80 research outputs found

    On the expected diameter, width, and complexity of a stochastic convex-hull

    Full text link
    We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of nn points in Rd\mathbb{R}^d each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both nn and dd. For width, two approximation algorithms are provided: a deterministic O(1)O(1)-approximation running in O(nd+1logn)O(n^{d+1} \log n) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact O(nd)O(n^d)-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest

    Approximate Polytope Membership Queries

    Get PDF
    International audienceIn the polytope membership problem, a convex polytope K in R d is given, and the objective is to preprocess K into a data structure so that, given any query point q ∈ R d , it is possible to determine efficiently whether q ∈ K. We consider this problem in an approximate setting. Given an approximation parameter ε, the query can be answered either way if the distance from q to K's boundary is at most ε times K's diameter. We assume that the dimension d is fixed, and K is presented as the intersection of n halfspaces. Previous solutions to approximate polytope membership were based on straightforward applications of classic polytope approximation techniques by Dudley (1974) and Bentley et al. (1982). The former is optimal in the worst-case with respect to space, and the latter is optimal with respect to query time. We present four main results. First, we show how to combine the two above techniques to obtain a simple space-time trade-off. Second, we present an algorithm that dramatically improves this trade-off. In particular, for any constant α ≥ 4, this data structure achieves query time roughly O 1/ε (d−1)/α and space roughly O 1/ε (d−1)(1−Ω(log α)/α). We do not know whether this space bound is tight, but our third result shows that there is a convex body such that our algorithm achieves a space of at least Ω 1/ε (d−1)(1−O(√ α)/α. Our fourth result shows that it is possible to reduce approximate Euclidean nearest neighbor searching to approximate polytope membership queries. Combined with the above results, this provides significant improvements to the best known space-time trade-offs for approximate nearest neighbor searching in R d. For example, we show that it is possible to achieve a query time of roughly O(log n + 1/ε d/4) with space roughly O(n/ε d/4), thus reducing by half the exponent in the space bound

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

    Get PDF
    We consider the Approximate Nearest Neighbor (ANN) problem where the input set consists of n k-flats in the Euclidean Rd, for any fixed parameters k 0 is another prespecified parameter. We present an algorithm that achieves this task with n^{k+1}(log(n)/epsilon)^O(1) storage and preprocessing (where the constant of proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n)) time (where the power of the logarithm depends on d and k). In particular, we need only near-quadratic storage to answer ANN queries amidst a set of n lines in any fixed-dimensional Euclidean space. As a by-product, our approach also yields an algorithm, with similar performance bounds, for answering exact nearest neighbor queries amidst k-flats with respect to any polyhedral distance function. Our results are more general, in that they also provide a tradeoff between storage and query time

    On the Combinatorial Complexity of Approximating Polytopes

    Get PDF
    Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body KK of diameter diam(K)\mathrm{diam}(K) is given in Euclidean dd-dimensional space, where dd is a constant. Given an error parameter ε>0\varepsilon > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from KK is at most εdiam(K)\varepsilon \cdot \mathrm{diam}(K). By combinatorial complexity we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/ε(d1)/2)O(1/\varepsilon^{(d-1)/2}) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is O~(1/ε(d1)/2)\tilde{O}(1/\varepsilon^{(d-1)/2}), where O~\tilde{O} conceals a polylogarithmic factor in 1/ε1/\varepsilon. This is a significant improvement upon the best known bound, which is roughly O(1/εd2)O(1/\varepsilon^{d-2}). Our result is based on a novel combination of both old and new ideas. First, we employ Macbeath regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of B\'{a}r\'{a}ny and Larman's economical cap covering. Finally, we use a deterministic adaptation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.Comment: In Proceedings of the 32nd International Symposium Computational Geometry (SoCG 2016) and accepted to SoCG 2016 special issue of Discrete and Computational Geometr

    Random Separating Hyperplane Theorem and Learning Polytopes

    Full text link
    The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad applications. Our first result, Random Separating Hyperplane Theorem (RSH), is a strengthening of this for polytopes. \rsh asserts that if the distance between aa and a polytope KK with kk vertices and unit diameter in d\Re^d is at least δ\delta, where δ\delta is a fixed constant in (0,1)(0,1), then a randomly chosen hyperplane separates aa and KK with probability at least 1/poly(k)1/poly(k) and margin at least Ω(δ/d)\Omega \left(\delta/\sqrt{d} \right). An immediate consequence of our result is the first near optimal bound on the error increase in the reduction from a Separation oracle to an Optimization oracle over a polytope. RSH has algorithmic applications in learning polytopes. We consider a fundamental problem, denoted the ``Hausdorff problem'', of learning a unit diameter polytope KK within Hausdorff distance δ\delta, given an optimization oracle for KK. Using RSH, we show that with polynomially many random queries to the optimization oracle, KK can be approximated within error O(δ)O(\delta). To our knowledge this is the first provable algorithm for the Hausdorff Problem. Building on this result, we show that if the vertices of KK are well-separated, then an optimization oracle can be used to generate a list of points, each within Hausdorff distance O(δ)O(\delta) of KK, with the property that the list contains a point close to each vertex of KK. Further, we show how to prune this list to generate a (unique) approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g., topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace. Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the latent polytope under the well-separatedness assumption

    Convex optimization using quantum oracles

    Get PDF
    corecore