma 
2.1 implies that value(yj) ::; value(y'j). 

First, let us define subsets 8 1,82 , ... , 8m , where 8r C [1 : t], Vr = 1, ... , Tn, 

(i.e., each subset consists of a set of columns of the grid) in the following 
way: 

i:Pi=r 

Thus, 8r is the set of columns stabbing intervals in row r. 
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Fix now some j E [l m l, and construct y'j as follows (recall that z7 < 
1, \fT E [l + 1 : m]): 

1 Ip 

(l-z~) Ye , 
yJ 

if c E Sj+l 

if C E Sj+2 \Sj+l 

if C E Sm \(Sj+l U ... U Sm-d 

otherwise. 

(17) 

Let us now establish feasibility of y'j with respect to the LP-relaxation of 
IPY(I, b). For any interval i we show that the following inequality holds: 

"" y'j > 1 - zj . ~ e - Pi (18) 
eE[li:ri] 

If Pi < j + 1, where Pi is the row number of interval i, then Z~i = 1, and the 
inequality holds automatically. Consider the case Pi ~ j + 1. Clearly, for any 
C E SPi' either c E Spi\(Sj+l U ... U Spi-d, or c E (Sj+l U ... U Spi- 1 ). The 
first case implies that y1 = yJ /(1 - z~); the second means that y2 is equal 
to yJ multiplied by some coefficient at least as large as 1/ (1- z~) (see (17)). 
Then, since [li : Til E SPi' we have y2 ~ yJ /(1 - z~) for any c E [li : Til· 
U sing this and remembering that (yip, Zip) satisfies z~ + LeE [Ii :ri] yJ ~ 1, we 
have: 

"" Ye' j 1 "" I ~ > (I-ziP) ~ y; > 
eE[kri] p, eE[kri] 

1- Zip 
_--,P,..::..i = 1 
1- z~ . 

Thus we have shown that inequality (18) holds for any i E [1 : n], and 
therefore y'j is feasible to the LP-relaxation of IPY(b). Now Lemma 2.1 
implies that 

value(yj) ::; value(y,j). (19) 

( I") (I value(y IP )) [l 1 In what follows we show that value y J ::; k . qj z P, k ' \f j E : m . 
By construction of y'j, using notation Y(S) = LeEs yJ : 
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Observe that for the Y U-terms the following equality holds: 

(21 ) 

lVIoreover, using the definition of Sr, our assumption (12), and the fact that 
there are at most k intervals per row, we have for each r = j + 1, ... , Tn: 

(22) 

Consider now the following optimization problem: 

max (----\P-YJ+1 + ~YJ+2 + ... + ~Ym + ~~m+1 Yr) 
lj+l,lj+2,'" l-Zj+l l-Zj+2 l-zm 

subject to YJ+1 + ... + Ym + ~~m+1 Yr ::; value(i p ) (23) 
o ::; Yr ::; k(l - z7), Vr = j + 1, ... , Tn (24) 

o ::; Yr ::; k, Vr = Tn + 1, ... , 00 (25) 

Due to (21) and (22) the following solution is feasible to it: 
Yr = Y(Sr \(Sj+1USj+2U",USr-l)) for each r = j+1, ... , Tn, and ~:m+l Yr = 
Y((l : t)\(Sj+1USj+2U ... USm)) (distributed arbitrary among the components 
of the sum). Therefore the optimum value of this optimization problem is 
an upper bound on the right-hand side of (20). 

How does the optimum solution to this optimization problem look like? 
It is easy to see that to achieve the optimum value one should assign the 
maximum possible value (according to the constraints) to the variables with 
the largest objective coefficient. Since the objective coefficients are non
increasing, we increase the values of the variables YJ+l, YJ+2, ... in this order 
until the limits are met. We obtain the following optimal solution: 

for some number q E lR+, which due to (23) has to satisfy: 
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where we put: z~P = 0 for any r > m. Notice that q = qj(ZIP, valu:(ylP)) (see 
(14)), and the optimum value of the problem (23)-(25), which bounds the 

right-hand side of (20) from above, is k·qj(ZIP, valu:(ylP)). This proves Lemma 
4.2. D 

D 

Remark 4.1. With small adjustments, STAB and Theorem 4.1 can be gener
alized to the case of arbitrary rectangle demands. The main idea is then to 
sort the rows according to the fractional parts of the z-values of the optimal 
LP solution in case they are greater than 1. 

Remark 4.2. It is proven in [5] that STAB also is a e/(e -I)-approximation 
algorithm for the weighted case of ISP 00, i.e., the case where the columns 
and rows of the grid may have arbitrary integer positive weights. The proof 
given in this paper does not extend automatically to this case. 

4.2 Tightness. 

In this subsection we demonstrate that the ratio between the optimum val
ues of ISPk and the LP-relaxation of its ILP formulation (8)-(10) can be 
arbitrarily close to the bounds achieved by STAB in case k = 2 and k = ()() 
(which is respectively 4/3 and e/(e - 1)). 

For the case k = 2 this is shown by the instance of ISP2 depicted in 
Figure 5 (recall that all the column and row demands and rectangle weights 
are unit). Here the optimal value of the problem is 2, since at least two 
elements (columns or rows) are needed to stab the 3 rectangles, whereas the 
optimal fractional solution has the value of 3/2 . 

• ~">'''~ 

J I C",; 'H''''T'JfC-

! 

Figure 5: An instance of ISP2 and an optimal fractional solution. 

In the remainder of the section we consider the problem ISP 00, or simply ISP, 
without any limitation on the number of rectangles sharing a row. We will 
exhibit a family of instances {Im}mEN of ISP, such that the ratio between the 
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optimal values of integral and fractional solutions for Im tends to e/ (e - 1) 
as m increases. 

Theorem 4.4. The integrality gap of (8)- (1 0) is arbitrarily close to e~l' 

Proof. For each mEN we construct an instance Im as follows. Let the 
grid have m rows and t = m! columns. Let the rows be numbered conseCll
tively and let each row j intersect exactly j rectangles of the instance. Let 
rectangles intersected by row j be numbered j1, ... , jj. All these rectangles 
are disjoint and each intersects exactly m! columns (see Figure 6). So, for 

J 
a rectangle ji we have that its row number Pji is r, and its leftmost and 
rightmost columns are lji = j! (i - 1) + 1 and rji = j! i. The total number of 
rectangles in the instance is then n = 1 + 2 + ... + m. 

Figure 6: Instance I 4 . 

We claim that the following solution (y, z) is optimal to the LP-relaxation of 
(8)-(10) for Im: 

{ 0, \lj = 1, ... , P 
Zj = 1 - Pjj, \lj = P + 1, ... , m 

Yc = ..;, \Ie = 1, ... , m!, m. 

where P = P( m) is the number satisfying: 

1 1 1 1 

(26) 

1 1 1 -+--+ ... +--<1 and 
m m-l P+l- -+ l+···+--+P>l. m m- P+l-
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It is easy to verify that the value of this solution equals: 

t mIl 1 
'""' Yc + L Zr = m - P(-- + -- + ... + -). 
~ P+1 P+2 m 
c=l r=l 

First, we show that (y, z) is a feasible solution to the LP-relaxation. Take 

any rectangle ji and show that the constraint Zpji + 2:cE[lji,rjil Yc ~ 1 is 
satisfied. Notice that the z-values of our solution can be also expressed as: 
Zj = max(l - y, 0), Vj = I, .... ,m. Substituting these values, and rewriting 

the left-hand side of constraints (9) gives: 

P PPm! P P P 
max(l- --:-,0) + '""' - = max(l- --:-,0) + -. - = max(l- --:-,0) +--:-. 

Ji ~ m! Ji Ji m! Ji Ji CE[ljJjJ 

Clearly, the last expression is at least equal to I, which proves feasibility of 
the solution (y, z). 
Now, let us prove optimality of (y, z). For this goal we present a feasible 
dual solution to the LP-relaxation of (8)-(10) which has the same value as 
(y, z). Below we present the dual problem, where a variable Xi corresponds 
to rectangle i: 

Maximize 
subject to 

. 2:~=1 Xi 
2:i:Pi=j Xi ::; 1 Vj = I, .. , m 

2:i:CE[li,ril Xi ::; 1 'lie = I, .. , t 
o ::; Xi ::; 1 Vi = I, .. , n 

Consider now the following dual solution: 

{ 
l/j, 

Xji= ~-(rk+m~l + ... + P~l)' 
if j = P + 1, ... , m, 
if j = P, 
otherwise. 

(27) 

(28) 

In words, we assign 1/j to the dual variables corresponding to rectangles on 
row j = P+1, ... ,m, l-(rk+m~l + ... + P~l) to the variables corresponding 
to rectangles on row j = P, and 0 to the other variables. 
It is easy to verify that this solution is feasible to problem (27) and has value 

nIl 1 
'""' Xi = m - P( - + -- + .. , + --), 
~ m m-1 P+1 
i=l 

(29) 
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which is equal to the value of solution (y, z) (26). This proves optimality of 
the latter to the LP-relaxation of (8)- (10). We denote the optimal value of 
this LP-relaxation by LP(Im) (see (29)). 

Denote by 0 PT(I) the optimum value of ISP for I. Let us show by induction 
on Tn that OPT(Im) = Tn. It is clear that OPT(Id = 1, since exactly one 
element (column or row) is needed to stab the only rectangle of the instance 
I 1. Assume now that OPT(Im- 1 ) = m - 1 is proven. Consider an instance 
Im. It is easy to see that OPT(Im) ::; Tn (assign, for example, multiplicity 
1 to each row). We claim that OPT(Im) 2: m. Indeed, take an optimal 
solution to ISP for I m , (y, z), and consider the following two cases. First, 
assume Zm = O. This implies that we have to stab all the Tn non-overlapping 
rectangles on row Tn with columns of the grid, which would require exactly 
Tn columns and would imply OPT(Im) 2: Tn. 
Second, assume Zm = 1. In this case all rectangles intersecting row Tn are 
stabbed by the row. Observe that the rectangles that are not yet stabbed 
can be considered separately and constitute instance I m - 1 . By the induction 
hypothesis we know that one has to select at least m - 1 elements to stab 
all the rectangles in I m - 1 , and therefore OPT(Im) 2: 1 + Tn - 1 = Tn. So, 
OPT(Im) has to be equal to Tn. 

We use Lemma 6.3 given in the appendix to prove that the ratio 

Tn 

Tn-P(~+ m~l + ... + P~l) 

approaches e~l when Tn increases. This establishes our tightness result. 0 

As mentioned in the introduction, Theorems 4.1 and 4.4 imply that it is 
unlikely that a better ratio for ISP!Xl can be achieved using formulation (8)
(10). Another example of a formulation with an integrality gap that equals 
e~l is described in Hoogeveen et al. [4]. 

5 Conclusion 

We discussed two variants of the weighted rectangle stabbing problem. For 
one problem, called WRSPq, an approximation algorithm ROUND is pro
posed that achieves a ratio of q~l. For the other problem, called ISPk , an ap-

proximation algorithm STAB is proposed that achieves a ratio of l-(l~l/k)k. 
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Each of these algorithms is based on rounding the LP-relaxation of a straight
forward integer programming formulation. ROUND is a generalization of an 
algorithm proposed in Gaur et al. [2], and it is shown that the ratio proved 
equals the integrality gap. STAB considers different ways of rounding the 
LP-relaxation, and outputs the best solution found in this way; again, it is 
shown that the ratio proved equals the integrality gap when k = 2 and when 
k = 00. 

6 Appendix. 

We restate Lemma 4.3, before giving its proof. 
Lemma 4.3 Given are real numbers 1 2:: 6.1 2:: 6.2 2:: ... 2:: 6.m 2:: 0, a positive 
real number Y, an integer p 2:: 2 and an integer 0 ::; l < m. The following 
holds: 

(30) 

where qi = qi(6., Yip) for each i E [0: m] is uniquely defined by the equality: 

where we put 6.i = 0, if i > m. 
Proof. It is enough to prove this lemma for l = O. The case of other l < m 
can be reduced to the case of l = 0 by changing the index to j = i - land 
observing that qj+1 (6., a) = qi (6. -I, Yip), where vector 6.-1 is obtained by 
deleting the first l elements from vector 6.. So we will prove that 

The proof consists of two lemmas. In Lemma 6.1 we show that the left
hand side of (30) is upper bounded by the following supremum: 

sup G(J(·)) (32) 
f(·) E H 
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where 
G(f(·)) = min (f(x) + k(f(x + Yip) - f(x))), (33) 

x E lR+ 

and the class of functions H is defined as follows: 

H = {f(-) . lR -7 lR I f(·) is continuous, increasing, concave,} (34) 
. + + f(O)=o,f(x)::;X+L~=l~r . 

In Lemma 6.2 we show, that this supremum is upper bounded by the right
hand side of (30), which proves the lemma. 

Lemma 6.1. 

mm (i + p. qi(~' Yip)) ::; 
i=O, ... ,m 

sup 
f(·) E H 

G(f(-)), 

where G(f(·)) and H are defined in (33) and (34). 

Proof. To establish this, it is sufficient to exhibit a particular function 
j(-) E H, such that: 

G(}(·)) = . min (i + p. qi(~' YIp)). 
2=O, ... ,m 

(35) 

Then, the supremum of G (f (. )) over all the possible f (.) E H is clearly larger 
or equal to G(}(-)). 

Before we describe the function j (.), let us define an auxiliary function F(·) : 
lR+ -7 lR+ as follows: 

lqJ 
F(q) :L(1- ~r) + (q - lqJ) (1 - ~lqJ+d, 

r=l 

where we set ~r = 0, Vr 2: m + l. 
Observe that F(·) is 
- continuous, 
- increasing, since ~r < 1, and therefore (1 - ~r) > 0, Vr = 1, ... ,00, 

(36) 

- convex, since the coefficients ~r are non-increasing with increasing r, and 
therefore the coefficients (1 - ~r) are non-decreasing with increasing r, 
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- F(O) = 0, 
- F(q) :2: (q - ~~=16r)' Vq E ffi.+) since F(q) can be also represented as: 

l qJ 

F(q) = q - (2: 6 r + (q - lqJ )6lqJ+l), 
r=l 

and obviously (~~~16r + (q - lqJ)6lqJ+d :::; ~~=16Tl Vq E ffi.+, 
- F(q) is linear on each of the intervals [i, i + 1], i = 0, ... , m - 1, and on 
[m, +(0). 

We are now ready to present } (.) : ffi.+ -----+ ffi.+. We define: 

(since F (.) is increasing, F-1 (.) exists.) 
We claim that }(-) E H. Indeed, }U has the following properties: 
- } ( .) : ffi.+ -----+ ffi.+ since F ( .) : ffi.+ -----+ ffi.+; 
- } (.) is continuous, increasing, concave, since F (.) is continuous, increasing, 
convex; 
- }(O) = 0, since F(O) = 0; 
- }(x) :::; x + ~~=l 6 r , Vx E ffi.+. This can be obtained from F(q) :2: (q -
~~=16r)' Vq E ffi.+, using: F(q) = x, q = }(x). 
This proves that }U E H. 

To prove the lemma it remains to show that 

G (} ( . )) = . min (i + pqi ( 6, Yip)) . 
~=O, ... ,m 

Comparing the definition of qi(6, Yip) (see 31) and F(·) (36), observe that 
for each i E [0 : m] qi satisfies: 

F(i + qi) - F(i) = Yip· (37) 

Thus, qi = F-l(F(i) + Yip) - i. Setting: Xi = F(i), Vi = 0, ... , m, we find 
that i = F-1(Xi) and qi = F-1(Xi + Yip)) - F-1(Xi). Replacing F-1U by 
}(.), we obtain: 

qi = }(Xi + Yip)) - }(Xi), Vi = 0, ... , m. 
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Using this together with i = F-I(Xi) = j(Xi), we can rewrite: 

. min (i + pQi(6, Yip)) = min (j(Xi) + p(}(Xi + Yip) - j(Xi))) (38) 
2=O, ... ,m i = ° rn , ... , 

Xi = j-l(i) 

N ow we need to show that the latter expression is equal to: 

c(}(-)) = min (j(x) + p(}(x + Yip) - j(x))) (39) 
X E IR+ 

We do this by showing that the function j(x) + p(}(x + Yip) - j(x)) is 
continuous and concave in each of the intervals [Xi, Xi+l], 'Vi = 0, ... , m - 1, 
and is increasing in [xm' +00). Therefore the minimum can be achieved only 
at one of the endpoints xo, Xl, ... , Xm. 

Indeed, consider function j(x) +p(j(x + Ylp)- j(x)) in [Xi, Xi+l] for some 
i E [0: m-1]. It can also be written as pj(x + Yip) - (p -l)j(x). We know 
that j(x+ Yip) is concave on [Xi, Xi+l], since it is concave everywhere in IR+. 
Furthermore, j(x) is linear on each [Xi,Xi+I],i E [0 : m-l], since F(·) is 
linear on [i, i + 1], i E [0 : m-1]. Obviously, a concave function minus a 
linear function is again concave. 

Now we show that pj(x + Yip) - (p - l)j(x) is increasing in [xm, +00). 
Since j (x) = F- I ( .) is increasing and linear in [xm' +00 ), the growth rate of 
j(x) is the same as the growth rate of j(x + Yip) in [xm' +00), and thus the 
growth rate of pj(x+ Yip) - (p-1)j(x) is negative. We have proved that the 
minimum in (39) is always achieved at one of the points xo, Xl, ... , X m , and 
therefore (39) is equal to (38). This completes the proof of Lemma 6.1. D 

Lemma 6.2. 

where 

1 
sup C(j(·)) < 1 _ (1 _ 1/k)k C, 

f(·)EH 

m 

r=l 

C (j (- )) = min (j (x) + k (j ( X + Yip) - f (x) ) ) 
xEIR+ 

and set of functions H (via notation C) is 

H = {f(') . IR --> IR I f(-) is continuous, increasing, concave, } 
. + + f(O) = 0, f(x) :::; X + C - Y . 
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Proof. We will prove several claims and sub-claims. 
Claim 1. 

sup g, sup G(f(·)) = 

f(')EH g:f9(-)EH 

where for each 9 E ffi.+ function f g (-) is defined as follows: 
- fg(j . Yip) = g(l - (1 - 1/p)j), Vj E ° U N, 
- f g (x) is continuous in [0, +(0) and linear in each [(j -1)· Yip, j . Yip], j E N. 
Notice that f9 (.) is completely defined by the above characterization. An 
example of this function is shown in Figure 7. 

. .. 
Figure 7: Illustration of function f g (x) for k = 5, 9 = 1. 

To prove this claim it is enough to show that for any f (.) E H there exists a 
function f9(.) E H, with j) ~ 0, such that 

G(f(·)) = G(f9(-)) = j). 

To show that, we prove 2 subsidiary claims. 
Claim 1.1. For any 9 ~ 0: 

G(fg(·)) = mm (P(x) + p(P(x+Ylp)- P(x))) = g. 
x E ffi.+ 

Indeed, by construction fg(x) is linear in each of the intervals [(j -1)· Yip, j. 
Yip], j E N. This implies that function (fg(x) + p(fg(x+Ylp)- fg(x))) 
is linear in each of these intervals as well. Therefore the minimum over 
all x ~ ° is achieved in one of the endpoints 0, Yip, 2Ylp, .... Consider 
(fg(x) + p(fg(x+Ylp)- fg(x))) at the point x = jYlp, for some j EN U 0: 

P(j . Yip) + p(P((j + 1) . Yip) - P(j . YIp))· 
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U sing the definition of f9 (.) we can rewrite it as follows: 

g(l - (1 - 1/p)j) + p(g(l - (1 - 1/p)j+1) - g(l - (1 - 1/p)j)) 

With simple computations one can verify that the last expression is equal to 
g. This proves Claim 1.1. 

Claim 1.2. For any f(·) E H it holds that f9(.) E H, where § = G(J(·)). 
Clearly, f9(X) is concave. To prove that f9(X) ::; x + C - Y, \Ix E ffi.+, it 
is sufficient to show that f9(X) ::; f(x), since fe) E H means e.g. f(x) ::; 
x + C - Y, \I x E ffi.+. 

So, let us establish that j9(x) ::; f(x), \Ix E ffi.+. Recall that f9(X) is linear 
in each of the intervals [(j - 1) . Ylp,j' Yip], j EN, and f(x) is concave in 
ffi.+. Then it is sufficient to show that: 

f9(X) ::; f(x), \Ix = j . Yip, j E 0 u N. 

We use mathematical induction on j. For j = 0, f9(0) = f(O) = 0 and the 
inequality trivially holds. Suppose, for j - 1 we have proven: f9 ((j - 1) . 
Yip) ::; f((j -1) . Yip), and let us show that f9(j. Yip) ::; f(j . YIp)· 
Observe, that f9 (.) can be represented in a recursive way as follows: 

f9 (j . Yip) = § I p + f9 ( (j - 1) . Yip) (1 - 1 I p ) . ( 40) 

Since § = G(J(·)) we know: 

§ ::; f ((j -1) . Yip) + p(J (j . Yip) - f ((j -1) . YIp))· 

Rearranging the expression, we obtain: 

f(j . Yip) ~ §Ip + f((j -1) . Yip) (1 - lip)· 

By the induction hypothesis and (40) we can bound the right-hand side as: 

§Ip+ f((j-1)· Yip) (l-l/p) ~ §Ip+ f9((j-1). Yip) (l-l/p) = f9(j. YIp). 

This proves Claim 1.2. 

These 2 claims imply that for any f(-) E H, there exists f9(-) E H, with 
§ ~ 0, such that 

G(J(·)) = G(J9(-)) = §. 
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This implies Claim 1. 

Claim 2. 

sup 
g: fgUEH 

1 
9 < C. 

- 1 - (1 - l/p)p 

Indeed, f g(-) E H implies: fg(x) ~ x+C - Y, for all x E 1R.+, and in particular, 
for x = Y. From this, using the definition of f9U, obtain: 

J9(Y) = J9(p * Yip) - g(l- (1 - l/p)P) ~ Y + C - Y = C, 

from the last inequality: 

1 
9 ~ (1 - (1 - l/p)p) C, 

which proves Claim 2 and establishes Lemma 6.2. 

Lemma 6.3. Let P(m) E N be defined as follows: 

1 1 1 
- + + ... + () < 1 and 
m m-1 Pm+1-

1 1 1 1 
-+ + ... + () +-->1. m m-1 Pm +1 P(m)-

Then, 

. m 
hm ( ) ( 1 1 1 m-->oo m - P m m + m-l + ... + P(m)+l) e-1 

e 

o 
o 

( 41) 

( 42) 

Proof. Let us first find limm-->00 P(m)/m. Observe that the following in
equalities hold: 

1 1 1 1 m +l 1 m + 1 - + + ... + () > - dx = In ( , 
m m - 1 P m + 1 - P(m)+l x P m) + 1 

1 111m 1 m - + + ... + -(-) < - dx = In () , 
m m - 1 P m - P(m)-l X Pm - 1 

(the equalities follow from J: l/x dx = Inb/a.) Then (41) and (42) imply 

m+1 
1 2': In P() , m +1 

m 
1 ~ In P(m) _ 1 
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From this we have: 

m+1 m 
-- -1 S P(m) S - + 1. 

e e 

Dividing by m: 

1 + 11m I P(m) 1 I --- - 1 m < -- < - + 1 m. 
e - m - e 

Now we see, that limm---+oo P(m)/m = lie. 

Let us now find limm---+oo(~+ m~l + ... + P(~)+l)' From (41) and (42) we 
have: 

1 1 1 1 
1---<-+--+ ... + <1 

P(m) - m m - 1 P(m) + 1 -

Since we already know that limm---+oo P(m) = 00, we have: 

111 
lim (- + + ... + P () ) = 1. m---+oo m 'IT/, - 1 m + 1 

Now consider: 

m 1 

m - P(m)(~ + m~l + ... + P(~)+l) 1 P(m) ( 1 1 1 ) . 
- -:;:;:;:- ~ + m-1 + ... + P(m)+l 

Using limm---+oo P~) = lie and limm---+oo (~ + m~l + ... + P(~)+1) = 1 we 
have: 

. 1 
11m 

m---+oo 1 _ P(m) (~ + _1_ + + 1 ) 
m m m-1 ... P(m)+l 

1 e 

e -1' 1 - lie 

which establishes the lemma. 
o 
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